SunFounder sensor-kit-v2-for-arduino

www.sunfounder.com

Aug 24, 2021

CONTENTS

1	About the Sensor Kit for Arduino 2.0		
	1.1	Components	1
	1.2	Get Started	10
	1.3	Lessons	18
	1.4	Thank You	134
2	Сору	yright Notice	135

ABOUT THE SENSOR KIT FOR ARDUINO 2.0

The kit is suitable for SunFounder Uno, Mega 2560, Duemilanove and Nano and also fully compatible with the corresponding Arduino boards. It includes 37 various modules for you to learn and we provide corresponding lessons which are simple and useful for better understanding. Hope you can learn their applications quickly and use them in your own projects!

Here is the Email: cs@sunfounder.com.

1.1 Components

No.	Name	Qty.	Component
1	Analog Hall	1	A0 COND CO
			R2 D2 R3 SIG R1 VCC R1 VCC Hall Switch
2	Hall Switch Sensor	1	continues on next name

continues on next page

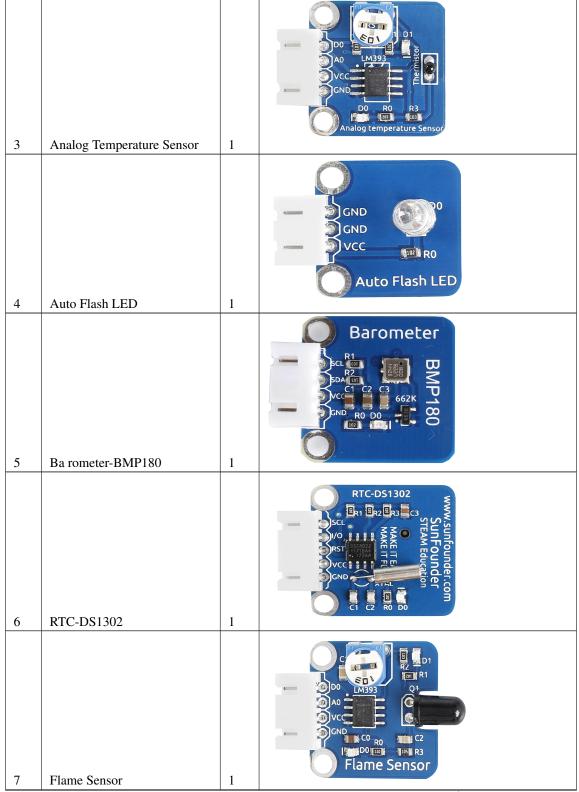


Table 1 – continued from previous page

8	Gas Sensor	1	Construction of the second sec
9	Humiture Sensor	1	Humiture Sensor
10	Joystick PS2	1	
11	Button	1	
12	Vibration Switch	1	
12	violation Switch	1	continues on next page

Table 1 – continued from previous page

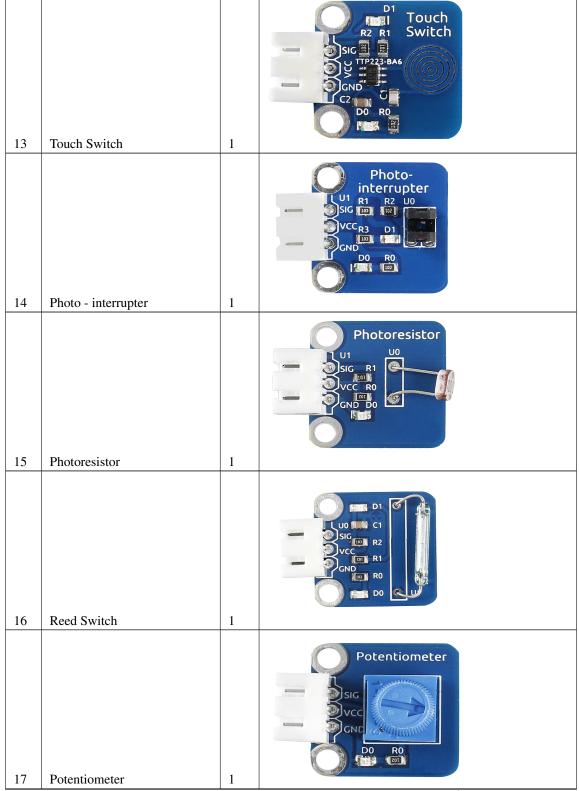


Table 1 – continued from previous page

	10010		
18	Relay Module	1	
		-	
19	Thermistor	1	C Thermistor
19		1	
20	Tilt-Switch	1	
21	Active Buzzer	1	Active R2 D2 REMOVE SIC SIC SIC REMOVE SEAL AFTER WASHING CND CND R1 R1 R1 R1 R1
	Passive Buzzer		SIG COND COND COND COND COND COND COND COND
22	r assive Duzzer	1	continues on next page

Table 1 – continued from previous page

Г

23	Temperature Sensor DS18B20	1	DZ R3 Temperature SIG Sensor VCC GND DS18b20
24	RGB LED	1	
25	IR Receiver	1	
26	Dual-Color LED	1	Dual-Color LED
27	Sound Sensor	1	C C C C C C C C C C C C C C C C C C C

Table 1 – continued from previous page

	10010 1	0011	inued from previous page
28	Rotary Encoder	1	
29	Laser Emitter	1	Vcc sic
30	Tracking Sensor	1	SIG VCC GND C1 MID1 R1 R4
31	IR Obstacle Sensor	1	
32	Color Sensor	1	
33	AD/DA Converter PCF8591	1	

