Note

Hello, welcome to the SunFounder Raspberry Pi & Arduino & ESP32 Enthusiasts Community on Facebook! Dive deeper into Raspberry Pi, Arduino, and ESP32 with fellow enthusiasts.

Why Join?

• Expert Support: Solve post-sale issues and technical challenges with help from our community and team.

• Learn & Share: Exchange tips and tutorials to enhance your skills.

• Exclusive Previews: Get early access to new product announcements and sneak peeks.

• Special Discounts: Enjoy exclusive discounts on our newest products.

• Festive Promotions and Giveaways: Take part in giveaways and holiday promotions.

π Ready to explore and create with us? Click [here] and join today!

# LEDΒΆ

Semiconductor light-emitting diode is a type of component which can turn electric energy into light energy via PN junctions. By wavelength, it can be categorized into laser diode, infrared light-emitting diode and visible light-emitting diode which is usually known as light-emitting diode (LED).

Diode has unidirectional conductivity, so the current flow will be as the arrow indicates in figure circuit symbol. You can only provide the anode with a positive power and the cathode with a negative. Thus the LED will light up.

An LED has two pins. The longer one is the anode, and shorter one, the cathode. Pay attention not to connect them inversely. There is fixed forward voltage drop in the LED, so it cannot be connected with the circuit directly because the supply voltage can outweigh this drop and cause the LED to be burnt. The forward voltage of the red, yellow, and green LED is 1.8 V and that of the white one is 2.6 V. Most LEDs can withstand a maximum current of 20 mA, so we need to connect a current limiting resistor in series.

The formula of the resistance value is as follows:

R = (Vsupply β VD)/I

R stands for the resistance value of the current limiting resistor, Vsupply for voltage supply, VD for voltage drop and I for the working current of the LED.

Here is the detailed introduction for the LED: LED - Wikipedia.

Example