

SunFounder Super Kit V2 for Raspberry Pi

About the Super Kit 2.0

This super kit is suitable for the Raspberry Pi B, model B+, Pi 2 model B,
Pi 3 model B , Pi 3 model B+ and 4 Model B. It includes various components
and chips that can show different interesting phenomena. You can make it happen
by following the experiment instructions, and learn basic knowledge about them.
Also you can explore more application after mastering the principle and code.
Now get on the road!

About the display language

In addition to English, we are working on other languages for this course. Please contact service@sunfounder.com if you are interested in helping, and we will give you a free product in return.
In the meantime, we recommend using Google Translate to convert English to the language you want to see.

The steps are as follows.

	In this course page, right-click and select Translate to xx. If the current language is not what you want, you can change it later.

[image: _images/translate1.png]

	There will be a language popup in the upper right corner. Click on the menu button to choose another language.

[image: _images/translate2.png]

	Select the language from the inverted triangle box, and then click Done.

[image: _images/translate3.png]

	Components List

	Preparation
	What Do We Need?

	Installing the OS

	Set up Your Raspberry Pi

	Libraries
	RPi.GPIO

	WiringPi

	Raspberry Pi GPIO Extension Board

	Download the Code

	Lessons
	Lesson 1 Blinking LED

	Lesson 2 Controlling an LED by a Button

	Lesson 3 Flowing LED Lights

	Lesson 4 Breathing LED

	Lesson 5 RGB LED

	Lesson 6 Buzzer

	Lesson 7 How to Drive a DC Motor

	Lesson 8 Rotary Encoder

	Lesson 9 555 Timer

	Lesson 10 Driving LEDs by 74HC595

	Lesson 11 Driving 7-Segment Display by 74HC595

	Lesson 12 Driving Dot-Matrix by 74HC595

	Lesson 13 LCD1602

	Lesson 14 ADXL345

	Appendix
	I2C Configuration

	SPI Configuration

	Remote Desktop

	FAQ
	C code is not working?

	Thank You

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes, under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.

Components List

Note

After unpacking, please check that the number of components is correct
and that all components are in good condition.

	No.

	Name

	Quantity

	Component

	1

	RGB LED

	1

	[image: _images/image4.png]

	2

	555 Timer IC

	1

	[image: _images/image5.png]

	3

	Optocoupler
(4N35)

	2

	[image: _images/image6.png]

	4

	Shift Register
(74HC595)

	2

	[image: _images/image7.png]

	5

	L293D

	1

	[image: _images/image8.png]

	6

	Accelerometer
ADXL345

	1

	[image: _images/image9.png]

	7

	Rotary Encoder

	1

	[image: _images/image10.png]

	8

	Button

	5

	[image: _images/image11.png]

	9

	Resistor (220Ω)

	8

	[image: _images/image12.png]

	10

	Resistor (1kΩ)

	8

	[image: _images/image13.png]

	11

	Resistor (10kΩ)

	4

	[image: _images/image14.png]

	12

	Resistor (100kΩ)

	4

	[image: _images/image15.png]

	13

	Resistor (1MΩ)

	1

	[image: _images/image16.png]

	14

	Resistor (5.1MΩ)

	1

	[image: _images/image17.png]

	15

	Switch

	1

	[image: _images/image18.png]

	16

	Potentiometer
(50k)

	1

	[image: _images/image19.png]

	17

	Power Supply
Module

	1

	[image: _images/image201.png]

	18

	LCD1602

	1

	[image: _images/image21.png]

	19

	Dot Matrix
Display (8*8)

	1

	[image: _images/image22.png]

	20

	7-Segment
Display

	2

	[image: _images/image23.png]

	21

	DC Motor

	1

	[image: _images/image24.png]

	22

	LED (red)

	16

	[image: _images/image25.png]

	23

	LED (white)

	2

	[image: _images/image26.png]

	24

	LED (green)

	2

	[image: _images/image27.png]

	25

	LED (yellow)

	2

	[image: _images/image28.png]

	26

	NPN Transistor
(S8050)

	2

	[image: _images/image29.png]

	27

	PNP Transistor
(S8550)

	2

	[image: _images/image30.png]

	28

	Capacitor
Ceramic
100nF

	4

	[image: _images/image31.png]

	29

	Capacitor
Ceramic
10nF

	4

	[image: _images/image32.png]

	30

	Diode Rectifier

	4

	[image: _images/image33.png]

	31

	Breadboard

	1

	[image: _images/image34.png]

	32

	Male-to-Male
Jumper Wire

	65

	[image: _images/image35.png]

	33

	Female-to-Male
Dupont Wire

	20

	[image: _images/image36.png]

	34

	Active Buzzer

	1

	[image: _images/image37.png]

	35

	Fan

	1

	[image: _images/image38.png]

	36

	GPIO Extension
Board

	1

	[image: _images/image39.png]

	37

	40-pin Ribbon
Cable

	1

	[image: _images/image40.png]

Preparation

In this chapter, we firstly learn to start up Raspberry Pi. The content
includes installing the OS, Raspberry Pi network and how to open terminal.

Note

You can check the complete tutorial on the official website of the Raspberry Pi: raspberry-pi-setting-up [https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up].

If your Raspberry Pi is set up, you can skip the part and go into the next chapter.

	What Do We Need?
	Required Components

	Optional Components

	Installing the OS

	Set up Your Raspberry Pi
	If You Have a Screen

	If You Have No Screen

What Do We Need?

Required Components

Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs
into a computer monitor or TV, and uses a standard keyboard and mouse.
It is a capable little device that enables people of all ages to explore
computing, and to learn how to program in languages like Scratch and
Python.

Our kit applies to the following versions of the product of Raspberry Pi:

[image: ../_images/image48.png]
Power Adapter

To connect to a power socket, the Raspberry Pi has a micro USB port (the
same found on many mobile phones). You will need a power supply which
provides at least 2.5 amps.

Micro SD Card

Your Raspberry Pi needs an SD card to store all its files and the
Raspbian operating system. You will need a micro SD card with a capacity
of at least 8 GB.

Optional Components

Screen

To view the desktop environment of Raspberry Pi, you need to use the
screen that can be a TV screen or a computer monitor. If the screen has
built-in speakers, the Pi plays sounds via them.

Mouse & Keyboard

When you use a screen , a USB keyboard and a USB mouse are also needed.

HDMI

The Raspberry Pi has a HDMI output port that is compatible with the HDMI
ports of most modern TV and computer monitors. If your screen has only
DVI or VGA ports, you will need to use the appropriate conversion line.

Case

You can put the Raspberry Pi in a case; by this means, you can protect
your device.

Sound or Earphone

The Raspberry Pi is equipped with an audio port about 3.5 mm that can be
used when your screen has no built-in speakers or when there is no
screen operation.

Installing the OS

Required Components

	Any Raspberry Pi

	1 * Personal Computer

	1 * Micro SD card

	

Step 1

Raspberry Pi have developed a graphical SD card writing tool that works
on Mac OS, Ubuntu 18.04 and Windows, and is the easiest option for most
users as it will download the image and install it automatically to the
SD card.

Visit the download page: https://www.raspberrypi.org/software/. Click on
the link for the Raspberry Pi Imager that matches your operating system,
when the download finishes, click it to launch the installer.

[image: ../_images/image1110.png]
Step 2

When you launch the installer, your operating system may try to block
you from running it. For example, on Windows I receive the following
message:

If this pops up, click on More info and then Run anyway, then
follow the instructions to install the Raspberry Pi Imager.

[image: ../_images/image125.png]
Step 3

Insert your SD card into the computer or laptop SD card slot.

Step 4

In the Raspberry Pi Imager, select the OS that you want to install and
the SD card you would like to install it on.

[image: ../_images/image1310.png]

Note

	You will need to be connected to the internet the first time.

	That OS will then be stored for future offline use(lastdownload.cache, C:/Users/yourname/AppData/Local/Raspberry Pi/Imager/cache). So the next time you open the software, it will have the display “Released: date, cached on your computer”.

Step 5

Select the SD card you are using.

[image: ../_images/image1410.png]
Step 6

Press Ctrl+Shift+X to open the Advanced options page to enable
SSH and configure wifi, these 2 items must be set, the others depend on
your choice . You can choose to always use this image customization
options.

[image: ../_images/image154.png]
Then scroll down to complete the wifi configuration and click SAVE.

Note

wifi country should be set the two-letter ISO/IEC alpha2
code [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements] for
the country in which you are using your Raspberry Pi, please refer to
the following link: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements

[image: ../_images/image162.png]
Step 7

Click the WRITE button.

[image: ../_images/image171.png]
Step 8

If your SD card currently has any files on it, you may wish to back up
these files first to prevent you from permanently losing them. If there
is no file to be backed up, click Yes.

[image: ../_images/image181.png]
Step 9

After waiting for a period of time, the following window will appear to
represent the completion of writing.

[image: ../_images/image191.png]

Set up Your Raspberry Pi

If You Have a Screen

If you have a screen, it will be easy for you to operate on the
Raspberry Pi.

Required Components

	Any Raspberry Pi

	1 * Power Adapter

	1 * Micro SD card

	1 * Screen Power Adapter

	1 * HDMI cable

	1 * Screen

	1 * Mouse

	1 * Keyboard

	Insert the SD card you’ve set up with Raspberry Pi OS into the micro SD card slot on the underside of your Raspberry Pi.

	Plug in the Mouse and Keyboard.

	Connect the screen to Raspberry Pi’s HDMI port and make sure your screen is plugged into a wall socket and switched on.

Note

If you use a Raspberry Pi 4, you need to connect the screen to the HDMI0 (nearest the power in port).

	Use the power adapter to power the Raspberry Pi. After a few seconds, the Raspberry Pi OS desktop will be displayed.

[image: ../_images/image202.png]

If You Have No Screen

If you don’t have a display, you can log in to the Raspberry Pi
remotely, but before that, you need to get the IP of the Raspberry Pi.

Get the IP Address

After the Raspberry Pi is connected to WIFI, we need to get the IP
address of it. There are many ways to know the IP address, and two of
them are listed as follows.

1. Checking via the router

If you have permission to log in the router(such as a home network), you
can check the addresses assigned to Raspberry Pi on the admin interface
of router.

The default hostname of the Raspberry Pi OS is raspberrypi, and you
need to find it. (If you are using ArchLinuxARM system, please find
alarmpi.)

2. Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry
Pi. You can apply the software, Advanced IP scanner and so on.

Scan the IP range set, and the name of all connected devices will be
displayed. Similarly, the default hostname of the Raspberry Pi OS is
raspberrypi, if you haven’t modified it.

Use the SSH Remote Control

We can open the Bash Shell of Raspberry Pi by applying SSH. Bash is the
standard default shell of Linux. The Shell itself is a program written
in C that is the bridge linking the customers and Unix/Linux. Moreover,
it can help to complete most of the work needed.

For Linux or/Mac OS X Users

Step 1

Go to Applications->Utilities, find the Terminal, and open
it.

[image: ../_images/image211.png]
Step 2

Type in ssh pi@ip_address . “pi”is your username and “ip_address” is
your IP address. For example:

ssh pi@192.168.18.197

Step 3

Input”yes”.

[image: ../_images/image221.png]
Step 4

Input the passcode and the default password is raspberry.

[image: ../_images/image231.png]
Step 5

We now get the Raspberry Pi connected and are ready to go to the next
step.

[image: ../_images/image241.png]

Note

When you input the password, the characters do not display on
window accordingly, which is normal. What you need is to input the
correct password.

For Windows Users

If you’re a Windows user, you can use SSH with the application of some
software. Here, we recommend PuTTY.

Step 1

Download PuTTY.

Step 2

Open PuTTY and click Session on the left tree-alike structure. Enter
the IP address of the RPi in the text box under Host Name (or IP
address) and 22 under Port (by default it is 22).

[image: ../_images/image251.png]
Step 3

Click Open. Note that when you first log in to the Raspberry Pi with
the IP address, there prompts a security reminder. Just click Yes.

Step 4

When the PuTTY window prompts “login as:”, type in
“pi”(the user name of the RPi), and password: “raspberry”
(the default one, if you haven’t changed it).

[image: ../_images/image261.png]
Step 5

Here, we get the Raspberry Pi connected and it is time to conduct the
next steps.

Note: When you input the password, the characters do not display on
window accordingly, which is normal. What you need is to input the
correct password.

Note: If you are not satisfied with using the command window to control
the Raspberry Pi, you can also use the remote desktop function, which
can help us manage the files in the Raspberry Pi easily.

For details on how to do this, please refer to Remote Desktop.

Libraries

Two important libraries are used in programming with Raspberry Pi, and
they are wiringPi and RPi.GPIO. The Raspbian OS image of Raspberry Pi
installs them by default, so you can use them directly.

	RPi.GPIO

	WiringPi

RPi.GPIO

If you are a Python user, you can program GPIOs with API provided by
RPi.GPIO.

RPi.GPIO is a module to control Raspberry Pi GPIO channels. This package
provides a class to control the GPIO on a Raspberry Pi. For examples and
documents, visit
http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/.

Test whether RPi.GPIO is installed or not, type in python:

python

[image: _images/image77.png]
In Python CLI, input “import RPi.GPIO”, If no error prompts, it means
RPi.GPIO is installed.

import RPi.GPIO

[image: _images/image78.png]
Then, type in RPi.GPIO.VERSION to check its version.

RPi.GPIO.VERSION

[image: _images/image79-1.png]
If you want to quit python CLI, type in:

exit()

[image: _images/image79.png]

WiringPi

wiringPi is a C language GPIO library applied to the Raspberry Pi. It complies with GUN Lv3. The functions in wiringPi are
similar to those in the wiring system of Arduino. They enable the users
familiar with Arduino to use wiringPi more easily.

wiringPi includes lots of GPIO commands which enable you to control all
kinds of interfaces on Raspberry Pi.

Please run the following command to install wiringPi library.

sudo apt-get update
git clone https://github.com/WiringPi/WiringPi
cd WiringPi
./build

You can test whether the wiringPi
library is installed successfully or not by the following instruction.

gpio -v

[image: _images/image80.png]
Check the GPIO with the following command:

gpio readall

[image: _images/image522.png]
For more details about wiringPi, you can refer to WiringPi [https://github.com/WiringPi/WiringPi].

Raspberry Pi GPIO Extension Board

We apply the GPIO Extension Board to extend the pins of Raspberry Pi to
the breadboard and avoid damage caused by frequent plugging and
unplugging.

Here, we apply a 40-pin GPIO Extension board and a 40-pin GPIO cable. In
case of the potential risk of short circuit, you must build your circit in
strict accordance with the following picture.

[image: _images/image82.png]
The pins of Raspberry Pi have three kinds of ways to name and they are
wiringPi, BCM and Board. Among these naming methods, 40-pin GPIO
Extension board uses the naming method, BCM. But for some special
pins, such as I2C port and SPI port, they use the Name that comes with
themselves. The following table shows us the naming methods of
WiringPi, Board and the intrinsic Name of each pin on GPIO Extension
board. For example, for the GPIO17, the Board naming method of it is
11, the wiringPi naming method is 0, and the intrinsic naming method
of it is GPIO0.

Note

1）In C Language, what is used is the naming method WiringPi.

2）In Python Language, the applied naming methods are Board and BCM,
and the function GPIO.setmode() is used to set them.

[image: _images/gpio_extention_board.png]

Download the Code

Change directory to /home/pi.

cd /home/pi/

Note

cd, short for change directory is to change to the intended
directory from the current path. Informally, here is to go to the path
/home/pi/.

Clone the repository from GitHub (C code and python code).

git clone https://github.com/sunfounder/Sunfounder_SuperKit_C_code_for_RaspberryPi.git

git clone https://github.com/sunfounder/Sunfounder_SuperKit_Python_code_for_RaspberryPi.git

The advantage of this method is that, you can download the latest code
any time you want, and then place the code under the path /home/pi/.
But in case of incorrect typing which is possible especially when you’re
strange to the commands, you can just enter github.com/sunfounder [https://github.com/sunfounder] at the
address bar of a web browser, and on the page directed find the code for
Super Kit.

[image: _images/image83.png]
Click on the repository. On the page directed, click Clone or
download on the right side.

