2.2.3 DHT-11

Introduction

The digital temperature and humidity sensor DHT11 is a composite sensor that contains a calibrated digital signal output of temperature and humidity. The technology of a dedicated digital modules collection and the technology of the temperature and humidity sensing are applied to ensure that the product has high reliability and excellent stability.

The sensors include a wet element resistive sensor and a NTC temperature sensor and they are connected to a high performance 8-bit microcontroller.

Required Components

In this project, we need the following components.

../_images/list_2.2.3_dht-11.png

It’s definitely convenient to buy a whole kit, here’s the link:

Name

ITEMS IN THIS KIT

LINK

Raphael Kit

337

Raphael Kit

You can also buy them separately from the links below.

COMPONENT INTRODUCTION

PURCHASE LINK

GPIO Extension Board

BUY

Breadboard

BUY

Jumper Wires

BUY

Resistor

BUY

Humiture Sensor Module

BUY

Schematic Diagram

../_images/image326.png

Experimental Procedures

Step 1: Build the circuit.

../_images/image207.png

Step 2: Go to the folder of the code.

cd ~/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 2.2.3_DHT.py

After the code runs, the program will print the temperature and humidity detected by DHT11 on the computer screen.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

dhtPin = 17

GPIO.setmode(GPIO.BCM)

MAX_UNCHANGE_COUNT = 100

STATE_INIT_PULL_DOWN = 1
STATE_INIT_PULL_UP = 2
STATE_DATA_FIRST_PULL_DOWN = 3
STATE_DATA_PULL_UP = 4
STATE_DATA_PULL_DOWN = 5

def readDht11():
    GPIO.setup(dhtPin, GPIO.OUT)
    GPIO.output(dhtPin, GPIO.HIGH)
    time.sleep(0.05)
    GPIO.output(dhtPin, GPIO.LOW)
    time.sleep(0.02)
    GPIO.setup(dhtPin, GPIO.IN, GPIO.PUD_UP)

    unchanged_count = 0
    last = -1
    data = []
    while True:
        current = GPIO.input(dhtPin)
        data.append(current)
        if last != current:
            unchanged_count = 0
            last = current
        else:
            unchanged_count += 1
            if unchanged_count > MAX_UNCHANGE_COUNT:
                break

    state = STATE_INIT_PULL_DOWN

    lengths = []
    current_length = 0

    for current in data:
        current_length += 1

        if state == STATE_INIT_PULL_DOWN:
            if current == GPIO.LOW:
                state = STATE_INIT_PULL_UP
            else:
                continue
        if state == STATE_INIT_PULL_UP:
            if current == GPIO.HIGH:
                state = STATE_DATA_FIRST_PULL_DOWN
            else:
                continue
        if state == STATE_DATA_FIRST_PULL_DOWN:
            if current == GPIO.LOW:
                state = STATE_DATA_PULL_UP
            else:
                continue
        if state == STATE_DATA_PULL_UP:
            if current == GPIO.HIGH:
                current_length = 0
                state = STATE_DATA_PULL_DOWN
            else:
                continue
        if state == STATE_DATA_PULL_DOWN:
            if current == GPIO.LOW:
                lengths.append(current_length)
                state = STATE_DATA_PULL_UP
            else:
                continue
    if len(lengths) != 40:
        #print ("Data not good, skip")
        return False

    shortest_pull_up = min(lengths)
    longest_pull_up = max(lengths)
    halfway = (longest_pull_up + shortest_pull_up) / 2
    bits = []
    the_bytes = []
    byte = 0

    for length in lengths:
        bit = 0
        if length > halfway:
            bit = 1
        bits.append(bit)
    #print ("bits: %s, length: %d" % (bits, len(bits)))
    for i in range(0, len(bits)):
        byte = byte << 1
        if (bits[i]):
            byte = byte | 1
        else:
            byte = byte | 0
        if ((i + 1) % 8 == 0):
            the_bytes.append(byte)
            byte = 0
    #print (the_bytes)
    checksum = (the_bytes[0] + the_bytes[1] + the_bytes[2] + the_bytes[3]) & 0xFF
    if the_bytes[4] != checksum:
        #print ("Data not good, skip")
        return False

    return the_bytes[0], the_bytes[2]

def main():

    while True:
        result = readDht11()
        if result:
            humidity, temperature = result
            print ("humidity: %s %%,  Temperature: %s ℃" % (humidity, temperature))
        time.sleep(1)

def destroy():
    GPIO.cleanup()

if __name__ == '__main__':
    try:
        main()
    except KeyboardInterrupt:
        destroy()

Code Explanation

def readDht11():
    GPIO.setup(dhtPin, GPIO.OUT)
    GPIO.output(dhtPin, GPIO.HIGH)
    time.sleep(0.05)
    GPIO.output(dhtPin, GPIO.LOW)
    time.sleep(0.02)
    GPIO.setup(dhtPin, GPIO.IN, GPIO.PUD_UP)
    unchanged_count = 0
    last = -1
    data = []
    #...

This function is used to implement the functions of DHT11. It stores the detected data in the the_bytes[] array. DHT11 transmits data of 40 bits at a time. The first 16 bits are related to humidity, the middle 16 bits are related to temperature, and the last eight bits are used for verification. The data format is:

8bit humidity integer data +8bit humidity decimal data +8bit temperature integer data + 8bit temperature decimal data + 8bit check bit.

When the validity is detected via the check bit, the function returns two results: 1. error; 2. humidity and temperature.

checksum = (the_bytes[0] + the_bytes[1] + the_bytes[2] + the_bytes[3]) & 0xFF
if the_bytes[4] != checksum:
    #print ("Data not good, skip")
    return False

return the_bytes[0], the_bytes[2]

For example, if the received date is 00101011(8-bit value of humidity integer) 00000000 (8-bit value of humidity decimal) 00111100 (8-bit value of temperature integer) 00000000 (8-bit value of temperature decimal) 01100111 (check bit)

Calculation:

00101011+00000000+00111100+00000000=01100111.

If the final result is equal to the check bit data, the data transmission is abnormal: return False.

If the final result is equal to the check bit data, the received data is correct, then there will return the_bytes[0] and the_bytes[2] and output “Humidity =43%,Temperature =60C”.

Phenomenon Picture

../_images/image209.jpeg