Table 1 – continued from previous page

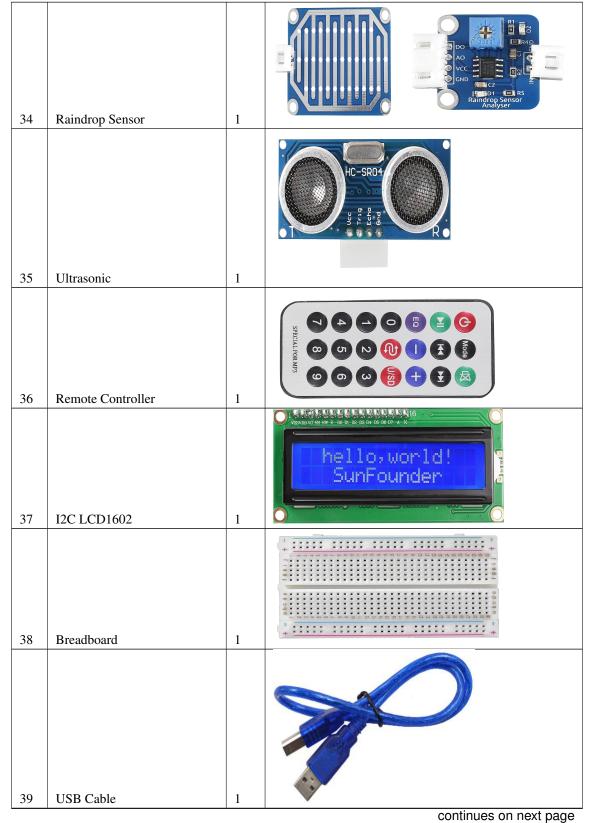
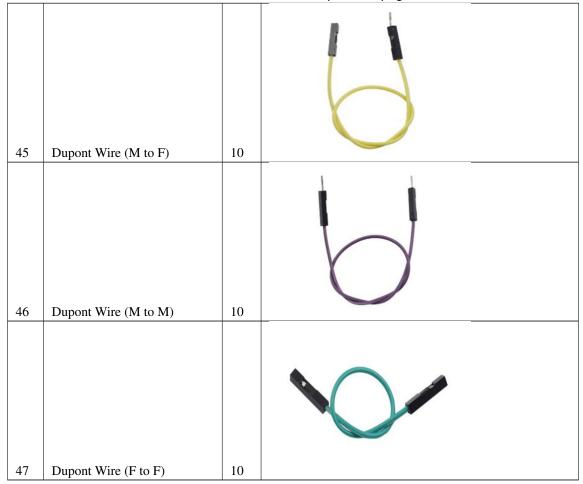
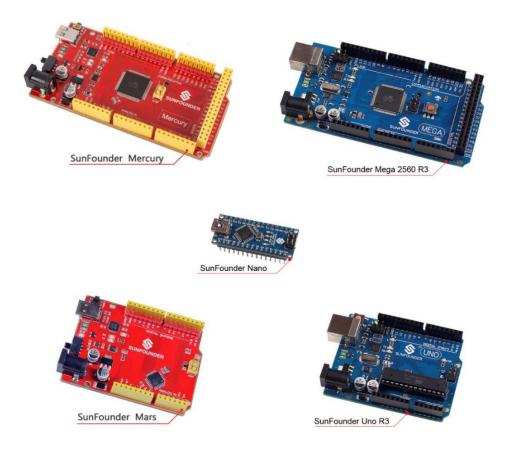


Table 1 – continued from previous page

			inued from previous page
40	5-Pin Anti-reverse Cable	5	
41	3-Pin Anti-reverse Cable	5	
42	4-Pin Anti-reverse Cable	5	
43	2-Pin Anti-reverse Cable	2	
44	2-Pin Ribbon Cable (F to F)	1	E Transmoother
		1	continues on next page

Table 1 – continued from previous page




Table 1 - continued from previous page

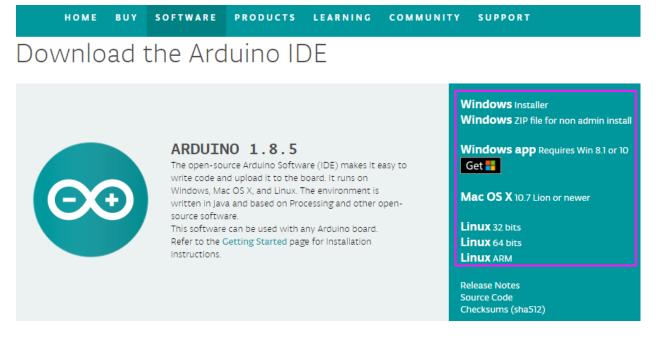
1.2 Get Started

Note:

- 1) Before starting your own project, you must download the file Sensor Kit V2.0 for Arduino.zip on our official website by visiting LEARN -> Sensor Kit V2.0 for Arduino and unzip it.
- 2) Besides, a visual programming language software-Mixly is also provided. It can help you to complete the lessons quicker and easier. Mixly is a graphical programming software with some blocks embedded in. You can program by dragging and dropping blocks to combine together like building blocks, thus enabling a complete process of the same sketch in IDE. Download the file: How to use Sensor Kit with Mixly.zip on our official website by visiting LEARN -> Get Tutorials -> Sensor Kit V2.0 for Arduino and unzip it.

1.2.1 SunFounder Arduino Board

Now, SunFounder has five Arduino boards: SunFounder Uno R3 Board, Mega 2560 Board, Nano Board, SunFounder Mars Board and SunFounder Mercury Board. The Uno Board and the Mars Board share the same kind of pins at the same position. And the pins of the first half part on the Mega 2560 are the same as those on the Uno. The difference lies in that on the Mega 2560 board, the I2C pin (SDA) and pin SCL don't correspond to pin A4 and A5 but to pin 20 and 21. On the other hand, the Nano and the Uno also share the same kind of pins at the same position. Though the Nano is in a smaller size, making it applicable for projects.


The following is the parameters of the four boards:

Board Parame- ters	Uno R3	Mars	Nano	Mega 2560	Mercury
Mic ro- controller	AT mega328P	AT mega328P	AT mega328P	ATm ega2560	AT mega2560
USB con- nection	Туре В	Туре С	Mini-B	Туре В	Type C
U SB- to-Serial Chip	MEGA16U2	FT232R	PL2303	M EGA16U2	FT232R
Power jack?	Y	Y	N	Y	Y
Operating Voltage	5V	5V	5V	5V	5V
Input Volt- age	7-12V	7-12V	7-12V	7-12V	7-12V
Digital I/O Pins	14 (of which 6 provide PWM output)	14 (of which 6 provide PWM output)	14 (of which 6 provide PWM output)	54 (of which 15 provide PWM output)	54 (of which 15 provide PWM output)
Analog In- put Pins	6	6	8	16	16
DC Cur- rent per I/O Pin	20 mA	20mA	20 mA	20 mA	20 mA

1.2.2 Install Arduino IDE

The code in this kit is written based on Arduino, so you need to install the IDE first. Skip it if you have done this.

Now go to arduino.cc and click **DOWNLOAD**. On the page, check the software list on the right side under **Download the Arduino Software**.

Find the one that suits your operation system and click to download. There are two versions of Arduino for Windows: Installer or ZIP file. You're recommended to download the former. Just download the package, and run the executable file to start installation. It will download the driver needed to run Arduino IDE. After downloading, follow the prompts to install. For the details of installing steps, you can refer to the guide on **Learning->Getting Started with Arduino**, scroll down and see **Install the Arduino Software**.

After installing, you will see Arduino icon on your desktop and double click to open it.

1.2.3 Plug in the Board

Connect the control board to your computer with a USB cable. If you use Uno, Mega2560 or Mars as the control board, the system will automatically install the driver when you plug it in. After a while, a prompt will show up at the bottom right corner telling you which port the board locates at.

1.2.4 Add libraries

• What is Library?

A library, gathering some function definitions and header files, usually contains two files: .h (header file, including function statement, Macro definition, constructor definition, etc.) and .cpp (execution file, with function implementation, variable definition, and so on). When you need to use a function in some library, you just need to add a header file (e.g. #include <LiquidCrystal_I2C.h>), and then call that function. This can make your code more concise. If you don't want to use the library, you can also write that function definition directly. Though as a result, the code will be long and inconvenient to read.

• How to add libraries?

Some libraries are already built in the Arduino IDE, when some others may need to be added. So now let's see how to add one. There are two methods for that.