[image: _images/image84.png]
After download, transfer the package to /home/pi/.

Now you can start the experiments. Let’s rock!

Lessons

	Lesson 1 Blinking LED

	Lesson 2 Controlling an LED by a Button

	Lesson 3 Flowing LED Lights

	Lesson 4 Breathing LED

	Lesson 5 RGB LED

	Lesson 6 Buzzer

	Lesson 7 How to Drive a DC Motor

	Lesson 8 Rotary Encoder

	Lesson 9 555 Timer

	Lesson 10 Driving LEDs by 74HC595

	Lesson 11 Driving 7-Segment Display by 74HC595

	Lesson 12 Driving Dot-Matrix by 74HC595

	Lesson 13 LCD1602

	Lesson 14 ADXL345

Lesson 1 Blinking LED

Introduction

In this lesson, we will learn how to program Raspberry Pi to make an LED
blink. You can play numerous tricks with an LED as you want. Now get to
start and you will enjoy the fun of DIY at once!

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * LED

- 1 * Resistor (220Ω)

- Jumper wires

Principle

Semiconductor light-emitting diode is a type of component which can turn
electric energy into light energy via PN junctions. By wavelength, it
can be categorized into laser diode, infrared light-emitting diode and
visible light-emitting diode which is usually known as light-emitting
diode (LED).

When 2V-3V forward voltage is supplied to an LED, it will blink only if
forward currents flow through the LED. Usually there are red, yellow,
green, blue and color-changing LEDs which change color with different
voltages. LEDs are widely used due to their low operating voltage, low
current, luminescent stability and small size.

LEDs are diodes too. Hence they have a voltage drop which usually varies
from 1V to 3V depending on their types. Generally, they brighten if
supplied with a 5mA–30mA current, and we usually use 10mA–20mA. Thus
when an LED is used, it is necessary to connect a current-limiting
resistor to protect it from being burnt.

Schematic Diagram

[image: _images/image85.png]
In this experiment, connect a 220Ω resistor to the anode of the LED,
then the resistor to 3.3 V, and connect the cathode of the LED to GPIO17
(See Raspberry Pi Pin Number Introduction). Write 1 to GPIO17, and the
LED will stay off; write 0 to GPIO17, and then the LED will blink, just
as indicated by the principle above.

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image86.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/01_LED

Step 3: Compile.

gcc led.c -o led -lwiringPi

Step 4: Run.

sudo ./led

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define LedPin 0

int main(void)
{
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }
 printf("linker LedPin : GPIO %d(wiringPi pin)\n",LedPin); //when initialize wiring successfully,print message to screen

 pinMode(LedPin, OUTPUT);

 while(1){
 digitalWrite(LedPin, LOW); //led on
 printf("led on...\n");
 delay(500);
 digitalWrite(LedPin, HIGH); //led off
 printf("...led off\n");
 delay(500);
 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 01_led.py

Now, you should see the LED blink.

Code

import RPi.GPIO as GPIO
import time

LedPin = 17

def setup():
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
 GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
 GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led

def loop():
 while True:
 print ("...led on")
 GPIO.output(LedPin, GPIO.LOW) # led on
 time.sleep(0.5)
 print ("led off...")
 GPIO.output(LedPin, GPIO.HIGH) # led off
 time.sleep(0.5)

def destroy():
 GPIO.output(LedPin, GPIO.HIGH) # led off
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

[image: _images/image87.png]

Further Exploration

If you want the LED to speed up the blinking, just change the delay
time. For example, change the time to delay (200) in the program,
recompile and run, and then you will see the LED blink faster.

Summary

Raspberry Pi packages many low-level detail designs, which enable you to
explore your own apps more conveniently. Maybe that is the charm of
Raspberry Pi.

Now you have already learnt how to use the Raspberry Pi GPIO to blink an
LED. Keep moving to the next contents.

Tips：

For any TECHNICAL questions, add a
topic under FORUM section on our website
www.sunfounder.com [http://www.sunfounder.com] and we’ll reply as
soon as possible. For NON-TECH questions like order issues, please
email service@sunfounder.com.

Lesson 2 Controlling an LED by a Button

Introduction

In this lesson, we will learn how to turn an LED on or off by a button.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * LED

- 1 * Button

- 1 * Resistor (220Ω)

- Jumper wires

Principle

Button

Buttons are a common component used to control electronic devices. They
are usually used as switches to connect or disconnect circuits. Although
buttons come in a variety of sizes and shapes, the one used here is a
6mm mini-button as shown in the following pictures. Pins pointed out by
the arrows of same color are meant to be connected.

[image: _images/image90.png]
When the button is pressed, the pins pointed by the blue arrow will
connect to the pins pointed by the red arrow (see the above figure),
thus closing the circuit, as shown in the following diagrams.

[image: _images/image91.png]
Generally, the button can be connected directly to the LED in a circuit
to turn on or off the LED, which is comparatively simple. However,
sometimes the LED will brighten automatically without any button
pressed, which is caused by various kinds of external interference. In
order to avoid this interference, a pull-up resistor is used – usually
connect a 1K–10KΩ resistor between the button and VCC. It can be
connected to VCC to consume the interference when the button is off.

Schematic Diagram

Use a normally open button as the input of Raspberry Pi. When the button
is pressed, the GPIO connected to the button will turn into low level
(0V). We can detect the state of the GPIO connected to the button
through programming. That is, if the GPIO turns into low level, it means
the button is pressed. You can run the corresponding code when the
button is pressed, and then the LED will light up.

[image: _images/image92.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image93.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/02_BtnAndLed/

Step 3: Compile.

gcc BtnAndLed.c -o BtnAndLed -lwiringPi

Step 4: Run.

sudo ./BtnAndLed

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define LedPin 0
#define ButtonPin 1

int main(void)
{
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(LedPin, OUTPUT);
 pinMode(ButtonPin, INPUT);

 pullUpDnControl(ButtonPin, PUD_UP); //pull up to 3.3V,make GPIO1 a stable level
 while(1){
 digitalWrite(LedPin, HIGH);
 if(digitalRead(ButtonPin) == 0){ //indicate that button has pressed down
 digitalWrite(LedPin, LOW); //led on
 }
 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 02_btnAndLed.py

Now, press the button, and the LED will light up; press the button
again, and the LED will go out. At the same time, the state of the LED
will be printed on the screen.

Code

import RPi.GPIO as GPIO
import time

LedPin = 17
BtnPin = 18

Led_status = 1

def setup():
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
 GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
 GPIO.setup(BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set BtnPin's mode is input, and pull up to high level(3.3V)
 GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led

def swLed(ev=None):
 global Led_status
 Led_status = not Led_status
 GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
 if Led_status == 1:
 print ("led off...")
 else:
 print ("...led on")

def loop():
 GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=swLed, bouncetime=200) # wait for falling and set bouncetime to prevent the callback function from being called multiple times when the button is pressed
 while True:
 time.sleep(1) # Don't do anything

def destroy():
 GPIO.output(LedPin, GPIO.HIGH) # led off
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

[image: _images/image94.png]

Summary

Through this experiment, you have learnt how to control the GPIOs of the
Raspberry Pi by programming.

Lesson 3 Flowing LED Lights

Introduction

In this lesson, we will learn how to make eight LEDs blink in various
effects as you want based on Raspberry Pi.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 8 * LED

- 8 * Resistor (220Ω)

- Jumper wires

Schematic Diagram

Set GPIO17-GPIO25 to low level in turn by programming, and then
LED0-LED7 will light up in turn. You can make eight LEDs blink in
different effects by controlling their delay time and the order of
lighting up.

[image: _images/image95.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image96.png]
Step 2: GPIO4 is the default pin for onewire driver (w1-gpio). In
this lesson, we need to disable the onewire function and use it as an
output pin.

sudo nano /boot/config.txt

Commit the following line.

#dtoverlay = w1-gpio

For C Language Users:

Step 3: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/03_8Led/

Step 4: Compile.

gcc 8Led.c -o 8Led -lwiringPi

Step 5: Run.

sudo ./8Led

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

//make led_n on
void led_on(int n)
{
 digitalWrite(n, LOW);
}

//make led_n off
void led_off(int n)
{
 digitalWrite(n, HIGH);
}

int main(void)
{
 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 for(i=0;i<8;i++){
 printf("linker LedPin : GPIO %d(wiringPi pin)\n",i); //when initialize wiring successfully,print message to screen
 }

 for(i=0;i<8;i++){ //make 8 pins' mode is output
 pinMode(i, OUTPUT);
 }

 while(1){
 for(i=0;i<8;i++){ //make led on from left to right
 led_on(i);
 delay(100);
 led_off(i);
 }
 // delay(500);
 for(i=8;i>=0;i--){ //make led off from right to left
 led_on(i);
 delay(100);
 led_off(i);
 }
 }

 return 0;
}

For Python Users:

Step 3: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 4: Run.

sudo python3 03_8Led.py

Then you will see eight LEDs brighten and dim left to right and right to
left circularly, just like flowing water.

Code

import RPi.GPIO as GPIO
import time

pins = [17, 18, 27, 22, 23, 24, 25, 4]

def setup():
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
 for pin in pins:
 GPIO.setup(pin, GPIO.OUT) # Set all pins' mode is output
 GPIO.output(pin, GPIO.HIGH) # Set all pins to high(+3.3V) to off led

def loop():
 while True:
 for pin in pins:
 GPIO.output(pin, GPIO.LOW)
 time.sleep(0.05)
 GPIO.output(pin, GPIO.HIGH)
 for pin in reversed(pins):
 GPIO.output(pin, GPIO.LOW)
 time.sleep(0.05)
 GPIO.output(pin, GPIO.HIGH)

def destroy():
 for pin in pins:
 GPIO.output(pin, GPIO.HIGH) # turn off all leds
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

[image: _images/image97.png]
Further Exploration

You can write the blinking effects of LEDs in an array. If you want to
use one of these effects, you can call it in the main() function
directly.

Lesson 4 Breathing LED

Introduction

In this lesson, we will try something interesting – gradually increase
and decrease the luminance of an LED with PWM, just like breathing. So
we give it a magical name - Breathing LED.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * LED

- 1 * Resistor (220Ω)

- Jumper wires

Principle

PWM

Pulse Width Modulation, or PWM, is a technique for getting analog
results with digital means. Digital control is used to create a square
wave, a signal switched between on and off. This on-off pattern can
simulate voltages in between full on (3.3 Volts) and off (0 Volts) by
changing the portion of the time the signal spends on versus the time
that the signal spends off. The duration of “on time” is called pulse
width. To get varying analog values, you change, or modulate, that
width. If you repeat this on-off pattern fast enough with some device,
an LED for example, the result would be like this: the signal is a
steady voltage between 0 and 3.3v controlling the brightness of the LED.
(See the PWM description on the official website of Arduino)

Duty Cycle

A duty cycle is the percentage of one period in which a signal is
active. A period is the time it takes for a signal to complete an
on-and-off cycle. As a formula, a duty cycle may be expressed as:

[image: _images/image161.png]
where D is the duty cycle, T is the time the signal is active,
and P is the total period of the signal. Thus, a 60% duty cycle
means the signal is on 60% of the time but off 40% of the time. The “on
time” for a 60% duty cycle could be a fraction of a second, a day, or
even a week, depending on the length of the period.

[image: _images/image101.png]
In this experiment, we use this technology to make the LED brighten and
dim slowly so it looks like our breath.

Schematic Diagram

[image: _images/image102.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image103.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/04_PwmLed

Step 3: Compile.

gcc PwmLed.c -o PwmLed -lwiringPi -lpthread

Step 4: Run.

sudo ./PwmLed

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>

#define LedPin 1

int main(void)
{
 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 softPwmCreate(LedPin, 0, 100);

 while(1){
 for(i=0;i<=100;i++){
 softPwmWrite(LedPin, i);
 delay(20);
 }
 delay(1000);
 for(i=100;i>=0;i--){
 softPwmWrite(LedPin, i);
 delay(20);
 }
 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 04_pwmLed.py

Now you will see the gradual change of the LED luminance, between bright
and dim.

Code

import RPi.GPIO as GPIO
import time

LedPin = 18

def setup():
 global p
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
 GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
 GPIO.output(LedPin, GPIO.LOW) # Set LedPin to low(0V)

 p = GPIO.PWM(LedPin, 1000) # set Frequece to 1KHz
 p.start(0) # Duty Cycle = 0

def loop():
 while True:
 for dc in range(0, 101, 4): # Increase duty cycle: 0~100
 p.ChangeDutyCycle(dc) # Change duty cycle
 time.sleep(0.05)
 time.sleep(1)
 for dc in range(100, -1, -4): # Decrease duty cycle: 100~0
 p.ChangeDutyCycle(dc)
 time.sleep(0.05)
 time.sleep(1)

def destroy():
 p.stop()
 GPIO.cleanup()

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

[image: _images/image104.png]

Summary

Through this experiment, you should have mastered the principle of PWM
and how to program Raspberry Pi with PWM. You can try to apply this
technology to DC motor speed regulation later.

Lesson 5 RGB LED

Introduction

Previously we’ve used the PWM technology to control an LED brighten and
dim. In this lesson, we will use it to control an RGB LED to flash
various kinds of colors.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * RGB LED

- 3 * Resistor (220Ω)

- Several jumper wires

Principle

RGB

RGB LEDs emit light in various colors. RGB stands for the red, green,
and blue color channels and is an industry color standard. They package
three LEDs of red, green, and blue into a transparent or semitransparent
plastic shell and have four pins. An RGB LED can display various new
colors by changing the three channels and superimposing them, which,
according to statistics, can create 16,777,216 different colors.

The three primary colors can be mixed into various colors by brightness.
The brightness of LED can be adjusted with PWM. Raspberry Pi has only
one channel for hardware PWM output, but it needs three channels to
control the RGB LED, which means it is difficult to control the RGB LED
with the hardware PWM of Raspberry Pi. Fortunately, the softPwm
library simulates PWM (softPwm) by programming. You only need to include
the header file softPwm.h (for C language users), and then call the
API it provides to easily control the RGB LED by multi-channel PWM
output, so as to display all kinds of color.

RGB LEDs can be categorized into common anode and common cathode ones.
In this experiment, the latter is used.

Schematic Diagram

[image: _images/image105.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image106.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/05_RGB/

Step 3: Compile.

gcc rgb.c -o rgb -lwiringPi -lpthread

Step 4: Run.

sudo ./rgb

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>

#define uchar unsigned char

#define LedPinRed 0
#define LedPinGreen 1
#define LedPinBlue 2

void ledInit(void)
{
 softPwmCreate(LedPinRed, 0, 100);
 softPwmCreate(LedPinGreen,0, 100);
 softPwmCreate(LedPinBlue, 0, 100);
}

void ledColorSet(uchar r_val, uchar g_val, uchar b_val)
{
 softPwmWrite(LedPinRed, r_val);
 softPwmWrite(LedPinGreen, g_val);
 softPwmWrite(LedPinBlue, b_val);
}

int main(void)
{
 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }
 //printf("linker LedPin : GPIO %d(wiringPi pin)\n",LedPin); //when initialize wiring successfully,print message to screen

 ledInit();

 while(1){
 ledColorSet(0xff,0x00,0x00); //red
 delay(500);
 ledColorSet(0x00,0xff,0x00); //green
 delay(500);
 ledColorSet(0x00,0x00,0xff); //blue
 delay(500);

 ledColorSet(0xff,0xff,0x00); //yellow
 delay(500);
 ledColorSet(0xff,0x00,0xff); //pick
 delay(500);
 ledColorSet(0xc0,0xff,0x3e);
 delay(500);

 ledColorSet(0x94,0x00,0xd3);
 delay(500);
 ledColorSet(0x76,0xee,0x00);
 delay(500);
 ledColorSet(0x00,0xc5,0xcd);
 delay(500);

 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 05_rgb.py

Here you should see the RGB LED flash different colors in turn.

Code

import RPi.GPIO as GPIO
import time

colors = [0xFF0000, 0x00FF00, 0x0000FF, 0xFFFF00, 0xFF00FF, 0x00FFFF]
pins = {'pin_R':17, 'pin_G':18, 'pin_B':27} # pins is a dict

GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
for i in pins:
 GPIO.setup(pins[i], GPIO.OUT) # Set pins' mode is output
 GPIO.output(pins[i], GPIO.HIGH) # Set pins to high(+3.3V) to off led

p_R = GPIO.PWM(pins['pin_R'], 2000) # set Frequece to 2KHz
p_G = GPIO.PWM(pins['pin_G'], 2000)
p_B = GPIO.PWM(pins['pin_B'], 5000)

p_R.start(0) # Initial duty Cycle = 0(leds off)
p_G.start(0)
p_B.start(0)

def map(x, in_min, in_max, out_min, out_max):
 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def setColor(col): # For example : col = 0x112233
 R_val = (col & 0xFF0000) >> 16
 G_val = (col & 0x00FF00) >> 8
 B_val = (col & 0x0000FF) >> 0

 R_val = map(R_val, 0, 255, 0, 100)
 G_val = map(G_val, 0, 255, 0, 100)
 B_val = map(B_val, 0, 255, 0, 100)

 p_R.ChangeDutyCycle(R_val) # Change duty cycle
 p_G.ChangeDutyCycle(G_val)
 p_B.ChangeDutyCycle(B_val)

try:
 while True:
 for col in colors:
 setColor(col)
 time.sleep(0.5)
except KeyboardInterrupt:
 p_R.stop()
 p_G.stop()
 p_B.stop()
 for i in pins:
 GPIO.output(pins[i], GPIO.HIGH) # Turn off all leds
 GPIO.cleanup()

[image: _images/image107.png]

Further Exploration

You can modify the parameters of the function ledColorSet() by
yourself, and then compile and run the code to see the color changes of
the RGB LED.

Experimental Summary

In this experiment, you have learnt how to control RGB LEDs with the
softPwm of Raspberry Pi in this experiment. Try to apply the softPwm to
DC motor speed regulation.

Lesson 6 Buzzer

Introduction

In this lesson, we will learn how to drive an active buzzer to beep with
a PNP transistor.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * Buzzer (Active)

- 1 * PNP transistor (8550)

- 1 * Resistor (1KΩ)

- Jumper wires

Principle

As a type of electronic buzzer with integrated structure, buzzers, which
are supplied by DC power, are widely used in computers, printers,
photocopiers, alarms, electronic toys, automotive electronic devices,
telephones, timers and other electronic products for voice devices.
Buzzers can be categorized as active and passive ones (see the following
picture). Turn the pins of two buzzers face up, and the one with a green
circuit board is a passive buzzer, while the other enclosed with a black
tape is an active one.

[image: _images/image108.png]
The difference between an active buzzer and a passive buzzer is:

An active buzzer has a built-in oscillating source, so it will make
sounds when electrified. But a passive buzzer does not have such source,
so it will not beep if DC signals are used; instead, you need to use
square waves whose frequency is between 2K and 5K to drive it. The
active buzzer is often more expensive than the passive one because of
multiple built-in oscillating circuits.

Schematic Diagram

In this experiment, an active buzzer is used. When the GPIO of Raspberry
Pi output is supplied with low level (0V) by programming, the transistor
will conduct because of current saturation and the buzzer will make
sounds. But when high level is supplied to the IO of Raspberry Pi, the
transistor will be cut off and the buzzer will not make sounds.

[image: _images/image109.png]

Experimental Procedures

Step 1: Build the circuit (Pay attention to the positive and
negative poles of the buzzer)

[image: _images/image110.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/06_Beep/

Step 3: Compile.

gcc beep.c -o beep -lwiringPi

Step 4: Run.

sudo ./beep

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define BeepPin 0

int main(void)
{
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(BeepPin, OUTPUT); //set GPIO0 output

 while(1){
 digitalWrite(BeepPin, LOW); //beep on
 delay(100); //delay
 digitalWrite(BeepPin, HIGH); //beep off
 delay(100); //delay
 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 06_beep.py

Now, you should hear the buzzer make sounds.

Code

import RPi.GPIO as GPIO
import time

BeepPin = 17

def setup():
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
 GPIO.setup(BeepPin, GPIO.OUT) # Set BeepPin's mode is output
 GPIO.output(BeepPin, GPIO.HIGH) # Set BeepPin high(+3.3V) to off beep

def loop():
 while True:
 GPIO.output(BeepPin, GPIO.LOW)
 time.sleep(0.1)
 GPIO.output(BeepPin, GPIO.HIGH)
 time.sleep(0.1)

def destroy():
 GPIO.output(BeepPin, GPIO.HIGH) # beep off
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 print ("Press Ctrl+C to end the program...")
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

[image: _images/image111.png]

Further Exploration

If you have a passive buzzer in hand, you can replace the active buzzer
with it. Now you can make a buzzer sound like “do re mi fa so la si do”
with just some basic knowledge of programming. Give a try!

Lesson 7 How to Drive a DC Motor

Introduction

In this lesson, we will learn to how to use L293D to drive a DC motor
and make it rotate clockwise and counterclockwise.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * L293D

- 1 * DC motor

- 1 * Power Module

- Jumper wires

Principle

L293D

L293D is a 4-channel motor driver integrated by chip with high voltage
and high current. It’s designed to connect to standard DTL, TTL logic
level, and drive inductive loads (such as relay coils, DC, Stepper
Motors) and power switching transistors etc. DC Motors are devices that
turn DC electrical energy into mechanical energy. They are widely used
in electrical drive for their superior speed regulation performance.

See the figure of pins below. L293D has two pins (Vcc1 and Vcc2) for
power supply. Vcc2 is used to supply power for the motor, while Vcc1 to
supply for the chip.

[image: _images/image112.png]
The following is the internal structure of L293D. Pin EN is an enable
pin and only works with high level; A stands for input and Y for output.
You can see the relationship among them at the right bottom. When pin EN
is High level, if A is High, Y outputs high level; if A is Low, Y
outputs Low level. When pin EN is Low level, the L293D does not work.

[image: _images/image113.png]
[image: _images/image114.png]
DC Motor

[image: _images/image115.png]
This is a 5V DC motor. It will rotate when you give the two terminals of
the copper sheet one high and one low level. For convenience, you can
weld the pins to it.

Size: 25*20*15MM

Operation Voltage: 1-6V

Free-run current (3V): 70mA

Free-run speed (3V): 13000RPM

Stall current (3V): 800mA

Shaft diameter: 2mm

Power Supply Module

In this experiment, it needs large currents to drive the motor
especially when it starts and stops, which will severely interfere with
the normal work of Raspberry Pi. Therefore, we separately supply power
for the motor by this module to make it run safely and steadily.

You can just plug it in the breadboard to supply power. It provides a
voltage of 3.3V and 5V, and you can connect either via a jumper cap
included.

[image: _images/image116.png]
Schematic Diagram

Plug the power supply module in breadboard, and insert the jumper cap to
pin of 5V, then it will output voltage of 5V. Connect pin 1 of L293D to
GPIO22, and set it as high level. Connect pin2 to GPIO27, and pin7 to
GPIO17, then set one pin high, while the other low. Thus you can change
the motor’s rotation direction.

[image: _images/image117.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image118.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/07_Motor/

Step 3: Compile.

gcc motor.c -o motor -lwiringPi

Step 4: Run.

sudo ./motor

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define MotorPin1 0
#define MotorPin2 1
#define MotorEnable 2

int main(void)
{
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(MotorPin1, OUTPUT);
 pinMode(MotorPin2, OUTPUT);
 pinMode(MotorEnable, OUTPUT);

 int i;

 while(1){
 digitalWrite(MotorEnable, HIGH);
 digitalWrite(MotorPin1, HIGH);
 digitalWrite(MotorPin2, LOW);
 for(i=0;i<3;i++){
 delay(1000);
 }

 digitalWrite(MotorEnable, LOW);
 delay(1000);

 digitalWrite(MotorEnable, HIGH);
 digitalWrite(MotorPin1, LOW);
 digitalWrite(MotorPin2, HIGH);
 for(i=0;i<3;i++){
 delay(1000);
 }

 digitalWrite(MotorEnable, LOW);
 delay(1000);

 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 07_motor.py

Now, you should see the motor blade rotating.

Code

import RPi.GPIO as GPIO
import time

MotorPin1 = 17
MotorPin2 = 18
MotorEnable = 27

def setup():
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
 GPIO.setup(MotorPin1, GPIO.OUT) # mode --- output
 GPIO.setup(MotorPin2, GPIO.OUT)
 GPIO.setup(MotorEnable, GPIO.OUT)
 GPIO.output(MotorEnable, GPIO.LOW) # motor stop

def loop():
 while True:
 print ("Press Ctrl+C to end the program...")
 GPIO.output(MotorEnable, GPIO.HIGH) # motor driver enable
 GPIO.output(MotorPin1, GPIO.HIGH) # clockwise
 GPIO.output(MotorPin2, GPIO.LOW)
 time.sleep(5)

 GPIO.output(MotorEnable, GPIO.LOW) # motor stop
 time.sleep(5)

 GPIO.output(MotorEnable, GPIO.HIGH) # motor driver enable
 GPIO.output(MotorPin1, GPIO.LOW) # anticlockwise
 GPIO.output(MotorPin2, GPIO.HIGH)
 time.sleep(5)

 GPIO.output(MotorEnable, GPIO.LOW) # motor stop
 time.sleep(5)

def destroy():
 GPIO.output(MotorEnable, GPIO.LOW) # motor stop
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

[image: _images/image119.png]

Further Exploration

You can use buttons to control the clockwise and counterclockwise
rotation of the motor blade based on the previous lessons. Also you can
apply the PWM technology to control the rotation.

Summary

Through this lesson, you have learnt the relative principle and driving
mode of DC motors, as well as how to drive a motor by Raspberry Pi. You
should also pay special attention to the fact that a DC motor will
greatly interfere with the whole circuit when it works, so you need to
adopt photoelectric isolation and provide separate power supply. A
freewheeling diode is also necessary for the whole system to work
reliably and steadily.

Lesson 8 Rotary Encoder

Introduction

A rotary encoder is a type of electro-mechanical device that converts
the angular position or motion of a shaft or axle to an analog or
digital code. In this lesson, we will learn how to use this device.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * Rotary Encoder Module

- Jumper wires

Principle

A rotary encoder is an electronic switch with a set of regular pulses
with strictly timing sequence. When used with IC, it can achieve
increment, decrement, page turning and other operations such as mouse
scrolling, menu selection, acoustic sound regulation, frequency
regulation, toaster temperature regulation, and so on.

There are mainly two types of rotary encoders: absolute and incremental
(relative) encoders. The output of absolute encoders indicates the
current position of the shaft, making them angle transducers. The output
of incremental encoders provides information about the motion of the
shaft, which is typically further processed elsewhere into information
such as speed, distance, and position.

[image: _images/image120.png]
Most rotary encoders have 5 pins with three functions of turning left,
turning right and pressing down:

Pin 4 & 5: switching wiring terminals for pressing down (no
different from the buttons mentioned previously, so no more details will
be provided here.)

Pin 2: generally connected to ground.

Pin 1 & 3: first connected to a pull-up resistor and then to a
microprocessor (in this experiment, to GPIO0 and GPIO1 of Raspberry Pi);
when you spin the knob of the encoder clockwise and counterclockwise,
there will be pulse outputs in pin 1 and pin 3.

If both GPIO0 and GPIO1 are at high level, the switch rotates clockwise;
if GPIO0 is at high level but GPIO1 is low, the switch rotates
counterclockwise. Therefore, when programming, you only need to check
the state of pin 3 when pin 1 is at high level, and then you can tell
whether the switch rotates clockwise or counterclockwise.

Step 1: Build the circuit.

	Raspberry Pi

	Rotary Encoder

	3.3V

	+

	GND

	GND

	GPIO17

	DT

	GPIO18

	CLK

	GPIO27

	SW

[image: _images/image121.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/08_RotaryEncoder/

Step 3: Compile.

gcc rotaryEncoder.c -o rotaryEncoder -lwiringPi

Step 4: Run.

sudo ./rotaryEncoder

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <wiringPi.h>

#define RoAPin 0
#define RoBPin 1
#define RoSPin 2

static volatile int globalCounter = 0 ;

unsigned char flag;
unsigned char Last_RoB_Status;
unsigned char Current_RoB_Status;

void rotaryDeal(void)
{
 Last_RoB_Status = digitalRead(RoBPin);

 while(!digitalRead(RoAPin)){
 Current_RoB_Status = digitalRead(RoBPin);
 flag = 1;
 }

 if(flag == 1){
 flag = 0;
 if((Last_RoB_Status == 0)&&(Current_RoB_Status == 1)){
 globalCounter ++;
 printf("globalCounter : %d\n",globalCounter);
 }
 if((Last_RoB_Status == 1)&&(Current_RoB_Status == 0)){
 globalCounter --;
 printf("globalCounter : %d\n",globalCounter);
 }

 }
}

void rotaryClear(void)
{
 if(digitalRead(RoSPin) == 0)
 {
 globalCounter = 0;
 printf("globalCounter : %d\n",globalCounter);
 delay(1000);
 }
}

int main(void)
{
 if(wiringPiSetup() < 0){
 fprintf(stderr, "Unable to setup wiringPi:%s\n",strerror(errno));
 return 1;
 }

 pinMode(RoAPin, INPUT);
 pinMode(RoBPin, INPUT);
 pinMode(RoSPin, INPUT);

 pullUpDnControl(RoSPin, PUD_UP);

 while(1){
 rotaryDeal();
 rotaryClear();
 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 08_rotaryEncoder.py

Now, gently rotate the encoder to change the value of the variable in
the above program, and you will see the value printed on the screen.
Rotate the encoder clockwise, the value will increase; or rotate it
counterclockwise, the value will decrease.

Code

import RPi.GPIO as GPIO
import time

Set up pins
Rotary A Pin
RoAPin = 17
Rotary B Pin
RoBPin = 18
Rotary Switch Pin
RoSPin = 27

def setup():
 global counter
 global Last_RoB_Status, Current_RoB_Status
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(RoAPin, GPIO.IN)
 GPIO.setup(RoBPin, GPIO.IN)
 GPIO.setup(RoSPin,GPIO.IN, pull_up_down=GPIO.PUD_UP)
 # Set up a falling edge detect to callback clear
 GPIO.add_event_detect(RoSPin, GPIO.FALLING, callback=clear)

 # Set up a counter as a global variable
 counter = 0
 Last_RoB_Status = 0
 Current_RoB_Status = 0

Define a function to deal with rotary encoder
def rotaryDeal():
 global counter
 global Last_RoB_Status, Current_RoB_Status

 flag = 0
 Last_RoB_Status = GPIO.input(RoBPin)
 # When RoAPin level changes
 while(not GPIO.input(RoAPin)):
 Current_RoB_Status = GPIO.input(RoBPin)
 flag = 1
 if flag == 1:
 # Reset flag
 flag = 0
 if (Last_RoB_Status == 0) and (Current_RoB_Status == 1):
 counter = counter + 1
 if (Last_RoB_Status == 1) and (Current_RoB_Status == 0):
 counter = counter - 1
 print ("counter = %d" % counter)

Define a callback function on switch, to clean "counter"
def clear(ev=None):
 global counter
 counter = 0
 print ("counter = %d" % counter)

def main():
 while True:
 rotaryDeal()

def destroy():
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

[image: _images/image122.png]

Further Exploration

In this experiment, the pressing down function of rotary encoder is not
involved. Try to explore this function by yourself!

Lesson 9 555 Timer

Introduction

The NE555 Timer, a mixed circuit composed of analog and digital
circuits, integrates analog and logical functions into an independent
IC, thus tremendously expanding the applications of analog integrated
circuits. It is widely used in various timers, pulse generators, and
oscillators. In this lesson, we will learn how to use the 555 timer.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * NE555

- 3 * Resistor (1 * 1KΩ, 2 * 10KΩ)

- 2 * Capacitor (100nF)

- Jumper wires

Principle

555 IC

A 555 timer is a medium-sized IC device which combines analog and
digital functions. With low cost and reliable performance, it just
attaches external resistors and capacitors so as to achieve the
functions of multivibrator, monostable trigger, Schmitt trigger and
other circuits which can generate and transform pulses. It is also used
frequently as a timer and widely applied to instruments, household
appliances, electronic measurement, automatic control and other fields.