Method 1

Directly import the library in Arduino IDE (take LiquidCrystal_I2C as an example below). The advantage of this method is easy to understand and operate, but on the other hand, only one library can be imported at a time. So it is inconvenient when you need to add quite a lot of libraries.

Step 1: Select **Sketch** -> **Include** Library -> **Add ZIP** Library.

sketch_	💿 sketch_oct20a Arduino 1.6.8					
File Edit	ketch Tools Help					
sketch_o	Verify/Compile Upload Upload Using Programme Export compiled Binary	Ctrl+R Ctrl+U r Ctrl+Shift+U Ctrl+Alt+S	Add .ZIP Library			
3	Show Sketch Folder	Ctrl+K	Arduino libraries			
4 }	Include Library	1	Audio			
5	Add File		Bridge			
6 void 1	oop() {		EEPROM			

Step 2: Find Sensor Kit V2.0 for ArduinoLibraryLiquidCrystal_I2C, Click Open.

💿 Select a zip	file or a folder containing the library you'd like to add
Look in:	🚺 Library 🔻 🦻 📂 🛄 -
Recent	 BMP280 Dht Ds18b20 DS1202
Desktop	DS1302 Encoder IRremote
My Doc	LiquidCrystal_I2C NewPing OneWire
Computer	SFE_BMP180 TimerOne_r11
	File name: LiquidCrystal_I2C Open
	Files of type: ZIP files or folders - Cancel

Step 3: When you see "Library added to your libraries. Check "Include library" menu", it means you have added the library successfully. Please use the same method to add other libraries then.

Library added to your libraries. Check "Include library" menu	
Arduino/Genuino Mega or Mega 2560, ATmega2560	(Mega 2560) on COM53

Method 2

Directly copy the library to libraries/Arduino path. This method can copy all libraries and add them at a time, but the drawback is that it is difficult to find libraries/Arduino.

Step 1: Click **File** -> **Preferences** and on the pop-up window you can see the path of the libraries folder in the textbox as shown below.

Preferences					
Settings Network					
_Sketchbook_location:					
C:\Users\sunfounder\Document	S\Arduino				
Editor language:	English (English)				
Editor font size:	15				
Interface scale:	Automatic 100 💭 🕷 (requires restart of Arduino)				
Show verbose output during:	✓ compilation ✓ upload				
Compiler warnings:	None -				
🔽 Display line numbers					
🔲 Enable Code Folding					
📝 Verify code after upload					
🔲 Use external editor					
Check for updates on start	tup				
🔽 Update sketch files to new	w extension on save (.pde -> .ino)				
Save when verifying or up	loading				
Additional Boards Manager URI	s:				
More preferences can be edite	More preferences can be edited directly in the file				
C:\Users\sunfounder\AppData\Local\Arduino15\preferences.txt					
(edit only when Arduino is no	ot running)				
	OK Cancel				

Step 2: Copy all Libraries in the path Sensor Kit V2.0 for ArduinoLibrary\.

Concor	Kit V2.0 for Arduino\Library 🚽 🍫 Search Li			
Sensor	Kit V2.0 for Arduino∖Library			
lelp				
library	 Share with New folder 			
*	Name			
	▶ BMP280			
	🐌 Dht			
	🐌 Ds18b20			
	🐌 DS1302			
Ξ	🐌 Encoder			
	IRremote			
	LiquidCrystal_I2C			
	NewPing			
	🐌 OneWire			
	SFE_BMP180			
	👢 TimerOne_r11			

Step 3: Go to the path above and you will see there is a *Libraries* folder, click to open it.

C:\Users\sunfou	nder\[Documents\Arduino	▼ 	Search A	rduino		٩
View Tools Help)						
 Include in libr 	rary 🔻	Share with 🔻	New fo	older			0
al Disk (C:)	•	Name	<u> </u>			Date m	odified
tware (D:)		libraries				2016/10)/20 11:
ource (E:)	Ξ					2010/10	,720 11.
<mark>k (</mark> G:)							

Step 4: Paste the libraries copied to the folder. Then you can see them in libraries.

🤳 « Arduino 🕨	librarie	es 🕨	✓ Search	libraries
'iew Tools Help	D			
📜 Open	Shar	e with 🔻 🛛 E-mail	New folder	
Disk (C:)	•	Name	A	Date modified
are (D:)		📕 Dht11		2015/6/16 9:50
rce (E:)		📕 Ds18b20		2015/6/18 15:34
(G:)		📕 DS1302		2015/6/16 9:50
		📕 DS1307		2016/3/31 12:01
k		👢 Encoder		2016/10/11 11:58

For more details about Arduino IDE, go to **Learning->Getting started->Foundation** on the arduino.cc and click **Arduino Software (IDE)** on the page:

http://www.arduino.cc/en/Guide/Environment.

If your sketch fails the upload, on the same page click Troubleshooting

http://www.arduino.cc/en/Guide/Troubleshooting.

Note:

- If your computer is running on the Windows XP system, the new version IDE will prompt errors when running the code. You are recommended to download the Arduino 1.0.5 or Arduino 1.0.6. Or you can also upgrade your Window system.
- All the experiments in this kit are done with SunFounder Uno R3 board, but they are also compatible with SunFounder Mega 2560, SunFounder Mars, SunFounder Nano and all official Arduino Boards. All the code included in this kit works with these boards.

So what does COMPATIBLE mean here? It means you can use any of the three boards to do the same experiment with

the same wiring. Simply put, if the wire is connected to Pin 12 of Uno in the user manual, likewise, you can connect it to Pin 12 on any other official Arduino boards you are using. Then open the corresponding sketch and upload them.

Now let's begin!

1.3 Lessons

1.3.1 Lesson 1 Display by I2C LCD1602

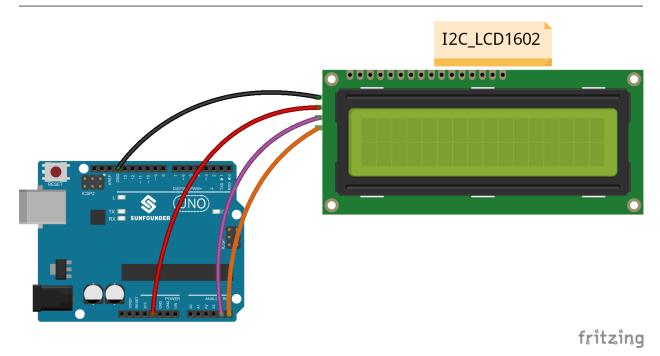
Introduction

As we all know, though LCD and some other displays greatly enrich the man-machine interaction, they share a common weakness. When they are connected to a controller, multiple IOs will be occupied of the controller which has no so many outer ports. Also it restricts other functions of the controller. Therefore, LCD1602 with an I2C bus is developed to solve the problem.

The blue potentiometer on the I2C LCD1602 (see the figure below) is used to adjust the backlight for better display. I^2C uses only two bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up with resistors. Typical voltages used are +5 V or +3.3 V although systems with other voltages are permitted.