Its pins and their functions:

[image: _images/image123.png]
As shown in the picture, the pins are set dual in-line with the 8-pin
package.

- Pin 1 (GND): the ground

- Pin 2 (TRIGGER): the input of lower comparator

- Pin 3 (OUTPUT): having two states of 0 and 1 decided by the input electrical level

- Pin 4 (RESET): outputting low level when supplied a low one

- Pin 5 (CONTROL VOLTAGE): changing the upper and lower level trigger values

- Pin 6 (THRESHOLD): the input of the upper comparator

- Pin 7 (DISCHARGE): having two states of suspension and ground connection also decided by the input, and the output of the internal discharge tube

- Pin 8 (VCC): the power supply

The 555 timer can work under three modes. In this experiment, the
astable mode is used to generate square waves.

[image: _images/image124.png]
Under the astable mode, the frequency of output waveform of the 555
timer is determined by R1, R2 and C2 :

\[f = \ \frac{1}{ln2\ *\ C_{2}\ *\ \left(R_{1}\ + \ 2R_{2} \right)}\]

In the above circuit, R1= R2=10KΩ= 104Ω; =100nF=10-7F, so
we can get the frequency:

\[f = \ \frac{1}{ln2*\ 10^{- 7}*(10^{4} + \ 2*10^{4})}\ \approx 481Hz\]

After connecting the circuit according to the schematic diagram, use an
oscilloscope to observe the frequency of the output waveform. We can see
it is consistent with the above calculated result.

[image: _images/image129.png]
Attach the output pin (e.g. pin 3) of the 555 timer to GPIO17 of the
Raspberry Pi, configure GPIO17 as the mode of the rising edge interrupt
by programming, and then detect the square wave pulses generated by the
555 timer with interrupt. The work of Interrupt Service Routine (ISR) is
to add 1 to a variable.

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image130.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/09_Timer555/

Step 3: Compile.

gcc timer555.c -o timer555 -lwiringPi

Step 4: Run.

sudo ./timer555

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <wiringPi.h>

#define Pin0 0

static volatile int globalCounter = 0 ;

void exInt0_ISR(void) //GPIO0 interrupt service routine
{
 ++globalCounter;
}

int main (void)
{
 if(wiringPiSetup() < 0){
 fprintf(stderr, "Unable to setup wiringPi:%s\n",strerror(errno));
 return 1;
 }

 wiringPiISR(Pin0, INT_EDGE_FALLING, &exInt0_ISR);

 while(1){
 printf("Current pluse number is : %d\n", globalCounter);
 delay(100);
 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 09_timer555.py

Now, you should see data printed on the display, which are square waves
generated by the 555 timer. The program counts pulses by interrupt as we
have learned previously.

Code

import RPi.GPIO as GPIO
import time

SigPin = 17

g_count = 0

def count(ev=None):
 global g_count
 g_count += 1

def setup():
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
 GPIO.setup(SigPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set Pin's mode is input, and pull up to high level(3.3V)
 GPIO.add_event_detect(SigPin, GPIO.RISING, callback=count) # wait for rasing

def loop():
 while True:
 print ("g_count = %d" % g_count)
 time.sleep(0.2)

def destroy():
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

[image: _images/image131.png]

Lesson 10 Driving LEDs by 74HC595

Introduction

In this lesson, we will learn how to use 74HC595 to make eight LEDs
blink regularly.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * 74HC595

- 8 * LED

- 8 * Resistor (220Ω)

- Jumper wires

Principle

74HC595

The 74HC595 consists of an 8−bit shift register and a storage register
with three−state parallel outputs. It converts serial input into
parallel output so that you can save IO ports of an MCU. The 74HC595 is
widely used to indicate multipath LEDs and drive multi-bit segment
displays. “Three-state” mentioned above refers to the fact that you can
set the output pins as either high, low or high impedance. With data
latching, the instant output will not be affected during the shifting;
with data output, you can cascade 74HC595s more easily. Compatible with
low voltage TTL circuit, 74HC595 can transform serial input of 8-bit
data into parallel output of 8-bit data. So it is often used to extend
GPIO for embedded system and drive low power devices.

[image: _images/image132.png]
Pins of 74HC595 and their functions:

Q0-Q7: 8-bit parallel data output pins, able to control 8 LEDs or 8
pins of 7-segment display directly.

Q7’: Series output pin, connected to DS of another 74HC595 to
connect multiple 74HC595s in series

MR: Reset pin, active at low level; here it is directly connected to
5V.

SH_CP: Time sequence input of shift register. On the rising edge,
the data in shift register moves successively one bit, i.e. data in Q1
moves to Q2, and so forth. While on the falling edge, the data in shift
register remain unchanged.

ST_CP: Time sequence input of storage register. On the rising edge,
data in the shift register moves into memory register.

OE: Output enable pin, active at low level, connected to GND.

DS: Serial data input pin

VCC: Positive supply voltage

GND: Ground

Schematic Diagram

In this experiment, connect ST_CP to Raspberry Pi GPIO18, SH_CP to
GPIO27, and DS to GPIO17. Input data in DS pin to the shift register
when SH_CP (the clock input of the shift register) is at the rising
edge, and to the memory register when ST_CP (the clock input of the
memory) is at the rising edge. Then you can control the states of SH_CP
and ST_CP via Raspberry Pi GPIO to transform serial input data into
parallel output data so as to save Raspberry Pi GPIOs.

[image: _images/image133.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image134.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/10_74HC595_LED/

Step 3: Compile.

gcc 74HC595_LED.c -o 74HC595_LED -lwiringPi

Step 4: Run.

sudo ./74HC595_LED

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define SDI 0 //serial data input
#define RCLK 1 //memory clock input(STCP)
#define SRCLK 2 //shift register clock input(SHCP)

unsigned char LED[8] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};

void pulse(int pin)
{
 digitalWrite(pin, 0);
 digitalWrite(pin, 1);
}

void SIPO(unsigned char byte)
{
 int i;

 for(i=0;i<8;i++){
 digitalWrite(SDI, ((byte & (0x80 >> i)) > 0));
 pulse(SRCLK);
 }
}

void init(void)
{
 pinMode(SDI, OUTPUT); //make P0 output
 pinMode(RCLK, OUTPUT); //make P0 output
 pinMode(SRCLK, OUTPUT); //make P0 output

 digitalWrite(SDI, 0);
 digitalWrite(RCLK, 0);
 digitalWrite(SRCLK, 0);
}

int main(void)
{
 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 init();

 while(1){
 for(i=0;i<8;i++){
 SIPO(LED[i]);
 pulse(RCLK);
 delay(150);
 //printf("i = %d\n",i);
 }
 delay(500);

 for(i=0;i<3;i++){
 SIPO(0xff);
 pulse(RCLK);
 delay(100);
 SIPO(0x00);
 pulse(RCLK);
 delay(100);
 }
 delay(500);
// digitalWrite(RCLK,0);

 for(i=0;i<8;i++){
 SIPO(LED[8-i-1]);
 pulse(RCLK);
 delay(150);
 }
 delay(500);

 for(i=0;i<3;i++){
 SIPO(0xff);
 pulse(RCLK);
 delay(100);
 SIPO(0x00);
 pulse(RCLK);
 delay(100);
 }
 delay(500);
 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 10_74HC595_LED.py

Here you should see eight LEDs blink regularly.

Code

import RPi.GPIO as GPIO
import time

SDI = 17
RCLK = 18
SRCLK = 27

#=============== LED Mode Defne ================
You can define yourself, in binay, and convert it to Hex
8 bits a group, 0 means off, 1 means on
like : 0101 0101, means LED1, 3, 5, 7 are on.(from left to right)
and convert to 0x55.

LED0 = [0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80] #original mode
LED1 = [0x01,0x03,0x07,0x0f,0x1f,0x3f,0x7f,0xff] #blink mode 1
LED2 = [0x01,0x05,0x15,0x55,0xb5,0xf5,0xfb,0xff] #blink mode 2
LED3 = [0x02,0x03,0x0b,0x0f,0x2f,0x3f,0xbf,0xff] #blink mode 3
#===

def print_msg():
 print ("Program is running...")
 print ("Please press Ctrl+C to end the program...")

def setup():
 GPIO.setmode(GPIO.BCM) # Number GPIOs by BCM
 GPIO.setup(SDI, GPIO.OUT)
 GPIO.setup(RCLK, GPIO.OUT)
 GPIO.setup(SRCLK, GPIO.OUT)
 GPIO.output(SDI, GPIO.LOW)
 GPIO.output(RCLK, GPIO.LOW)
 GPIO.output(SRCLK, GPIO.LOW)

def hc595_in(dat):
 for bit in range(0, 8):
 GPIO.output(SDI, 0x80 & (dat << bit))
 GPIO.output(SRCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(SRCLK, GPIO.LOW)

def hc595_out():
 GPIO.output(RCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(RCLK, GPIO.LOW)

def loop():
 WhichLeds = LED0 # Change Mode, modes from LED0 to LED3
 sleeptime = 0.1 # Change speed, lower value, faster speed
 while True:
 for i in range(0, len(WhichLeds)):
 hc595_in(WhichLeds[i])
 hc595_out()
 time.sleep(sleeptime)

 for i in range(len(WhichLeds)-1, -1, -1):
 hc595_in(WhichLeds[i])
 hc595_out()
 time.sleep(sleeptime)

def destroy(): # When program ending, the function is executed.
 GPIO.cleanup()

if __name__ == '__main__': # Program starting from here
 print_msg()
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

Further Exploration

[image: _images/image135.png]
In this experiment, three Raspberry Pi GPIOs are used to separately
control 8 LEDs based on 74HC595. In fact, 74HC595 has another powerful
function – cascade. With cascade, you can use a microprocessor to
control more peripherals. We’ll check more details later.

Lesson 11 Driving 7-Segment Display by 74HC595

Introduction

Since we’ve got some knowledge of the 74HC595 in the previous lesson,
now let’s try to use it and drive a 7-segment display to show a figure
from 0 to 9.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * 74HC595

- 1 * 7-segment display

- 2 * Resistor (220KΩ,10K)

- 1 * Button

- Jumper wires

Principle

7-Segment Display

A 7-segment display is an 8-shaped component which packages 7 LEDs. Each
LED is called a segment – when energized, one segment forms part of a
numeral (both decimal and hexadecimal) to be displayed. An additional
8th LED is sometimes used within the same package thus allowing the
indication of a decimal point (DP) when two or more 7-segment displays
are connected together to display numbers greater than ten.

[image: _images/image136.png]
Each of the LEDs in the display is given a positional segment with one
of its connection pins led out from the rectangular plastic package.
These LED pins are labeled from “a” through to “g” representing each
individual LED. The other LED pins are connected together forming a
common pin. So by forward biasing the appropriate pins of the LED
segments in a particular order, some segments will brighten and others
stay dim, thus showing the corresponding character on the display.

The common pin of the display generally tells its type. There are two
types of pin connection: a pin of connected cathodes and one of
connected anodes, indicating Common Cathode (CC) and Common Anode (CA).
As the name suggests, a CC display has all the cathodes of the 7 LEDs
connected when a CA display has all the anodes of the 7 segments
connected.

Common Cathode 7-Segment Display

In a common cathode display, the cathodes of all the LED segments are
connected to the logic “0” or ground. Then an individual segment (a-g)
is energized by a “HIGH”, or logic “1” signal via a current limiting
resistor to forward bias the anode of the segment.

[image: _images/image137.png]
Common Anode 7-Segment Display

In a common anode display, the anodes of all the LED segments are
connected to the logic “1”. Then an individual segment (a-g) is
energized by a ground, logic “0” or “LOW” signal via a current limiting
resistor to the cathode of the segment.

[image: _images/image138.png]
In this experiment, a common cathode 7-segment display is use. It should
be connected to ground. When the anode of an LED in a certain segment is
at high level, the corresponding segment will light up; when it is at
low, the segment will stay dim.

Schematic Diagram

Connect pin ST_CP of 74HC595 to Raspberry Pi GPIO18, SH_CP to GPIO27, DS
to GPIO17, parallel output ports to 8 segments of the LED segment
display. Input data in DS pin to shift register when SH_CP (the clock
input of the shift register) is at the rising edge, and to the memory
register when ST_CP (the clock input of the memory) is at the rising
edge. Then you can control the states of SH_CP and ST_CP via the
Raspberry Pi GPIOs to transform serial data input into parallel data
output so as to save Raspberry Pi GPIOs and drive the display.

[image: _images/image139.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image140.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/11_Segment/

Step 3: Compile.

gcc segment1.c -o segment1 -lwiringPi

Step 4: Run.

sudo ./segment1

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define SDI 0 //serial data input
#define RCLK 1 //memory clock input(STCP)
#define SRCLK 2 //shift register clock input(SHCP)

unsigned char SegCode[17] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x80};

void init(void)
{
 pinMode(SDI, OUTPUT); //make P0 output
 pinMode(RCLK, OUTPUT); //make P0 output
 pinMode(SRCLK, OUTPUT); //make P0 output

 digitalWrite(SDI, 0);
 digitalWrite(RCLK, 0);
 digitalWrite(SRCLK, 0);
}

void hc595_shift(unsigned char dat)
{
 int i;

 for(i=0;i<8;i++){
 digitalWrite(SDI, 0x80 & (dat << i));
 digitalWrite(SRCLK, 1);
 delay(1);
 digitalWrite(SRCLK, 0);
 }

 digitalWrite(RCLK, 1);
 delay(1);
 digitalWrite(RCLK, 0);
}

int main(void)
{
 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 init();

 while(1){
 for(i=0;i<17;i++){
 hc595_shift(SegCode[i]);
 delay(500);
 }
 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 11_segment.py

You should see the 7-segment display from 0 to 9, and A to F.

Code

import RPi.GPIO as GPIO
import time

SDI = 17
RCLK = 18
SRCLK = 27

segCode = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x80]

def print_msg():
 print ("Program is running...")
 print ("Please press Ctrl+C to end the program...")

def setup():
 GPIO.setmode(GPIO.BCM) #Number GPIOs by BCM
 GPIO.setup(SDI, GPIO.OUT)
 GPIO.setup(RCLK, GPIO.OUT)
 GPIO.setup(SRCLK, GPIO.OUT)
 GPIO.output(SDI, GPIO.LOW)
 GPIO.output(RCLK, GPIO.LOW)
 GPIO.output(SRCLK, GPIO.LOW)

def hc595_shift(dat):
 for bit in range(0, 8):
 GPIO.output(SDI, 0x80 & (dat << bit))
 GPIO.output(SRCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(RCLK, GPIO.LOW)

def loop():
 while True:
 for i in range(0, len(segCode)):
 hc595_shift(segCode[i])
 time.sleep(0.5)

def destroy(): #When program ending, the function is executed.
 GPIO.cleanup()

if __name__ == '__main__': #Program starting from here
 print_msg()
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

[image: _images/image141.png]

Further Exploration

You can slightly modify the hardware and software based on this
experiment to make a dice. For hardware, add a button to the original
board.

Build the circuit:

[image: _images/image142.png]
Next, go to 11_Segment, and compile dice.c

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/11_Segment/

gcc dice.c -lwiringPi

Run.

sudo ./a.out

Now you should see a number flashing between 0 and 6 quickly on the
segment display. Press the button on the breadboard, and the display
will statically display a random number between 0 and 6 for 2 seconds
and then circularly flash randomly between 0 and 6 again.

[image: _images/image143.png]

Summary

Through this lesson, you may have mastered the basic principle and
programming for 7-segment display based on Raspberry Pi, as well as more
knowledge about using 74HC595. Now you can apply what you’ve learnt and
put it into practice to create your own works!