Components

- 1 * SunFounder Uno board
- 1 * I2C LCD1602 module
- 1 * USB cable
- 1 * 4-Pin Dupont wire (M to F)


Principle

In this experiment, we will let I2C LCD1602 display "SunFounder" and "hello, world" by programming.

Experimental Procedures

Step 1: Build the circuit

I2C LCD1602	SunFounder Uno/ Mega2560
GND	GND
VCC	5V
SDA	A4 (Uno)/Pin 20 (Mega2560)
SCL	A5 (Uno)/Pin 21 (Mega2560)

Note: The I2C LCD1602 is connected to Mega2560 differently compared with being done to Uno. PLEASE follow the wiring above.

Step 2: Open the code file

In the folder **Sensor Kit V2.0 for Arduino** you just downloaded and unzipped, you can see the folder for the corresponding lesson which includes two folders: *code* (the sketch) and *circuit* (Fritzing file). Go to the *code* folder and find the *.ino* file (.ino is the format of the sketch). Then double click to open it. You can also open an empty *.ino* file and type in the code we provide.

Step 3: Select the Board and Port

Before uploading the code, you need to select the Board and Port.

Click **Tools ->Board** and select **Arduino/Genuino Uno**. If your board is Mega2560, then select Arduino/Genuino Uno Mega or Mega2560.

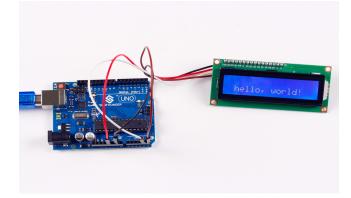
💿 I	2C_LCD1602	Arduino 1.6.8	_ 🗆 🗙		
File	Edit Sketch	Tools Help			
1	C_LCD1602 // include #include	Auto Format Archive Sketch Fix Encoding & Reload Serial Monitor Serial Plotter	Ctrl+T Ctrl+Shift+M Ctrl+Shift+L		
4	/******** char arra char arra	Board: "Arduino/Genuino Uno" Port		Boards Manager Arduino AVR Boards	
7	<pre>int tim = // initia</pre>	Programmer: "USBtinyISP" Burn Bootloader tal_12C_1cd(Ux27,16,2); /	/ set the L(Arduino Yún Arduino/Genuino Uno Arduino Duemilanove or Diecimi	ila

💿 I.	2C_LCD1602	Arduino 1.6.8	_ 🗆 🗙	
File	Edit Sketch	Tools Help		
	C_LCD1602	Auto Format Archive Sketch Fix Encoding & Reload	Ctrl+T	
2	// include #include - #include -	Serial Monitor Serial Plotter	Ctrl+Shift+M Ctrl+Shift+L	
	/******** char arra	Board: "Arduino/Genuino Uno Port	· •	Serial ports
	<pre>char arra; int tim = // initia;</pre>	Programmer: "USBtinyISP" Burn Bootloader	,	COM1 COM54 (Arduino/Genuino Uno)
9	LiquidCrys	stal_12C lcd(0x2/,16,2);	// set the L(

Then select Tools ->Port. Your port should be different from mine.

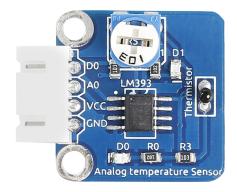
Step 4: Upload the sketch to the SunFounder Uno board

Click the **Upload** icon to upload the code to the control board.


💿 I2C_LCD1602 Arduino 1.6.8	- 🗆 🗙
File Edit Sketch Tools Help	
	<mark>.⊘</mark> .
I2C_LCD1602	
<pre>1 // include the library code 2 #include <wire.h></wire.h></pre>	^

If "Done uploading" appears at the bottom of the window, it means the sketch has been successfully uploaded.

Done uploading.	
avrdude done. Th	ank you.
•	Arduino/Genuino Uno on COM54
	Alduno/Genuino Uno on COM54


Code

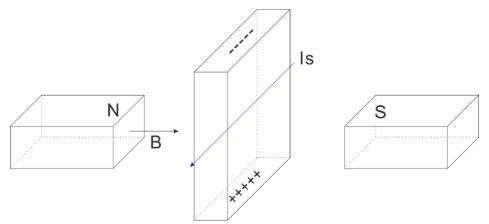
You should now see your I2C LCD1602 display the flowing characters: "SunFounder" and "hello, world".

1.3.2 Lesson 2 Analog Hall Sensor

Introduction

Based on the Hall Effect, a Hall sensor is a one that varies its output voltage in response to a magnetic field. Hall sensors are used for proximity switching, positioning, speed detection, and current sensing applications.

Hall sensors can be categorized into linear (analog) Hall sensors and switch Hall sensors. A switch Hall sensor consists of voltage regulator, Hall element, differential amplifier, Schmitt trigger, and output terminal and it outputs Boolean value (0/1). A linear Hall sensor consists of Hall element, linear amplifier, and emitter follower and it outputs analog values. If a comparator is added to a linear (analog) Hall sensor, it can output both analog and digital signals.

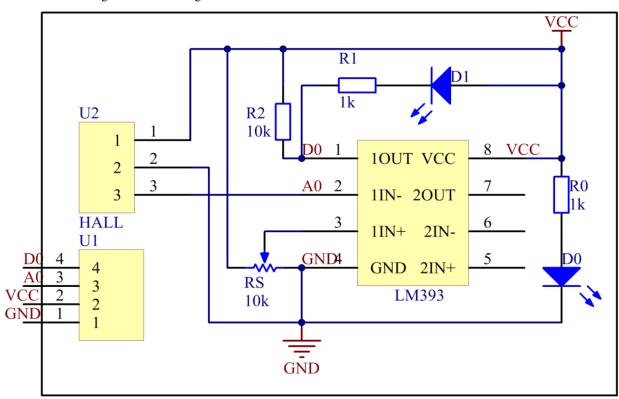

Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Analog Hall sensor module
- 1 * 4-Pin anti-reverse cable
- 1 * Magnet

Principle

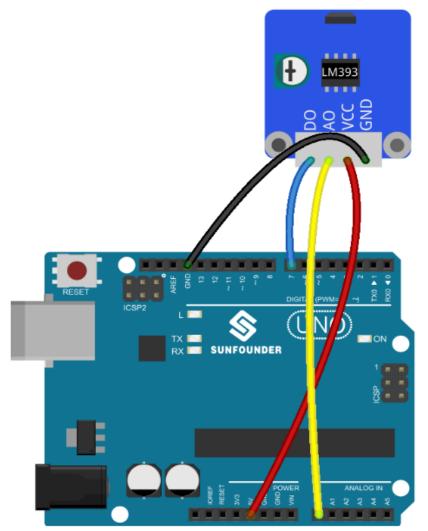
Hall Effect

Hall Effect is a kind of electromagnetic effect. It was discovered by Edwin Hall in 1879 when he was researching conductive mechanism about metals. The effect is seen when a conductor is passed through a uniform magnetic field. The natural electron drift of the charge carriers causes the magnetic field to apply a Lorentz force (the force exerted on a charged particle in an electromagnetic field) to these charge carriers. The result is what is seen as a charge separation, with a buildup of either positive or negative charges on the bottom or on the top of the plate.