Lesson 12 Driving Dot-Matrix by 74HC595

Introduction

With low-voltage scanning, dot matrix LED displays have advantages such
as power saving, long service life, low cost, high brightness, a wide
angle of view, long visual range, waterproofness, and so on. They can
meet the needs of different applications and thus have a broad
development prospect. In this lesson, we will learn how to use 74HC595
to drive an LED dot-matrix.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 2 * 74HC595

- 1 * Dot-Matrix

- Jumper wires

Principle

Dot Matrix

The external view:

[image: _images/image144.png]
Pin definition:

Define the row and column numbering at first (only for the dot matrix
whose model number ends with BS)

[image: _images/image145.png]
Pin numbering corresponding to the above rows and columns:

	COL

	1

	2

	3

	4

	5

	6

	7

	8

	Pin No.

	13

	3

	4

	10

	6

	11

	15

	16

	ROW

	1

	2

	3

	4

	5

	6

	7

	8

	Pin No.

	9

	14

	8

	12

	1

	7

	2

	5

The 8*8 dot matrix is made up of sixty-four LEDs and each LED is placed
at the cross point of a row and a column. When the electrical level of a
certain row is High and the electrical level of a certain column is Low,
the corresponding LED at their cross point will light up. For example,
to turn on the LED at the first dot, you should set ROW 1 to high level
and COL 1 to low, so the LED at the first dot brightens; to turn on all
the LEDs on the first row, set ROW 1 to high level and COL 1-8 to low,
and then all the LEDs on the first row will light up; similarly, set COL
1 to low level and ROW 1-8 to high level, and all the LEDs on the first
column will light up.

The principle of 74HC595 has been illustrated previously. One chip is
used to control the rows of the dot matrix while the other, the columns.

Schematic Diagram

[image: _images/image146.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image147.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/12_DotMatrix/

Step 3: Compile.

gcc dotMatrix.c -o dotMatrix -lwiringPi

Step 4: Run.

sudo ./dotMatrix

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define SDI 0 //serial data input
#define RCLK 1 //memory clock input(STCP)
#define SRCLK 2 //shift register clock input(SHCP)

unsigned char code_H[20] = {0x01,0xff,0x80,0xff,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};
unsigned char code_L[20] = {0x00,0x7f,0x00,0xfe,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};

//unsigned char code_L[8] = {0x00,0x00,0x3c,0x42,0x42,0x3c,0x00,0x00};
//unsigned char code_H[8] = {0xff,0xe7,0xdb,0xdb,0xdb,0xdb,0xe7,0xff};

//unsigned char code_L[8] = {0xff,0xff,0xc3,0xbd,0xbd,0xc3,0xff,0xff};
//unsigned char code_H[8] = {0x00,0x18,0x24,0x24,0x24,0x24,0x18,0x00};

void init(void)
{
 pinMode(SDI, OUTPUT); //make P0 output
 pinMode(RCLK, OUTPUT); //make P0 output
 pinMode(SRCLK, OUTPUT); //make P0 output

 digitalWrite(SDI, 0);
 digitalWrite(RCLK, 0);
 digitalWrite(SRCLK, 0);
}

void hc595_in(unsigned char dat)
{
 int i;

 for(i=0;i<8;i++){
 digitalWrite(SDI, 0x80 & (dat << i));
 digitalWrite(SRCLK, 1);
 delay(1);
 digitalWrite(SRCLK, 0);
 }
}

void hc595_out()
{
 digitalWrite(RCLK, 1);
 delay(1);
 digitalWrite(RCLK, 0);
}

int main(void)
{
 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 init();

 while(1){
 for(i=0;i<sizeof(code_H);i++){
 hc595_in(code_L[i]);
 hc595_in(code_H[i]);
 hc595_out();
 delay(100);
 }

 for(i=sizeof(code_H);i>=0;i--){
 hc595_in(code_L[i]);
 hc595_in(code_H[i]);
 hc595_out();
 delay(100);
 }
 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 12_dotMatrix.py

You should see LEDs light up as you control.

Code

import RPi.GPIO as GPIO
import time

SDI = 17
RCLK = 18
SRCLK = 27

code_H = [0x01,0xff,0x80,0xff,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff]
code_L = [0x00,0x7f,0x00,0xfe,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f]

def print_msg():
 print ("Program is running...")
 print ("Please press Ctrl+C to end the program...")

def setup():
 GPIO.setmode(GPIO.BCM) # Number GPIOs by BCM
 GPIO.setup(SDI, GPIO.OUT)
 GPIO.setup(RCLK, GPIO.OUT)
 GPIO.setup(SRCLK, GPIO.OUT)
 GPIO.output(SDI, GPIO.LOW)
 GPIO.output(RCLK, GPIO.LOW)
 GPIO.output(SRCLK, GPIO.LOW)

def hc595_in(dat):
 for bit in range(0, 8):
 GPIO.output(SDI, 0x80 & (dat << bit))
 GPIO.output(SRCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(SRCLK, GPIO.LOW)

def hc595_out():
 GPIO.output(RCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(RCLK, GPIO.LOW)

def loop():
 while True:
 for i in range(0, len(code_H)):
 hc595_in(code_L[i])
 hc595_in(code_H[i])
 hc595_out()
 time.sleep(0.1)

 for i in range(len(code_H)-1, -1, -1):
 hc595_in(code_L[i])
 hc595_in(code_H[i])
 hc595_out()
 time.sleep(0.1)

def destroy(): # When program ending, the function is executed.
 GPIO.cleanup()

if __name__ == '__main__': # Program starting from here
 print_msg()
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

[image: _images/image148.png]

Summary

Through this lesson, you have got the basic principle of LED dot matrix
and how to program the Raspberry Pi to drive an LED dot matrix based on
74HC595 cascade. With the knowledge learnt, try more fascinating
creations!

Lesson 13 LCD1602

Introduction

In this lesson, we will learn how to use LCD1602 to display characters
and strings.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * LCD1602

- 1 * Potentiometer

- Jumper wires

Principle

LCD1602, or character type LCD1602, is a dot matrix LCD module specially
used to display letters, figures, symbols, and so on. It consists of
many 16*2 dot matrixes, and each one is composed of 5*7 or 5*11
character bit. Each character bit can display one character. There is a
dot space between each adjacent character bit. Also there is a dot space
between each row. The dot space functions as a character space or line
space; thus, LCD1602 cannot display graphics very well. It is widely
used in pocket instruments and low power application systems due to its
micro power consumption, small size, richness in contents,
ultra-thinness and lightness.

LCD1602 uses the standard 16-pin port, among which:

Pin 1 (GND): connected to Ground

Pin 2 (Vcc): connected to 5V power supply

Pin 3 (Vo): used to adjust the contrast of LCD1602; the level is
lowest when it’s connected to a positive power supply, and highest when
connected to ground (you can connect a 10K potentiometer to adjust its
contrast when using LCD1602)

Pin 4 (RS): register select pin that controls where in the LCD’s
memory you are writing data to. You can select either the data register,
which holds what goes on the screen, or an instruction register, which
is where the LCD’s controller looks for instructions on what to do next.

Pin 5 (R/W): to read/write signals; it reads signals when supplied
with high level (1), and writes when low level (0) (in this experiment,
you only need to write data to LCD1602, so just connect this pin to
ground)

Pin 6 (E): An enable pin that, when low-level energy is supplied,
causes the LCD module to execute relevant instructions

Pin 7 (D0-D7): pins that read and write data

A and K: controlling LCD backlight

LCD1602 has two operation modes: 4-bit and 8-bit. When the IOs of
microprocessor (MCU) are insufficient, you can choose 4-bit mode, under
which only pins D4~D7 are used. After connecting the circuit, you can
operate LCD1602 by Raspberry Pi.

Schematic Diagram

[image: _images/image149.png]

Experimental Procedures

Step1: Build the circuit (please be sure the pins are connected
correctly. Otherwise, characters will not be displayed properly):

[image: _images/image150.png]

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/13_LCD1602/

Step 3: Compile.

gcc lcd1602_2.c -o lcd1602_2 -lwiringPiDev -lwiringPi

Step 4: Run.

sudo ./lcd1602_2

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <stdio.h>
#include <stdlib.h>
#include <wiringPi.h>
#include <lcd.h>

const unsigned char Buf[] = "---SUNFOUNDER---";
const unsigned char myBuf[] = " sunfounder.com";

int main(void)
{
 int fd;
 int i;
 if (wiringPiSetup() == -1){
 exit(1);
 }

 fd = lcdInit(2,16,4, 2,3, 6,5,4,1,0,0,0,0); //see /usr/local/include/lcd.h
 printf("%d", fd);
 if (fd == -1){
 printf("lcdInit 1 failed\n") ;
 return 1;
 }
 delay(1000);

 lcdClear(fd);
 lcdPosition(fd, 0, 0);
 lcdPuts(fd, "Welcom To--->");

 lcdPosition(fd, 0, 1);
 lcdPuts(fd, " sunfounder.com");

 delay(1000);
 lcdClear(fd);

 while(1){
 for(i=0;i<sizeof(Buf)-1;i++){
 lcdPosition(fd, i, 1);
 lcdPutchar(fd, *(Buf+i));
 delay(200);
 }
 lcdPosition(fd, 0, 1);
 lcdClear(fd);
 delay(500);
 for(i=0; i<16; i++){
 lcdPosition(fd, i, 0);
 lcdPutchar(fd, *(myBuf+i));
 delay(100);
 }
 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 13_lcd1602.py

You should see two lines of characters displayed on the LCD1602:
“SUNFOUNDER” and “Hello World ! :)”.

Code

from time import sleep

class LCD:
 # commands
 LCD_CLEARDISPLAY = 0x01
 LCD_RETURNHOME = 0x02
 LCD_ENTRYMODESET = 0x04
 LCD_DISPLAYCONTROL = 0x08
 LCD_CURSORSHIFT = 0x10
 LCD_FUNCTIONSET = 0x20
 LCD_SETCGRAMADDR = 0x40
 LCD_SETDDRAMADDR = 0x80

 # flags for display entry mode
 LCD_ENTRYRIGHT = 0x00
 LCD_ENTRYLEFT = 0x02
 LCD_ENTRYSHIFTINCREMENT = 0x01
 LCD_ENTRYSHIFTDECREMENT = 0x00

 # flags for display on/off control
 LCD_DISPLAYON = 0x04
 LCD_DISPLAYOFF = 0x00
 LCD_CURSORON = 0x02
 LCD_CURSOROFF = 0x00
 LCD_BLINKON = 0x01
 LCD_BLINKOFF = 0x00

 # flags for display/cursor shift
 LCD_DISPLAYMOVE = 0x08
 LCD_CURSORMOVE = 0x00

 # flags for display/cursor shift
 LCD_DISPLAYMOVE = 0x08
 LCD_CURSORMOVE = 0x00
 LCD_MOVERIGHT = 0x04
 LCD_MOVELEFT = 0x00

 # flags for function set
 LCD_8BITMODE = 0x10
 LCD_4BITMODE = 0x00
 LCD_2LINE = 0x08
 LCD_1LINE = 0x00
 LCD_5x10DOTS = 0x04
 LCD_5x8DOTS = 0x00

 def __init__(self, pin_rs=27, pin_e=22, pins_db=[25, 24, 23, 18], GPIO = None):
 # Emulate the old behavior of using RPi.GPIO if we haven't been given
 # an explicit GPIO interface to use
 if not GPIO:
 import RPi.GPIO as GPIO
 self.GPIO = GPIO
 self.pin_rs = pin_rs
 self.pin_e = pin_e
 self.pins_db = pins_db

 self.used_gpio = self.pins_db[:]
 self.used_gpio.append(pin_e)
 self.used_gpio.append(pin_rs)

 self.GPIO.setwarnings(False)
 self.GPIO.setmode(GPIO.BCM)
 self.GPIO.setup(self.pin_e, GPIO.OUT)
 self.GPIO.setup(self.pin_rs, GPIO.OUT)

 for pin in self.pins_db:
 self.GPIO.setup(pin, GPIO.OUT)

 self.write4bits(0x33) # initialization
 self.write4bits(0x32) # initialization
 self.write4bits(0x28) # 2 line 5x7 matrix
 self.write4bits(0x0C) # turn cursor off 0x0E to enable cursor
 self.write4bits(0x06) # shift cursor right

 self.displaycontrol = self.LCD_DISPLAYON | self.LCD_CURSOROFF | self.LCD_BLINKOFF

 self.displayfunction = self.LCD_4BITMODE | self.LCD_1LINE | self.LCD_5x8DOTS
 self.displayfunction |= self.LCD_2LINE

 """ Initialize to default text direction (for romance languages) """
 self.displaymode = self.LCD_ENTRYLEFT | self.LCD_ENTRYSHIFTDECREMENT
 self.write4bits(self.LCD_ENTRYMODESET | self.displaymode) # set the entry mode

 self.clear()

 def begin(self, cols, lines):
 if (lines > 1):
 self.numlines = lines
 self.displayfunction |= self.LCD_2LINE
 self.currline = 0

 def home(self):
 self.write4bits(self.LCD_RETURNHOME) # set cursor position to zero
 self.delayMicroseconds(3000) # this command takes a long time!

 def clear(self):
 self.write4bits(self.LCD_CLEARDISPLAY) # command to clear display
 self.delayMicroseconds(3000) # 3000 microsecond sleep, clearing the display takes a long time

 def setCursor(self, col, row):
 self.row_offsets = [0x00, 0x40, 0x14, 0x54]

 if (row > self.numlines):
 row = self.numlines - 1 # we count rows starting w/0

 self.write4bits(self.LCD_SETDDRAMADDR | (col + self.row_offsets[row]))

 def noDisplay(self):
 # Turn the display off (quickly)
 self.displaycontrol &= ~self.LCD_DISPLAYON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def display(self):
 # Turn the display on (quickly)
 self.displaycontrol |= self.LCD_DISPLAYON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def noCursor(self):
 # Turns the underline cursor on/off
 self.displaycontrol &= ~self.LCD_CURSORON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def cursor(self):
 # Cursor On
 self.displaycontrol |= self.LCD_CURSORON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def noBlink(self):
 # Turn on and off the blinking cursor
 self.displaycontrol &= ~self.LCD_BLINKON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def noBlink(self):
 # Turn on and off the blinking cursor
 self.displaycontrol &= ~self.LCD_BLINKON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def scrollDisplayLeft(self):
 # These commands scroll the display without changing the RAM
 self.write4bits(self.LCD_CURSORSHIFT | self.LCD_DISPLAYMOVE | self.LCD_MOVELEFT)

 def scrollDisplayRight(self):
 # These commands scroll the display without changing the RAM
 self.write4bits(self.LCD_CURSORSHIFT | self.LCD_DISPLAYMOVE | self.LCD_MOVERIGHT);

 def leftToRight(self):
 # This is for text that flows Left to Right
 self.displaymode |= self.LCD_ENTRYLEFT
 self.write4bits(self.LCD_ENTRYMODESET | self.displaymode);

 def rightToLeft(self):
 # This is for text that flows Right to Left
 self.displaymode &= ~self.LCD_ENTRYLEFT
 self.write4bits(self.LCD_ENTRYMODESET | self.displaymode)

 def autoscroll(self):
 # This will 'right justify' text from the cursor
 self.displaymode |= self.LCD_ENTRYSHIFTINCREMENT
 self.write4bits(self.LCD_ENTRYMODESET | self.displaymode)

 def noAutoscroll(self):
 # This will 'left justify' text from the cursor
 self.displaymode &= ~self.LCD_ENTRYSHIFTINCREMENT
 self.write4bits(self.LCD_ENTRYMODESET | self.displaymode)

 def write4bits(self, bits, char_mode=False):
 # Send command to LCD
 self.delayMicroseconds(1000) # 1000 microsecond sleep
 bits=bin(bits)[2:].zfill(8)
 self.GPIO.output(self.pin_rs, char_mode)
 for pin in self.pins_db:
 self.GPIO.output(pin, False)
 for i in range(4):
 if bits[i] == "1":
 self.GPIO.output(self.pins_db[::-1][i], True)
 self.pulseEnable()
 for pin in self.pins_db:
 self.GPIO.output(pin, False)
 for i in range(4,8):
 if bits[i] == "1":
 self.GPIO.output(self.pins_db[::-1][i-4], True)
 self.pulseEnable()

 def delayMicroseconds(self, microseconds):
 seconds = microseconds / float(1000000) # divide microseconds by 1 million for seconds
 sleep(seconds)

 def pulseEnable(self):
 self.GPIO.output(self.pin_e, False)
 self.delayMicroseconds(1) # 1 microsecond pause - enable pulse must be > 450ns
 self.GPIO.output(self.pin_e, True)
 self.delayMicroseconds(1) # 1 microsecond pause - enable pulse must be > 450ns
 self.GPIO.output(self.pin_e, False)
 self.delayMicroseconds(1) # commands need > 37us to settle

 def message(self, text):
 # Send string to LCD. Newline wraps to second line
 print ("message: %s"%text)
 for char in text:
 if char == '\n':
 self.write4bits(0xC0) # next line
 else:
 self.write4bits(ord(char),True)

 def destroy(self):
 #print ("clean up used_gpio")
 self.GPIO.cleanup(self.used_gpio)

def loop():
 global lcd
 lcd = LCD()
 while True:
 lcd.clear()
 lcd.message(" LCD 1602 Test \n123456789ABCDEF")
 sleep(2)
 lcd.clear()
 lcd.message(" SUNFOUNDER \nHello World ! :)")
 sleep(2)
 lcd.clear()
 lcd.message("Welcom to --->\n sunfounder.com")
 sleep(2)

def destroy():
 lcd.destroy()

if __name__ == '__main__':
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

[image: _images/image151.png]

Further Exploration

In this experiment, the LCD1602 is driven in the 4-bit mode. You can try
programming by yourself to drive it in the 8-bit mode.