A Hall sensor is a magnetic field sensor based on it.

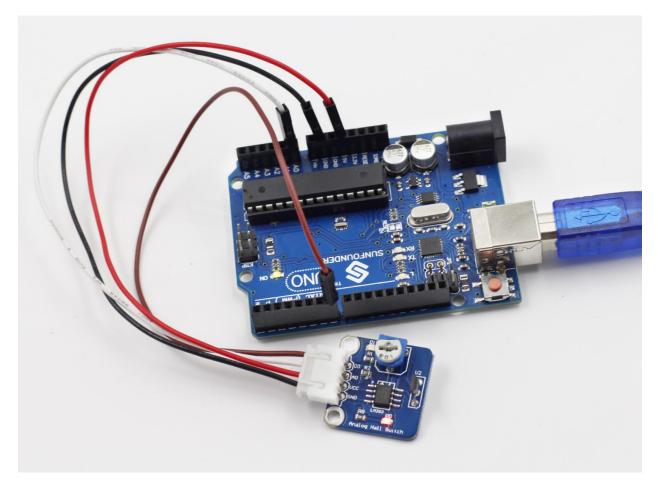
Electricity carried through a conductor will produce a magnetic field that varies with current, and a Hall sensor can be used to measure the current without interrupting the circuit. Typically, the sensor is integrated with a wound core or permanent magnet that surrounds the conductor to be measured.


In this experiment, when the sensor approaches the magnet, the value of pin A0 will change. When the value exceeds the threshold set by the potentiometer before, D0 will output low level and the corresponding LED lights up.

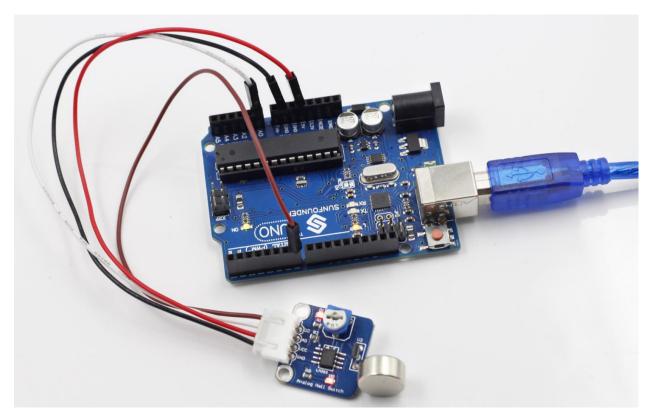
The schematic diagram of the analog Hall sensor module:

Experimental Procedures

Step 1: Build the circuit

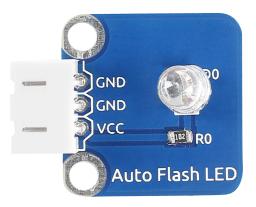

Step 2: Open the code file

Step 3: Select correct Board and Port


Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, put a magnet close to the Hall sensor. The voltage of D0 changes from high to low, and then the LED on the sensor and that attached to pin 13 of the SunFounder Uno light up. You can see the value of A0 and D0 on Serial Monitor.

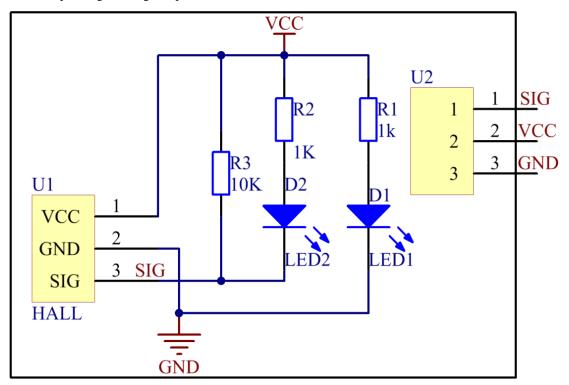

Before the experiment

After the experiment

1.3.3 Lesson 3 Switch Hall Sensor

Introduction

A switch Hall sensor consists of voltage regulator, Hall element, differential amplifier, Schmitt trigger, and output terminal. It outputs digital values.


Components

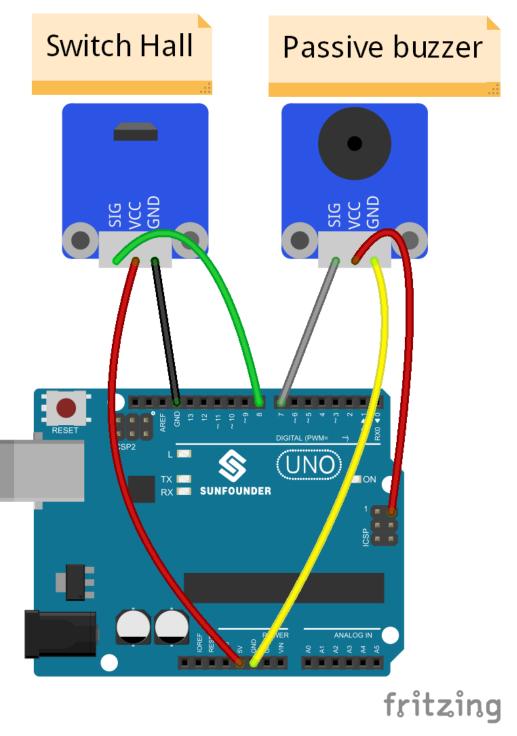
- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Switch Hall sensor module

- 2 * 3-Pin anti-reverse cable
- 1 * Passive buzzer
- 1 * Magnet

Principle

Hook up the switch Hall sensor module with pin 8 of the SunFounder Uno, and the buzzer to pin 7. When an energized conductor approaches the module, the output terminal SIG outputs low level; the buzzer beeps and at the same time the corresponding LED lights up.