Lesson 14 ADXL345

Introduction

In this lesson, we will learn how to use the acceleration sensor
ADXL345.

Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * ADXL345 module

- Jumper wires

Principle

ADXL345

The ADXL345 is a small, thin, low power, 3-axis accelerometer with high
resolution (13-bit) measurement at up to ±16 g. Digital output data is
formatted as 16-bit two’s complement and is accessible through either an
SPI (3- or 4-wire) or I2C digital interface.

The ADXL345 is well suited to measure the static acceleration of gravity
in tilt-sensing applications, as well as dynamic acceleration resulting
from motion or shock. Its high resolution (4 mg/LSB) enables the
inclination change measurement by less than 1.0°. And the excellent
sensitivity (3.9mg/LSB @2g) provides a high-precision output of up to
±16g. In this experiment, I2C digital interface is used.

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image0.png]
[image: _images/image152.png]
The I2C interface is used in the following program. Before running the
program, please make sure the I2C driver module of Raspberry Pi has
loaded normally(Refer to Appendix).

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/14_ADXL345/

Step 3: Compile.

gcc adxl345.c -o adxl345 -lwiringPi

Step 4: Run.

sudo ./adxl345

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPiI2C.h>
#include <wiringPi.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define DevAddr 0x53 //device address

struct acc_dat{
 int x;
 int y;
 int z;
};

void adxl345_init(int fd)
{
 wiringPiI2CWriteReg8(fd, 0x31, 0x0b);
 wiringPiI2CWriteReg8(fd, 0x2d, 0x08);
// wiringPiI2CWriteReg8(fd, 0x2e, 0x00);
 wiringPiI2CWriteReg8(fd, 0x1e, 0x00);
 wiringPiI2CWriteReg8(fd, 0x1f, 0x00);
 wiringPiI2CWriteReg8(fd, 0x20, 0x00);

 wiringPiI2CWriteReg8(fd, 0x21, 0x00);
 wiringPiI2CWriteReg8(fd, 0x22, 0x00);
 wiringPiI2CWriteReg8(fd, 0x23, 0x00);

 wiringPiI2CWriteReg8(fd, 0x24, 0x01);
 wiringPiI2CWriteReg8(fd, 0x25, 0x0f);
 wiringPiI2CWriteReg8(fd, 0x26, 0x2b);
 wiringPiI2CWriteReg8(fd, 0x27, 0x00);

 wiringPiI2CWriteReg8(fd, 0x28, 0x09);
 wiringPiI2CWriteReg8(fd, 0x29, 0xff);
 wiringPiI2CWriteReg8(fd, 0x2a, 0x80);
 wiringPiI2CWriteReg8(fd, 0x2c, 0x0a);
 wiringPiI2CWriteReg8(fd, 0x2f, 0x00);
 wiringPiI2CWriteReg8(fd, 0x38, 0x9f);
}

struct acc_dat adxl345_read_xyz(int fd)
{
 char x0, y0, z0, x1, y1, z1;
 struct acc_dat acc_xyz;

 x0 = 0xff - wiringPiI2CReadReg8(fd, 0x32);
 x1 = 0xff - wiringPiI2CReadReg8(fd, 0x33);
 y0 = 0xff - wiringPiI2CReadReg8(fd, 0x34);
 y1 = 0xff - wiringPiI2CReadReg8(fd, 0x35);
 z0 = 0xff - wiringPiI2CReadReg8(fd, 0x36);
 z1 = 0xff - wiringPiI2CReadReg8(fd, 0x37);

 printf(" x0 = %d ",x0);printf("x1 = %d \n",x1);
 printf(" y0 = %d ",y0);printf("y1 = %d \n",y1);
 printf(" z0 = %d ",z0);printf("z1 = %d \n",z1);

 acc_xyz.x = (int)(x1 << 8) + (int)x0;
 acc_xyz.y = (int)(y1 << 8) + (int)y0;
 acc_xyz.z = (int)(z1 << 8) + (int)z0;

 if(acc_xyz.x > 32767){
 acc_xyz.x -= 65536;
 }
 if(acc_xyz.y > 32767){
 acc_xyz.y -= 65536;
 }
 if(acc_xyz.z > 32767){
 acc_xyz.z -= 65536;
 }

 return acc_xyz;
}

int main(void)
{
 int fd;
 struct acc_dat acc_xyz;

 fd = wiringPiI2CSetup(DevAddr);

 if(-1 == fd){
 perror("I2C device setup error");
 }

 adxl345_init(fd);

 while(1){
 acc_xyz = adxl345_read_xyz(fd);
 printf("x: %d y: %d z: %d\n", acc_xyz.x, acc_xyz.y, acc_xyz.z);
 delay(1000);
 }

 return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi

Step 3: Run.

sudo python3 14_ADXL345.py

Now, rotate the acceleration sensor, and you should see the values
printed on the screen change.

Code

from I2C import I2C
from time import sleep
import RPi.GPIO as GPIO
from sys import version_info

if version_info.major == 3:
 raw_input = input

class ADXL345(I2C):

 ADXL345_ADDRESS = 0x53

 ADXL345_REG_DEVID = 0x00 # Device ID
 ADXL345_REG_DATAX0 = 0x32 # X-axis data 0 (6 bytes for X/Y/Z)
 ADXL345_REG_POWER_CTL = 0x2D # Power-saving features control

 ADXL345_DATARATE_0_10_HZ = 0x00
 ADXL345_DATARATE_0_20_HZ = 0x01
 ADXL345_DATARATE_0_39_HZ = 0x02
 ADXL345_DATARATE_0_78_HZ = 0x03
 ADXL345_DATARATE_1_56_HZ = 0x04
 ADXL345_DATARATE_3_13_HZ = 0x05
 ADXL345_DATARATE_6_25HZ = 0x06
 ADXL345_DATARATE_12_5_HZ = 0x07
 ADXL345_DATARATE_25_HZ = 0x08
 ADXL345_DATARATE_50_HZ = 0x09
 ADXL345_DATARATE_100_HZ = 0x0A # (default)
 ADXL345_DATARATE_200_HZ = 0x0B
 ADXL345_DATARATE_400_HZ = 0x0C
 ADXL345_DATARATE_800_HZ = 0x0D
 ADXL345_DATARATE_1600_HZ = 0x0E
 ADXL345_DATARATE_3200_HZ = 0x0F

 ADXL345_RANGE_2_G = 0x00 # +/- 2g (default)
 ADXL345_RANGE_4_G = 0x01 # +/- 4g
 ADXL345_RANGE_8_G = 0x02 # +/- 8g
 ADXL345_RANGE_16_G = 0x03 # +/- 16g

 def __init__(self, busnum=1, debug=False):
 self.accel = I2C(self.ADXL345_ADDRESS, busnum, debug)
 if self.accel.readU8(self.ADXL345_REG_DEVID) == 0xE5:
 # Enable the accelerometer
 self.accel.write8(self.ADXL345_REG_POWER_CTL, 0x08)

 def setRange(self, range):
 # Read the data format register to preserve bits. Update the data
 # rate, make sure that the FULL-RES bit is enabled for range scaling
 format = ((self.accel.readU8(self.ADXL345_REG_DATA_FORMAT) & ~0x0F) |
 range | 0x08)
 # Write the register back to the IC
 seld.accel.write8(self.ADXL345_REG_DATA_FORMAT, format)

 def getRange(self):
 return self.accel.readU8(self.ADXL345_REG_DATA_FORMAT) & 0x03

 def setDataRate(self, dataRate):
 # Note: The LOW_POWER bits are currently ignored,
 # we always keep the device in 'normal' mode
 self.accel.write8(self.ADXL345_REG_BW_RATE, dataRate & 0x0F)

 def getDataRate(self):
 return self.accel.readU8(self.ADXL345_REG_BW_RATE) & 0x0F

 # Read the accelerometer
 def read(self):
 raw = self.accel.readList(self.ADXL345_REG_DATAX0, 6)
 print (raw)
 res = []
 for i in range(0, 6, 2):
 g = raw[i] | (raw[i+1] << 8)
 g = 65535 - g
 if g > 32767:
 g -= 65535
 res.append(g)
 return res

 # Simple example prints accelerometer data once per second:
 def main():
 accel = ADXL345()
 accel.setRange(accel.ADXL345_RANGE_16_G)
 while True:
 x, y, z = accel.read()
 print('X: %.2f, Y: %.2f, Z: %.2f'%(x, y, z))
 sleep(1) # Output is fun to watch if this is commented out

 def destroy():
 exit()

def destroy():
 exit()

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 destroy()

[image: _images/image153.png]

Appendix

	I2C Configuration

	SPI Configuration

	Remote Desktop
	VNC

	XRDP

I2C Configuration

Step 1: Enable the I2C port of your Raspberry Pi (If you have
enabled it, skip this; if you do not know whether you have done that or
not, please continue).

sudo raspi-config

3 Interfacing options

[image: ../_images/image282.png]
P5 I2C

[image: ../_images/image283.png]
<Yes>, then <Ok> -> <Finish>

[image: ../_images/image284.png]
Step 2: Check whether the i2c modules are loaded and active.

lsmod | grep i2c

Then the following codes will appear (the number may be different).

i2c_dev 6276 0
i2c_bcm2708 4121 0

Step 3: Install i2c-tools.

sudo apt-get install i2c-tools

Step 4: Check the address of the I2C device.

i2cdetect -y 1 # For Raspberry Pi 2 and higher version

i2cdetect -y 0 # For Raspberry Pi 1

pi@raspberrypi ~ $ i2cdetect -y 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

If there is an I2C device connected, the address of the device will be displayed.

Step 5:

For C language users: Install libi2c-dev.

sudo apt-get install libi2c-dev

For Python users: Install smbus for I2C.

sudo pip3 install smbus2

SPI Configuration

Step 1: Enable the SPI port of your Raspberry Pi (If you have
enabled it, skip this; if you do not know whether you have done that or
not, please continue).

sudo raspi-config

3 Interfacing options

[image: ../_images/image282.png]
P4 SPI

[image: ../_images/image285.png]
<YES>, then click <OK> and <Finish>.

[image: ../_images/image286.png]
Step 2: Check that the spi modules are loaded and active.

ls /dev/sp*

Then the following codes will appear (the number may be different).

/dev/spidev0.0 /dev/spidev0.1

Step 3: Install Python module SPI-Py.

git clone https://github.com/lthiery/SPI-Py.git
cd SPI-Py
sudo python3 setup.py install

Note

This step is for python users, if you use C language, please
skip.

Remote Desktop

There are two ways to control the desktop of the Raspberry Pi remotely:

VNC and XRDP, you can use any of them.

VNC

You can use the function of remote desktop through VNC.

Enable VNC service

The VNC service has been installed in the system. By default, VNC is
disabled. You need to enable it in config.

Step 1

Input the following command:

sudo raspi-config

[image: ../_images/image287.png]
Step 2

Choose 3 Interfacing Options by press the down arrow key on your
keyboard, then press the Enter key.

[image: ../_images/image282.png]
Step 3

P3 VNC

[image: ../_images/image288.png]
Step 4

Select Yes -> OK -> Finish to exit the configuration.

[image: ../_images/image289.png]
Login to VNC

Step 1

You need to download and install the VNC Viewer [https://www.realvnc.com/en/connect/download/viewer/] on personal computer. After the installation is done, open it.

Step 2

Then select “New connection”.

[image: ../_images/image290.png]
Step 3

Input IP address of Raspberry Pi and any Name.

[image: ../_images/image291.png]
Step 4

Double click the connection just created:

[image: ../_images/image292.png]
Step 5

Enter Username (pi) and Password (raspberry by default).

[image: ../_images/image293.png]
Step 6

Now you can see the desktop of the Raspberry Pi:

[image: ../_images/image294.png]
That’s the end of the VNC part.

XRDP

Another method of remote desktop is XRDP, it provides a graphical login to remote machines using RDP (Microsoft
Remote Desktop Protocol).

Install XRDP

Step 1

Login to Raspberry Pi by using SSH.

Step 2

Input the following instructions to install XRDP.

sudo apt-get update
sudo apt-get install xrdp

Step 3

Later, the installation starts.

Enter “Y”, press key “Enter” to confirm.

[image: ../_images/image295.png]
Step 4

Finished the installation, you should login to your Raspberry Pi by
using Windows remote desktop applications.

Login to XRDP

Step 1

If you are a Windows user, you can use the Remote Desktop feature that
comes with Windows. If you are a Mac user, you can download and use
Microsoft Remote Desktop from the APP Store, and there is not much
difference between the two. The next example is Windows remote desktop.

Step 2

Type in “mstsc” in Run (WIN+R) to open the Remote Desktop
Connection, and input the IP address of Raspberry Pi, then click on
“Connect”.

[image: ../_images/image296.png]
Step 3

Then the xrdp login page pops out. Please type in your username and
password. After that, please click “OK”. At the first time you log in,
your username is “pi” and the password is “raspberry”.

[image: ../_images/image297.png]
Step 4

Here, you successfully login to RPi by using the remote desktop.

[image: ../_images/image20.png]
Copyright Notice

All contents including but not limited to texts, images, and code in
this manual are owned by the SunFounder Company. You should only use it
for personal study, investigation, enjoyment, or other non-commercial or
nonprofit purposes, under the related regulations and copyrights laws,
without infringing the legal rights of the author and relevant right
holders. For any individual or organization that uses these for
commercial profit without permission, the Company reserves the right to
take legal action.

FAQ

C code is not working?

	Check your wiring for problems.

	Check if the code is reporting errors, if so, refer to: WiringPi.

	Has the code been compiled before running.

	If all the above 3 conditions are OK, it may be that your wiringPi version (2.50) is not compatible with your Raspberry Pi 4B and above, refer to WiringPi to manually upgrade it to version 2.52.

Thank You

Thanks to the evaluators who evaluated our products, the veterans who provided suggestions for the tutorial, and the users who have been following and supporting us.
Your valuable suggestions to us are our motivation to provide better products!

Particular Thanks

	Len Davisson

	Kalen Daniel

	Juan Delacosta

Now, could you spare a little time to fill out this questionnaire?

正在加载…
Note

After submitting the questionnaire, please go back to the top to view the results.

Index

 _images/image20.png
Wastebasket -

L
Mouse and
Keyboard Set

_images/image201.png

_images/image19.png

_images/image191.png
& Raspberry Pi Imager v1.6 - X

‘Write Successful x

Raspberry Pi OS (32-bit) has been written to Mass Storage Device
USB Device

YYou can now remove the SD card from the reader

CONTINUE

_images/image202.png
Wastebasket -

L
Mouse and
Keyboard Set

_images/image79.png
[>>> exit()
T —

_images/image21.png

_images/image80.png
pi@raspberrypi:~ $ gpio -v

gpio version: 2.32

Copyright (c) 2012-2015 Gordon Henderson

This is free software with ABSOLUTELY NO WARRANTY.
For details type: gpio -warranty

Raspberry Pi Details:

Type: Pi 3, Revision: 02, Memory: 1024MB, Maker: Embest
Device tree is enabled.
* This Raspberry Pi supports user-level GPIO access.