Experimental Procedures

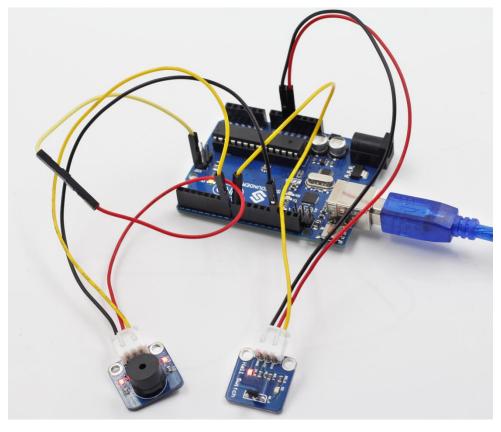

Step 1: Build the circuit

The wiring between the switch Hall sensor and SunFounder Uno board:

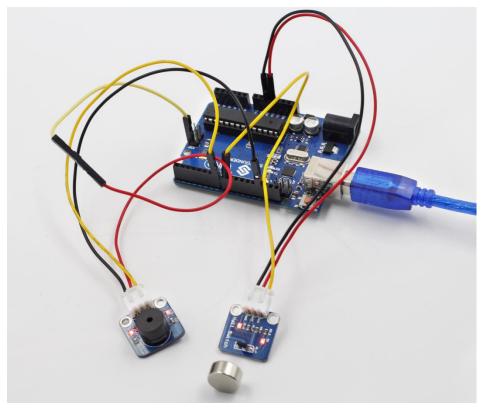
Switch Hall Sensor	SunFounder Uno
SIG	8
VCC	5V
GND	GND

The wiring between the passive buzzer and SunFounder Uno board:

Passive Buzzer	SunFounder Uno
SIG	7
VCC	5V
GND	GND


Step 2: Open the code file

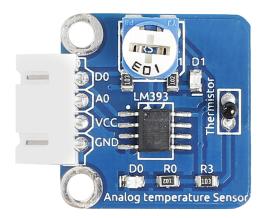
Step 3: Select correct Board and Port


Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, if a magnet approaches the switch Hall sensor, the indicator light on the sensor will light up and the buzzer will beep. At the same time, the LED attached to pin 13 on the SunFounder Uno board will also light up.

Before


After

1.3.4 Lesson 4 Analog Temperature Sensor

Introduction

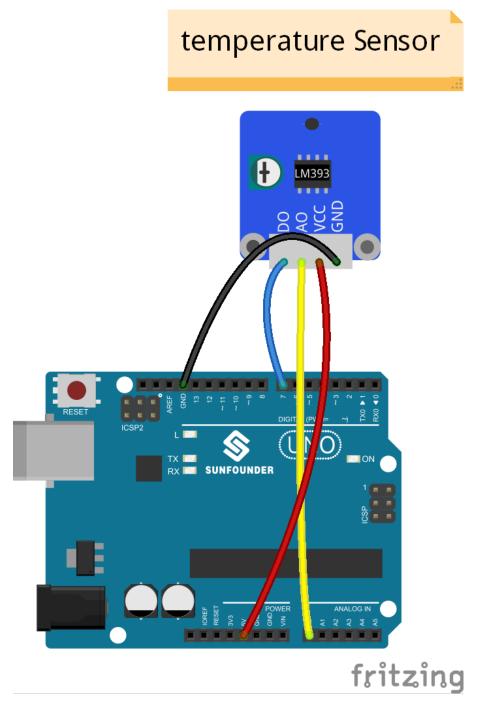
A temperature sensor is a component that senses temperature and converts it into output signals. By material and component features, temperature sensors can be divided into two types: thermal resistor and thermocouple. Thermistor is one kind of the former type. It is made of semiconductor materials; most thermistors are negative temperature coefficient (NTC) ones, the resistance of which decreases with rising temperature. Since their resistance changes acutely with temperature changes, thermistors are the most sensitive temperature sensors.

The Analog Temperature Sensor module uses an NTC thermistor, thus measuring temperature sensitively. It also has a built-in comparator LM393 which enables the module to output both digital and analog signals at the same time. The module can be used for temperature alarm and temperature measurement.



Components

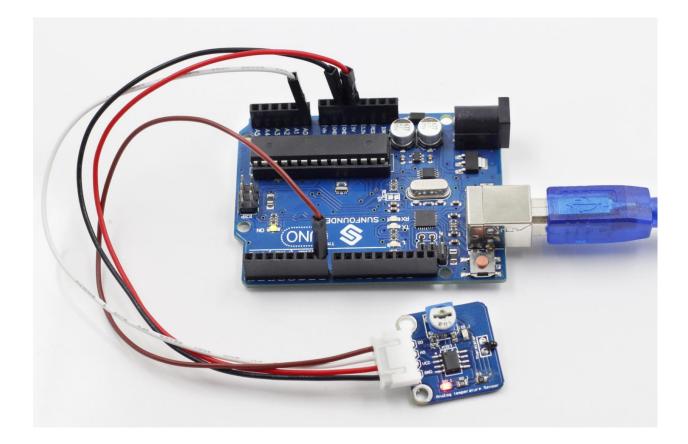
- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Analog temperature sensor module
- 1 * 4-Pin anti-reverse cable


Principle

There is a comparator LM393 on the analog temperature sensor module. You may set a threshold by the potentiometer on it. When you touch the thermistor, the value of A0 decreases. Once the value is lower than the threshold, D0 will output high level and the indicator LED on the analog temperature sensor module and that attached to pin 13 of the SunFounder Uno will go out. You can check the value of A0 and D0 on Serial Monitor. The schematic diagram of the module:

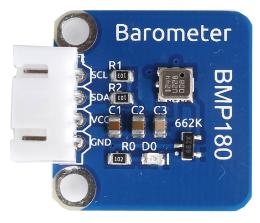
Experimental Procedures

Step 1: Build the circuit


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board


Code

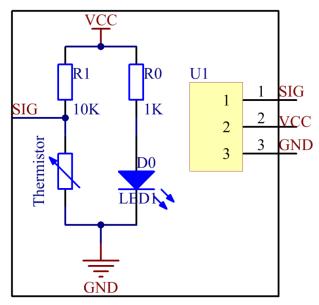
Now, touch the thermistor, and the LED on the analog temperature sensor module and that attached to pin 13 of the SunFounder Uno will go out.

1.3.5 Lesson 5 Temperature Detection by Thermistor

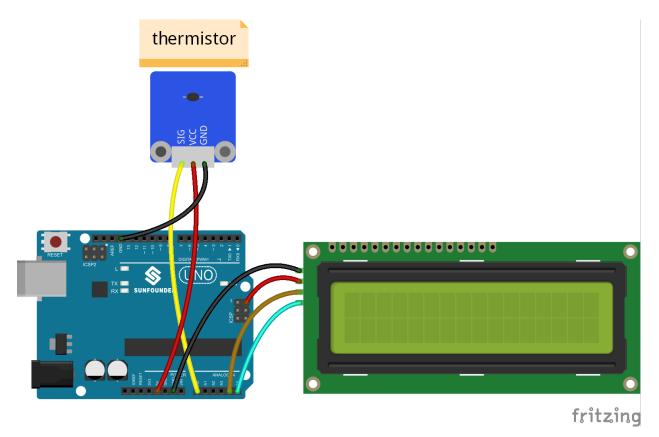
Introduction

As mentioned in Lesson 4, thermistors are the most sensitive temperature sensors because their resistance changes acutely with temperature changes. Therefore, the thermistor sensor module measures temperature sensitively though it can output only analog signals. The module is often used to detect the temperature changes in ambient environment.