-> See the man-page for more details

_> ie. export WIRINGPI GPIOMEM=1

*

_images/image8.png

_images/image83.png
48 sunfounder (SunFounder) - GitHub!
© httpsz/github.com/sunt

G) 2 = EO

sunfounder (SunFoun...

founder

2|

O Personal Opensource Business Explore

Contributions [Repositories 3 Public activity

Popular repositories

[sunfounder_SensorKit_Pytho.

Pricing Blog Support Signin
 Follow

Finished

*
Surfounder Sensor Kit Python code for Raspberry P "
SUNFOUNDER] sunfounder_Superkit_Python. %
Surfounder Super Kit Python code for R !
[Sunfounder_Superkit_C_cod e
Surfounder super kit C code for Raspberry Pi N
SunFounder [Sunfounder_SensorKit_C_co.
sunfolinder ——— A 24
https/github.com/sunfounder/Sunfo...uperKit_Python_code_for_RaspberryPi
Super Kit v2.0 for Raspbery Pi.zip .

_images/image82.png

_images/image85.png

_images/image84.png
Sunfounder Super Kit Python code for Raspberry Pi

D 32 commits 91 branch © 1 release 28 4 contributors

& sunfounder Update README md

B 14 ADXL345
Fis pymorse @ f492a9¢
[gitignore

B .gitmodules

[B) 01 led.py

[B) 02_btnAndLed.py

fixbug
add customer project pymorse

Initial commit

add customer project pymorse
re-arrange the code

set bouncetime

Clone with HTTPS @
Use Git or checkout with SVN using the web URL.

nttps://github. con/sunfounder/Sunfounder_S

Download ZIP

8 months
2years

ayear

_images/image87.png
3
£

2
g
#

S
G
=
2
S

2
-

_images/image86.png
I

® © © 6 6 6 6 9 0 O 0 O 6O 6 OGO GG GG GGG E O e O 6 OO0 OO O e GEC e SCSGOCOCOCOCTE
® © 6 0 6000 00006006006 0000000000000 0060 e

® © 6 0 0000000000600 0000000000060 000 e

LZ01d9
0Z01d9
9101d9
ano
9101d9
ans
Jsar
1301dS
03D1dS
SZ01d9
ano
¥201dD
£201d9

® © © 6 0 90 9000 G0 O 6O GGG eSO GGG

© o 0000000000000 000 000
© o 0006000000000 0000000

ans
9201dD
610IdD
€10IdD
90Idd
S0IdD
as-ar
ans
M1SIdS
OSINIdS
ISOWIdS
ENE
¢01d9
L201dD
L10IdD
ans
¥0IdD
L10S
Lvas
ENE

pJeog uoisuaixj OId9|

® © 0 0 000000000000 00000000000 e e

© 0 0000000000000 e e e e

® © 6000000000600 000000000000 e e

DI
o0 00

o0 0 00
U

DI Y
® o0 00

e o000
® o000

e o 000
© o0 00

® o000 oo o0

® e o0 0

itzing

fr

_images/image79-1.png
>>> RPi.GPIO.VERSION
'0.6.2"

>>> 1

_images/image78.png
pi@raspberrypi:~ $ python
Python 2.7.9 (default, Mar 8 2015, 00:52:26)

[6CC 4.9.2] on linux2
Type "help”, "copyright”, "credits” or "license” for more information.

>>> import RPi.GPIO

>>> 1

_images/image18.png

_images/image181.png
& Raspberry Pi Imager v1.5 - X

Al existing data on 'Mass Storage Device USB Device' will be
erased
Are you sure you want to continue?

_images/image17.png

_images/image171.png
&

Raspberry Pi

nav.xhtml

 Table of Contents

 		
 SunFounder Super Kit V2 for Raspberry Pi

 		
 Components List

 		
 Preparation

 		
 What Do We Need?

 		
 Required Components

 		
 Optional Components

 		
 Installing the OS

 		
 Set up Your Raspberry Pi

 		
 If You Have a Screen

 		
 If You Have No Screen

 		
 Libraries

 		
 RPi.GPIO

 		
 WiringPi

 		
 Raspberry Pi GPIO Extension Board

 		
 Download the Code

 		
 Lessons

 		
 Lesson 1 Blinking LED

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Schematic Diagram

 		
 Experimental Procedures

 		
 Further Exploration

 		
 Summary

 		
 Lesson 2 Controlling an LED by a Button

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Schematic Diagram

 		
 Experimental Procedures

 		
 Summary

 		
 Lesson 3 Flowing LED Lights

 		
 Introduction

 		
 Components

 		
 Schematic Diagram

 		
 Experimental Procedures

 		
 Lesson 4 Breathing LED

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Schematic Diagram

 		
 Experimental Procedures

 		
 Summary

 		
 Lesson 5 RGB LED

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Schematic Diagram

 		
 Experimental Procedures

 		
 Further Exploration

 		
 Experimental Summary

 		
 Lesson 6 Buzzer

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Schematic Diagram

 		
 Experimental Procedures

 		
 Further Exploration

 		
 Lesson 7 How to Drive a DC Motor

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Experimental Procedures

 		
 Further Exploration

 		
 Summary

 		
 Lesson 8 Rotary Encoder

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Further Exploration

 		
 Lesson 9 555 Timer

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Experimental Procedures

 		
 Lesson 10 Driving LEDs by 74HC595

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Schematic Diagram

 		
 Experimental Procedures

 		
 Further Exploration

 		
 Lesson 11 Driving 7-Segment Display by 74HC595

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Schematic Diagram

 		
 Experimental Procedures

 		
 Further Exploration

 		
 Build the circuit:

 		
 Summary

 		
 Lesson 12 Driving Dot-Matrix by 74HC595

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Schematic Diagram

 		
 Experimental Procedures

 		
 Summary

 		
 Lesson 13 LCD1602

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Schematic Diagram

 		
 Experimental Procedures

 		
 Further Exploration

 		
 Lesson 14 ADXL345

 		
 Introduction

 		
 Components

 		
 Principle

 		
 Experimental Procedures

 		
 Appendix

 		
 I2C Configuration

 		
 SPI Configuration

 		
 Remote Desktop

 		
 VNC

 		
 XRDP

 		
 FAQ

 		
 C code is not working?

 		
 Thank You

_images/image10.png

_images/image40.png

_images/image101.png
Control signal, u

On U

off 0

'y

Hpm
(mean value)

—

Duty cyele, D [%]

e
Period, 7,
~100%

_images/image4.png

_images/gpio_extention_board.png
SDA

scL
GpIO7
o
GPIOD
GPIO2
GPIO3
33v
Mo
MISO
ScLk
o
IN_SDA
GPIO21
GPI022
GPI023
GPIO24
GPIO25

ov

33V

12

13

14

GND

30

21

2

23

24

25

GND

BCM

Board WiringPi

1

13

15

17

19

21

23

25

27

29

31

33

35

37

39

GPIO Extention Board

10

12

14

16

18

20

2

24

26

28

30

32

34

36

38

50V

50V

GND

15

16

GND

GND

10

11

31

GND

26

GND

27

28

29

5V
5v
o
™D
RXD
GPIO1
ov
GPIO4
GPIOS
o
GPIO6
cEo
CEl
ID_SCL
o
GPIO26
ov
GPI027
GPIO28

GPI029

_images/image5.png

_images/image0.png
ADXL345 Module Raspberry Pi
[N[J GND

_images/image48.png
Raspberry Pi 4 /Raspberry Pi3 /Raspberry Pi3
Model B Model A+ Model B+

Raspberry Pi 3 /Raspberry Pi2 Raspberry Pi 1
Model B - Model B Model B+

(" (
Raspberry Pi 1 Raspberry Pi Raspberry Pi 3
Model A+ Zero W Zero

_images/image6.png

_images/image522.png
pi@raspberrypi:~ $ gpio readall

===Pi Je==

Physical
RO
3.3v
2 8 SDA.1
El 9 SCL.1
4 7 | GPIO. 7
ov
17 o | GPIO. @]
27 2 | GPIO. 2]
22 El GPIO. 3 IN] 15 16] IN GPIO. 4 | 4 23
3.3v 17 18] IN GPIO. 5 5 24
10 12 MOST ALTO 1 19 20 ov
9 13 MISO | ALTO 1 21 22| e IN GPIO. 6 6 25
1 14 SCLK | ALTG | @ 23 24 1 ouT CE0 10 8
ov 25 26 1 ouT CE1 1 7
] 30 SDA.0 IN 1 27 28 1 ouT SCL.0 31 1
5 21 GPT0.21 IN] 29 30 ov
6 22 | GPI0.22 IN] 31 32|60 IN GPI0.26 26 12
13 23 GPI0.23 IN 1 33 EZS ov
19 24 | GPI0.24 IN] EL E] IN GPI0.27 27 16
26 25 GPI0.25 IN] 37 38] IN GPI0.28 28 20
39 40 | o IN GPI0.29 29 21

mmmn et -
BCM | wPi Na Mode | V | Physical | V | Mode wPi | BCM
_Pi 3-

_images/image102.png
Zx

220Q |

LED =
GND

_images/image77.png
pi@raspberrypi:~ $ python

Python 2.7.9 (default, Mar 8 2015, 00:52:26)

[6CC 4.9.2] on linux2

Type_"help”, "copyright”, "credits” or "license” for more information.
>>>

_images/image7.png

_images/image38.png

_images/image37.png

_images/image39.png
™ - =
seessererecvrRTEDE R

sedsseersteseeracne
| i

_images/image103.png
® © 0 0000600000000 00000000000 e e
© 0 0000000000000 0000000000 000

®© 0 0000000060000 0000000000 0000
© © 0000600006000 0 000000000000 00

® o0 00 o e o0 ® o0 00
oo 0 00

o e o0 0
oo 0o 00

.

® © 6 0 60 6000006006006 0060000000000 0000000

® o o0 00

LZ01d9
0Z01d9
9101d9
ano
9101d9
ans
Jsar
1301dS
03D1dS
SZ01d9
ano
¥201dD
£201d9

® e 0000000000
® o 00000000000

4

oo o 0 0
oo o 0 o

ans
9201dD
610IdD
€10IdD
90Idd
S0IdD
as-ar
ans
M1SIdS
OSINIdS
ISOWIdS
ENE
¢01d9
L201dD
L10IdD
ans
¥0IdD
L10S
Lvas
ENE

® © 00 0000000000000 000 0000000 e

pJeog uoisuaixj OId9|

ttttoo«ooo'tt.otoo«looo-oooooo

EELE LRI .
oo 0 00

L
oo 0 00

® o0 00

U

itzing

fr

_images/image104.png

_images/image107.png

_images/translate3.png
Arabic
Ammenian
e
Bangls
Basaue
Belsrusian
gosmian
Bulgarian
Bumese

Catalan

Japanese

Language to translate into

& e *
X

_images/image108.png

_images/image105.png
RGB

_images/image106.png
t—
p——y

e e 0 00
e e 0 00
e e o 00
e e 0 00
e e 0 o0
e o0 00
e e 0 00
e e 0 00
e e 0 00
e e 0 00
e e 0 00
e e 0 00
e e 0 00
e e o 00
e e o 00
e e 0 00
e e 0 00
e e 0 00
e e 0 00
e e 0 o0
e e 0 00
e e 0 00
e e o 00
e e o 00
e e o oo

GPIO25

GPIO Extension Board
SPIMISO

e e 0 0 o
e o 0 0 0
DO '}
DO)
e e 00 o
e e 0 0 o
e e 00 o
e e 00 0
e e 00 o
e e 0 0 0
e e 00 o
e e 0 0 0
e o 0 0 0
e o 0 0 o
DO)
e e 0o o
e e 00 o
e e 0 0 o
e e 00 o
e e 00 0
e e 00 0
e e 0 0 0
e o 0 0 0
e o 0 0 0
e o 0 0 o
e o 0 0 o

fritzing

_images/image110.png
® o o 0 00

.
)
0
)
.
.
.
0
0
.
.
.
.
.
.
.

e e 00000000 g

®1201dD
©0701dD
©9101dD
®aND
©9101d9
®aND
@da
®1301ds
©0301ds
®5201dD
®aND
®+201dD
@010
®aND
®8101dD
@0axy
@0axL
@aND
®0AS
00AS

PPV VOIPIPPIOIPIRPRIOIRIPRORIRIPRIOIIIRPRORORPROROROROPRRRRbeen
® © ® 9 © 90O GGG e O E S E eSS0 G000 eGSO

anos @
920149 @
6101dO @
£101d0 @
90140 @
S0IdO @
asae
ano @
M12S1dS @
OSINIIS @
ISONIdS @
A @
20140 @
20140 @
L101dD @
ano @
01D @
s @
Y
A @

® o 0o 0o 0 000 0o D ¢ 0 0 0 0
‘------

® o 000000000

R I A I I T A O TR SR TR ST ST T S T S SR S SR SR I O

pJeog uoisuaix3 QIdo)|

L O
e e e

L)

.

® 60 600060 e SO0 000000 e e

.

.
.

L O
ee e e

L
ee e e e

L
L

L O
L

.
.

e ¥

S e e

.

_static/minus.png

_images/image111.png
S|
2
2
fil

_static/file.png

_images/image109.png
3y

_images/image11.png

_static/plus.png

_images/image112.png
HEAT SINK AND
GROUND

GROUND

_images/image113.png
Ve

_images/image1110.png
Download for Windows

Download for macOS

Download for Ubuntu for x86

_images/image116.png
USB Output:5V +===---~ B

Power LED :======-
Power Switch «---a--. N

Input :
DC6.5V-12V "~77777" -

_images/image117.png
L293D

_images/image114.png
INPUTST

- z|>

X

EN
Gl
H

L

we el
g

H = igh level, L = ow lovel, X
Z = high impedance (off)

ielevant,

_images/image91.png
4.5

T
=]
=
3.5

3.5

6.5
P.C.B.Land Pattern

Circuit Diagram

_images/image115.png

_images/image90.png

_images/image12.png

_images/image93.png
o
|4
©
o

o
c

2
w
c
]
]
<

w

o

=

o

[©]

e eeeoee ee0eee eeeee eoe e eeee oflece o
e eo0eee eoeee esoeoe . e oflee
e o 0 0 0 0 0 o e o 8 0 0 0 e 8 0 0 0
ceoooccee o onJlllio® o o o o o
e e 0 0 0 0 0 o ® 8 0 0. 0.8 0 0 0 00
g ® o 0 0 0 0 0 o ® 8 0 0. 0.8 0 0 0 00
a e 000000 0 o o e o0 el e oo
o .‘l
@ Q
e e csescscolla I R I I)
e o 0 0 0 0 0 o . o e 0 0 0 0 0 0 0 0
e 0000000 e e 00000000
e 00000 !. .--g-l...
e sesee sssee ssese DR d.0. ooolo .
e esese os0se esese esese esee osooslle o

_images/image92.png
33V

lokQ

Button

Dun
GND .|||—o
2
sav—(—}—camom
2200

LED1

_images/image118.png
o O

oo Il LX)
5V OFF 3.3V 5V OFF 3.3V

o0
+

0000
0000

e eeececescoecce

000
® 0000
@ & GED o 0 0 0000000000

e 000
® e 000
@0 0000000000000 000000.e0

@000 0000000000000 000

0000
0000

oolollooooo-oooo,.

® 0 8. 0 0000600 000000000 0000000000000
© 000 0000000000000 000000000000000

LR
LR

® 0 0.0 0.0 00 0000000000000 0 0000000000000

920140 @
6101d> @
£101dD @

9010 @
S0IdD @
asae

ano @

N1ISIdS @

OSINIS @

ISOWIdS @

nc@
22010 @
L2010 @
L101dO @
ano @
01D @
s @
Lvas @
s @

® e 000
o e 0 00

e o0
0000

L

00000%....0.000000 .ll..OIOOQQQQQ....lll........u......