Components


- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Thermistor module

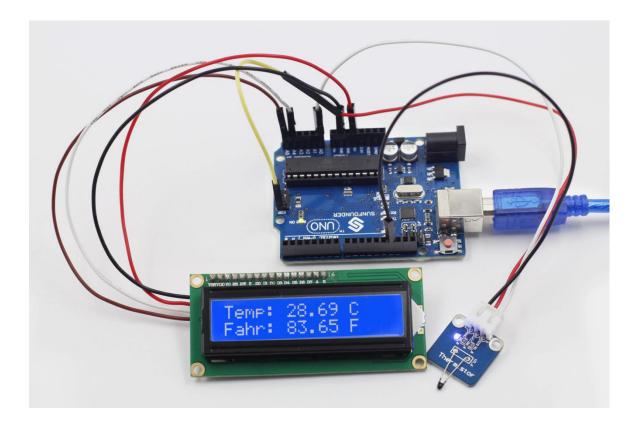
- 1 * I2C LCD1602 module
- 1 * 3-Pin anti-reverse cable
- 1 * 4-Pin anti-reverse cable
- 1 * Dupont wire (F to F)


Principle

How a thermistor works: its resistance varies significantly with the ambient temperature. It can detect surrounding temperature changes in a real-time manner and send the temperature data to analog I/O port of the SunFounder board. What you need to do is convert the output to Celsius temperatures by simple programming and then display it on an LCD.

The schematic diagram of the module:

Experimental Procedures



Step 3: Select correct Board and Port

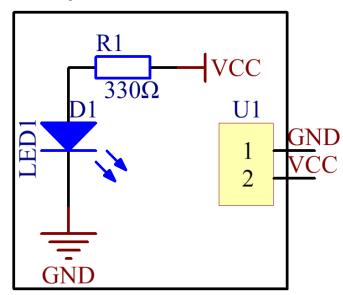
Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, you can see the current value of temperature displayed on the LCD, in both Celsius and Fahrenheit degrees.

1.3.6 Lesson 6 Auto-flash LED

Introduction

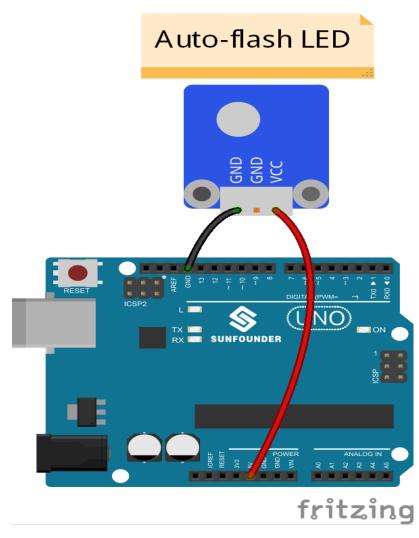


The 7-color auto-flash LED module can automatically flash built-in colors after power on. It can be used to make quite fascinating light effects.

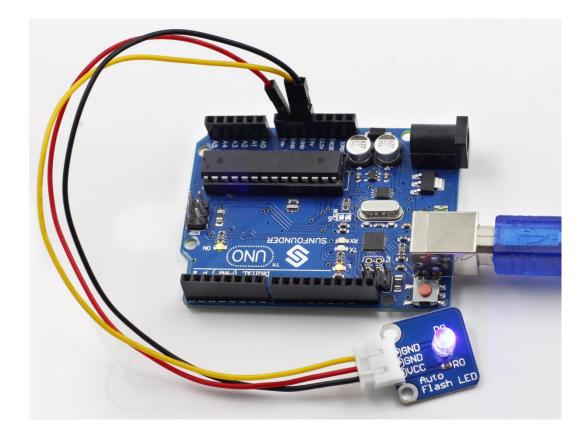
Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * 7-color auto-flash LED module
- 1 * 3-Pin anti-reverse cable

Principle



When it is power on, the 7-color auto flash LED will flash built-in colors. The schematic diagram of the module:


Experimental Procedures

Just connect pin VCC of the module to 5V of the SunFounder Uno board and pin GND to GND.

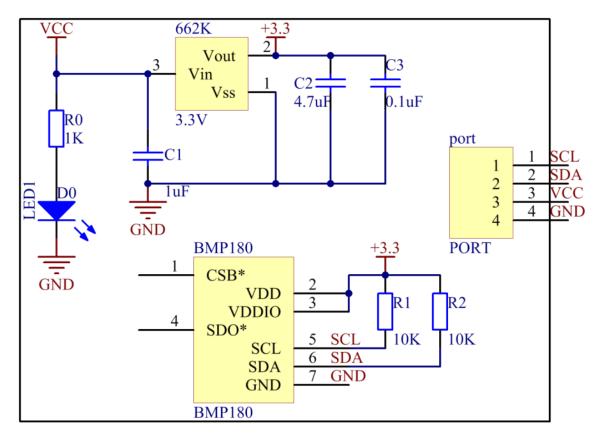
Note: There are two GND pins on the module. You only need to connect one of them.

Now, you should see the LED flashing seven colors.

1.3.7 Lesson 7 Barometer BMP180

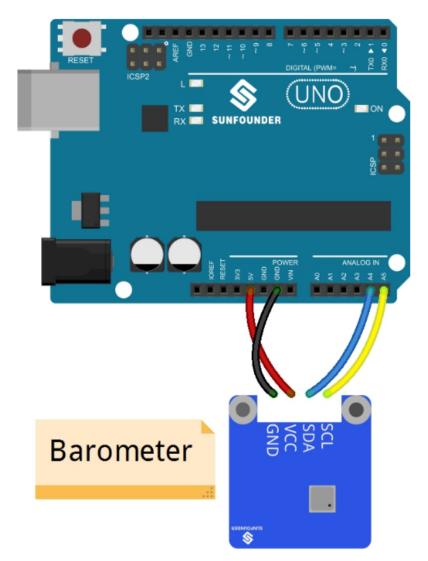
Introduction

The BMP180 barometer is the new digital barometric pressure sensor, with a very high performance, which enables applications in advanced mobile devices, such as smart phones, tablets and sports devices. It complies with the BMP085 but boasts many improvements, like a smaller size and more digital interfaces.


Components

- 1 * SunFounder Uno Board
- 1 * USB Cable
- 1 * BMP180 Module

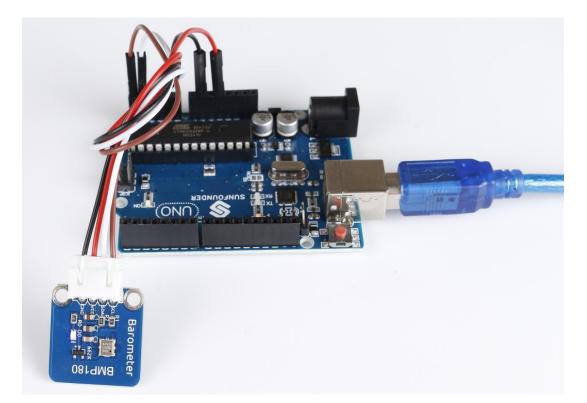
- Several Jump Wires
- 1* Breadboard


Principle

The schematic diagram of the module:

Experimental Procedures

BMP180	SunFounder Uno/Mega2560
VCC	5V
GND	GND
SCL	A5/Pin 21 Mega2560
SDA	A4/Pin 20 Mega2560

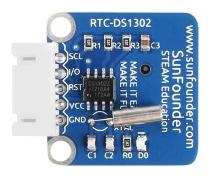


Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code

Open the serial monitor, and you will see the figures of the temperature and the air pressure.