3
3
® 8 8 0 0000000000000

® e 00 000000000000 0000000000
00000\00000.000'00'.lo.oo

C)
)

pJeog uoisuaixj OId9)

_images/image95.png
3.3V

|

200 200 200 200 200 200 200 200

_images/image119.png

_images/image94.png

_images/image97.png

_images/image96.png
|

® o o 00

LA
o e 0

® o000 00
® o 0 0 0 00

LZ01d9 ano
0Z0Id9 9ZOIdD
9101d9 6L0IdD
ano £101d9
9101d9 901d9
ano S0Id9
osTal asar
1301dS ans
0I2IdS W1ISIdS
SZOIdD OSIWIdS
ano ISONIdS
¥201dD ENE
€201dD ZZOIdD
ano LTOIdD
8l0IdD £LOIdD
0axy ano
0aXL ¥01dD
ano 1S
0AS A7
0AS ENE

® e o 00

® o o o

e e e e 0000

pJieog uoisuaix3 QId9;

fritzing

_images/translate2.png
& = x

oo e () x

Choose another language |

Googh T ays ransate Engiish

Never translate English
Never translate this site

Page is not in English

_images/translate1.png
Back
Forward

Reload

Save as.
Print..
Cast..
Search images with Google Lens

Creste OR Code for this page.

Transiate to BHE

View page source

Inspect

AlteLeft Amow
Alt-Right Arrow
R

Cirl+s
Ctrl+p

iy

_images/image9.png
¥ CIMCU

_images/image122.png
ms még

49 6.6 0TS 906

A I

_images/image123.png
GND | 1 8| vee
TRIGGER | 2 7 | DISCHARGE
outpuT | 3 6 | THRESHOLD
RESET| 4 5 | CONTROL VOLTAGE

_images/image120.png

_images/image121.png
GPIO Extension Board

_images/image129.png
Cursor Utilty Help

na oL M)

Horizontal
TimerDV

[1000ms_+]

Format

CH1= 200V Time: 1.000ms _ Sample Rate: 1hiHz]

Running.

_images/image13.png
]

_images/image124.png
1 emm vee P2 o |

2w ns .

Hour £ ht
RET ¢V [

_images/image125.png
Windows protected your PC

Microsoft Defender SmartScreen prevented an unrecognized app from
starting. Running this app might put your PC at risk.
More info

_images/image130.png
GPIO Extension Board

e e e 0000 ® e oo 000000

° o

e o

& o
S

T o e
v}
o
a

= oo

& ° o

° o

° e

e o0 0 0 0

ee oo e

eeo o0 e

_images/image261.png
pieio2. 16w T2ses pmuom:raspberry

[The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

[permitted by applicable law.
Last 1ogin: Tue Feb 21 02:54:55 2017

ieraspbersypi:- s I

_images/image131.png

_images/image28.png

_images/image27.png

_images/image283.png
File Edit Tak

——— Raspberry Pi Software Configuration Tool (raspi-config) h———

P1 Camera Enable/Disable connection to the
P2 SSH Enable/Disable remote command lin
P3 VNC Enable/Disable graphical remote a

Enable/Disable
Enabl
Serial Enable/Disable

|

|

|

|

| pa
|

|

| 7 1-wire Enable/Disable one-wire interface
|

|

|

|

|

|

|

Sp1

P8 Remote GPIO Enable/Disable remote access to 6

<select> <Back>

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

_images/image282.png
[Raspberry Pi Software Configuration Tool (raspi-config) ————

1 system Options Configure system settings
2 Display Options Configure display sectings
In o

4 Performance Options Configure performance settings
5 Localisation Options Configure language and regional settings
& Advanced Options Configure advanced settings

2 Update Update this tool to the latest version

9 About raspi-config Information about this configuration ool

<Select> <Finisn>

_images/image24.png

_images/image231.png
1. ssh pi@192.168.18.197 (ssh)
Last login: Fri Apr 12 16:56:20 on ttys000

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197
The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.

ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.18.197' (ECDSA) to the list of known hosts.

pi@192.168.18.197"'s password: t

_images/image25.png

_images/image241.png
1. pi@raspberrypi: ~ (ssh)
Last login: Fri Apr 12 16:56:20 on ttys@00

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197

The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.
ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.18.197' (ECDSA) to the list of known hosts.
pi@192.168.18.197"'s password:

Linux raspberrypi 4.9.80-v7+ #1098 SMP Fri Mar 9 19:11:42 GMT 2018 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Tue May 21 07:29:46 2019 from 192.168.18.126

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk - please login as the 'pi' user and type 'passwd' to set

a new password.

pi@raspberrypi:~ $ I

_images/image26.png

_images/image251.png
#R PuTTY Configuration

Category:

- Session Basic options for your PuTTY session
Logging

L oot ‘Specify the destination you wantto connectto

I Keyboard HostName (or IP address) Port

Bell 192.168.0.101 2

i Features. e)

= Windoy ©Raw () Telnet ()Riogin © SSH

Appearance
Behaviour Load, save or delete a stored session
Translation
Seoction Saved Sessions
Colours

- Connection Defaul Setings
Data 02
Proxy
Telnet
Riogin
ssH
Serial

Close window on exit
JAways (O)Never) Only on clean exit

_images/image134.png
s o O
oo wm Il o o
LS .
L ® o 0 0 0 LA
oo s Il o o
L .
o o0 e o 0 0 0 L]
o= Ul o o
.
. e o 0 0 0 L]
= Ul o o
.
. o o o 0 0 L]
=il o ¢ @
.
LI) o o 0 00 L]
oo wm il o o
LIS .
L ® o 0 0 0 L]
oo wm Il o o
o .
e o 0 o o 0 0 0 LA
oo sl o g o 0
o .
e o 0 LR) . . o
.

LS .
o .
L LZ01d9 ans
LI 020IdD 9201dD
L) LI ®9101d9 610IdD

ans €10IdD
9101dD 90IdD
ans SOIdD
osar as ar
1301dS ans
0301dS A1DSIdS
SC0IdD OSINIdS
[N} ISOWIdS
¥Z0IdD ENE
€¢0Id9 ¢01dd
[\ L201dD
810IdD £101dD
0axy ans
0axL ¥0IdD
ans L13S
0AS Lvas
0AS ENE

® o0 00000

'll"l“@!@wﬂ»@»@"""

.

LA

!\!',.,.,Q*l"tl.‘!

.
e e 000000

pJeog uoisuaixj OId9

itzing

fr

_images/image135.png

_images/image132.png
I o1 vee
512 Qg
| DI
il T
21 Qs STep (12
7] Q6 SHep 13
— Q7 MR

GND Q7'

_images/image133.png
K LED]
° peis)
I K LID2
P)
I8 K LED3
° pes)
1 LoDg 7 it
z [
P 0 3 14
I8 K LEDS 1 o
5 9
P) 6 i
1 L6 : >
E 9
P)
| K Lo TATC393
) ps) —
1 LEDS
i P e

_images/image138.png
g t+t+ab

_images/image139.png
E
B
)
h
d]
d
=< |5l
2|5
T4he395

220

GND

_images/image136.png

_images/image137.png
GND Common

L

Cathode

ed -cdp

_images/image14.png

_images/image22.png

_images/image211.png
ece
<

[Desktop
[Documents
© Downloads

Movies
1 Music

Pictures

12} solomen
Devices

2} Yosemite
E] windows
) pAtA

(© Remote Disc
Tags

® Red
Orange
Yellow

Green

[Utilities

Audio MIDI Setup

ColorSync Utility Console
f \/l
Grab Grapher

Script Editor

D%

System Information

Q search
D' ==
Bluetooth File Boot Camp
Exchange Assistant
Digital Color Meter Disk Utility

Keychain Access. Migration Assistant

)

Termi VoiceOver Uity

_images/image23.png

_images/image221.png
1. ssh pi@192.168.18.197 (ssh)

Last login: Fri Apr 12 16:56:20 on ttys000

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197

The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.
ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.
Are you sure you want to continue connecting (yes/no)? I

_images/image1310.png
& Raspberry Pilmager v1.5 - X

Raspberry Pi 0S (32-bit)

A port of Debian with the Raspberry Pi Desktop (Recommended)
Released: 20210111
Oniine -1.1 GB downioad

Raspberry Pi OS (other)
Other Raspberry Pi S based images.

Other general purpose 0S.
Other general purpose Operating Systems

Media player - Kodi 0S
Kodi based Media player operating systems

Emulation and game 0S

_images/image143.png

_images/image144.png
PIN 16 PIN 9

OCO0OO0OO00O0
000000

o
z
&
&
o
»
Bl
&
o
Zz
©

_images/image1410.png
& Raspbery Pilmager 15

S0 Card

i

Mass Storage Device USB Device - 7.9 GB
Mounted as G:\ H:\

_images/image142.png
.. ® o 0 00 o o 0 0 0 L
.
o oo 0 00 oo 00 0 L
.
.. o o 0 0 LA
oo e
(X r
e (X >
.. o e >
.. (X 4
.. o 00 LA]
.
.. o o 0 0 0 LA
. b
. J
. e
. .
. .
.o . .
. .
. . J
) o0 .
.. . o o 0 o o o 0 0
o6 s lleoe co oo
. 3
oo PRI IS
ee) ° o s
P oo
o == b
.o . °
. .
.o 3 2
.. . o o
. LZ0IdD .o
.. 920149 L
. . 6101d9 L
. €101d9 L
. 90IdD L
ee S0Ido @ EY
as-ar ..
P ano ..
. M1DSIdS .
. OSINIdS .
. ISOWIdS .
P EAE ..
720149 .
.o L2014 .
L101d9 .
e D
e ele
e ole
.o
- b

pJeog uoisusix3 OIdo|

_images/image147.png
.

.
L
L
L
L
L
L
L
L
L
L
.

.
.

.
.
.
.
.

- GEEEEED *
.

Ue
.

3

L =
® o o cummmE o
* * o mmmmm=
DO

3
3
3

r
{
S
&
o]

SPIMISO
.

.
.

GPIO Extension Board

.

o0 000
e 0000
D e e e
DI
o0 000

.
.

.
.
.
.
.
.
.
.

(XX XN NN NNNNNNNNNNXNN]
.

o
o

o

o

o
CEE——— e * *
o

o

.
.

o=
eo 00
CRCNCNCNY

=

_images/image148.png
Dl -

_images/image145.png
Label Side

_images/image146.png
iz
9 8
J 7
] ©
12 s
T B £y
i Iz} 3
] 2
e T
t U3
[o] Dot-miirix|isplay
Tahesos
GND [

_images/image30.png

_images/image32.png

_images/image31.png

_images/image34.png

_images/image33.png

_images/image36.png

_images/image35.png

_images/image295.png
[pi@raspberrypi:~ § sudo apt-get install xrdp

|[reading package lists... Done

[Building dependency tree

Reading state information... Done

[The following extra packages will be installe
vnc4server x1l-apps xl1l-session-utils xbase-clients xbitmaps xfonts-base

Suggested package
vnc-java mesa-utils x1l-xfs-utils

The following NEW packages will be installed:
vnc4server x1l-apps x1l-session-utils xbase-clients xbitmaps xfonts-base

xrdp
0 upgraded, 7 newly installed, 0 to remove and 0 not upgraded.

s.

Need to get 8,468 kB of arch
After this operation, 17.1 MB of additional disk space will be used.

Do you want to continue? [¥/n] vjj

_images/image294.png

_images/image297.png
Cog to raspberrypt

connecting

Session

username

password

_images/image296.png
&} Remote Desktop Connection - %
5 Typethename of 2 program, folder, document, o Intemet
Bl Lource and Windowes will open foryou.

| Remote Desktop
) Connection

Open: [EEER

Computer: | [ENIRENER v
] [

Username: h2s

You will e asked for credentials when you connec.

) Show Optons Comnect

_images/image140.png
e e oo e Pe e ee e ee e
e e oo eeeee oee e
0 . e o000 000000
T . oo 00000 ® o 000000000
g ° . " & & & & & e ® oo 000000 00
o S . . . ® o 0000000 00
g & . . o|lo oo e0o 000000
)
S o
£ 2 o . B e
w a o 0 ® o||oe e 00000000
9 . e ¢ WNNVV e ® e o 0 0 0000 00
% o eos oo e e 000000000
fn Io 0 npe e o000 000000
| Y o|feoee oo oo
U . . o |l oo .

fritzing

_images/image141.png

_images/image153.png

_images/image154.png
i r v - _ o x
8 rapsenpinasens Ctrl+Shift+X
/ “Advanced options =

Image customization options | for this session only

(] pisable overscan to always use

[sethostname: raspberrypi

Enable SSH

(@® Use password authentication /

Set. password for 'pi’ user:

_images/image151.png
= R R
[GPIO Exten”-on Bo:

_images/image152.png
GPIO Extension Board

LN
ADXL345

. ® e o 0o 0
¢ eceeee
R
R
EEEEEEEE
Q
EEEEEEEE
=
T EEEEEEEE
(G}
232
§§ ® o 0o 0 0 0 0 00
&% ® o o 0 0 0 0 00
EEEEEEEE
EEEEEEEE
EEEEEEEE
R
. ® e o 0o 0

_images/image162.png
® Raspberry Pilmagerv15

Configure wifi

ssiD:
Password:

Show password

"4

[J setlocale settings

Tine one: Asia/Shanghai

_images/image16.png

_images/image161.png
T
ExlOO%

_images/image29.png

_images/image289.png
2B piGraspberypi: ~

<No>

_images/image291.png
2 Daisy - Properties

Genersl | Options | Expert]

VNC Server: 192168.0.234

Use single sign-on if VNC Server supports

Privacy

Update desktop preview automatically

_images/image290.png
173 VN Viewer

_images/image293.png
Daisy - VNC Viewer = @] %

VNC Server: 192.168.0.234:5900

(5= I
puimorssossssnns [ASPDETTY

Remember password

Catchphrase: Evita Osaka gopher. Concert robot capsule.
Signature: €3-73-¢8-d8-43-92-97-84

_images/image292.png
[T VNC Viewer
File View Help

Enter a VNC Server address or search & sionin.. ~

_images/image285.png
Raspberzy Pi Software Configuration Tool

P1 Camera Enable/Disable connection to the
P2 S5H Enable/Disable remote command lin
B3 VNC Enable/Disable graphical remote a
5 12C Enable/Disable aucomatic loading
6 Serial Enable/Disable shell and kernel m
B7 1-Wire Enable/Disable one-wire interface
P8 Remote GRIO Enable/Disable remote access to G
<Select> <Back>

_images/image284.png
Would you like the ARM I2C interface to be enabled?

<No>

_images/image287.png
login as: pi
p10192.165.0.234's password:

[The programs included with the Debian GNU/Linux system are free software
che exact aistribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

[Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.
Last login: Mon Feb 20 09:18:17 2017 from daisy-pc.lan

prasaspbessps: - < [T zaspresorra

_images/image286.png
Would you like the SPI interface to be enabled?

<No>

_images/image288.png
[Raspberry Pi Software Configuration Tool (raspi-config) ————

P1 Camera Enable/disable connection to the Raspberry Pi Camera
P2 SsH Enable/disable remote command line access using SSH
P4 ST Enable/disable automatic loading of SPI kernel module
5 12C Enable/disable automatic loading of I2C kernel module
P6 Serial Port Enable/disable shell messages on the serial comnection
B7 1-Wire Enable/disable one-wire interface

P8 Remote GPIO Enable/disable remote access to GPIO pins

<Select> <Back>

_images/image15.png

_images/image150.png
© 00000000

®1201d9
®0201d9

®5201dD
®aND
®v201dD
®£201dD

4 @ano

4 @s1010
@0axy
@oaxL
®aND
®0ns

Y eons

pJeog uoisuaixj OId9

ano @
920140 @
6101dD @
€101 @
9010 @
S01do @
asae
ano @
H1251dS @
OSINIdS @
ISONIdS @
Y
2201dO @
20140 @
L101dD @
ano @
01D @

o o

wtnii‘ﬂ'.ttt‘t‘nnﬁ&ﬁ'ooo...o.oooo.o

© 00 0000000000000

o e o 0
oo 00

. o

L
. o

o o0 o
CIONCY

\

fritzing

_images/image149.png
LCD1602