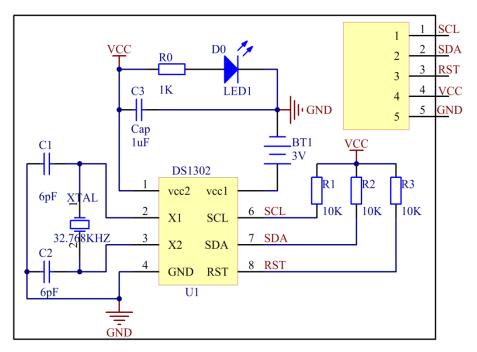


💿 COM3 (Arduino/Genuino Uno)			—		×
					Send
REBOOT					^
BMP180 init success					
temperature: 28.28 deg C					
82.90 deg F					
pressure: 1000.07 mbar					
29.53 inches Hg					
100007.43 Pa					
temperature: 28.27 deg C					
82.89 deg F					
pressure: 1000.03 mbar					
29.53 inches Hg					
100003.50 Pa					
temperature: 28.27 deg C					
82.89 deg F					
pressure: 1000.02 mbar					
29.53 inches Hg					~
Autoscroll Show timestamp	Newline	✓ 9600 bau	4 ~	Clear	r output

1.3.8 Lesson 8 Real-time Clock Module

Introduction

Nowadays there are many popular serial clock circuits such as DS1302, DS1307, PCF8485, etc. They are widely used for simple interface, low cost, and ease of use. In this lesson, we will use the DS1302 real-time clock (RTC) module to obtain current date and time.

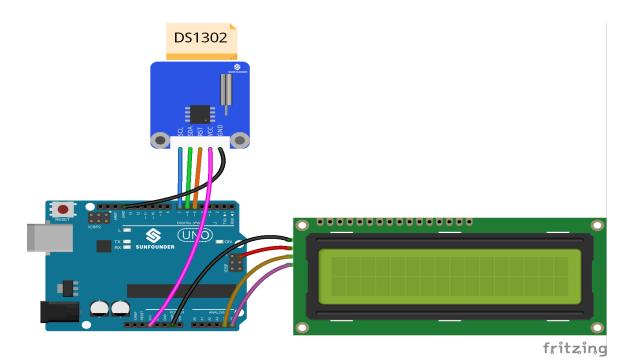


Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * RTC-DS1302 module
- 1 * I2C LCD1602 module
- 1 * 5-Pin anti-reverse cable
- 1 * 4-Pin anti-reverse cable
- 1 * Dupont wire (F to F)

Principle

DS1302 is a trickle charging clock chip, launched by DALLAS in America. With a built-in real-time clock/calendar and a 31-byte static RAM, it can communicate with MCU through simple serial ports. The real-time clock/calendar circuit provides information about second, minute, hour, day, week, month, and year. DS1302 can automatically adjust the number of days per month and days in leap year. You can determine to use a 24-hour or 12-hour system by AM/PM selection. It can simply communicate with MCU in synchronous serial way and only needs to use three port cables: Reset (RST) cable, I/O data (SDA) cable and serial clock (SCL) cable. The schematic diagram of the module:

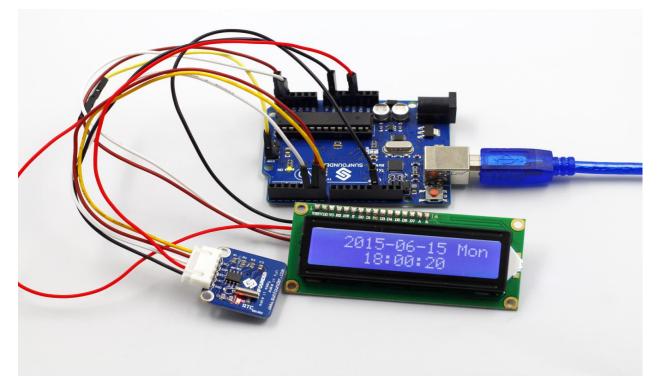


Experimental Procedures

Step 1: Build the circuit

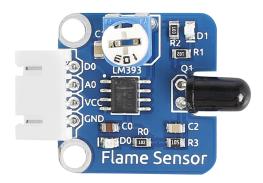
The wiring between DS1302 and SunFounder Uno board is as shown below:

DS1302	SunFounder Uno
SCL	7
SDA	6
RST	5
VCC	3.3V
GND	GND



Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board


Code

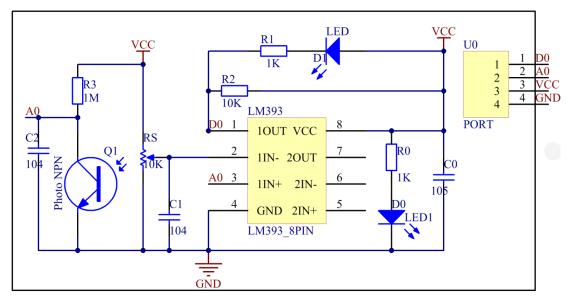
Now, you can see the current date and time information displayed on the I2C LCD1602.

1.3.9 Lesson 9 Flame Alarm

Introduction

A flame sensor module performs detection by capturing infrared wavelengths from flame. It can be used to detect and warn of flames.

Components


- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Flame sensor module
- 1 * Passive buzzer module
- 1 * 4-Pin anti-reverse cable
- 1 * 3-Pin anti-reverse cable

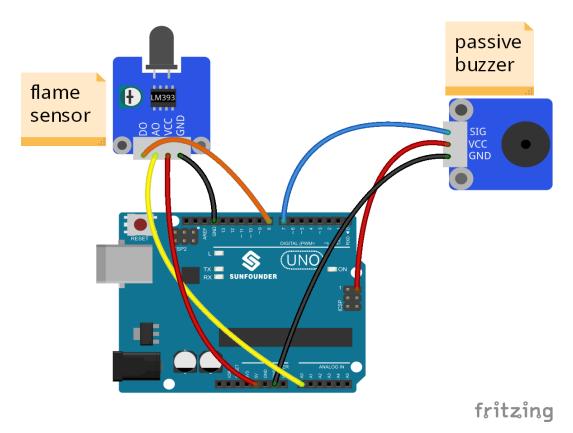
Principle

There are several types of flame sensors. In this experiment, we will use a far-infrared flame sensor. It can detect infrared light with a wavelength ranging from 700nm to 1000nm. A far-infrared flame probe converts the strength changes of the external infrared light into current changes. And then it converts analog quantities into digital ones.

In this experiment, connect pin D0 to the digital port 8 of the SunFounder board. Then when the flame sensor detects flame signals, the buzzer beeps and the corresponding LED lights up. When it detects no flame signals, the buzzer stops and the LED goes out.

The schematic diagram of the module:

Experimental Procedures

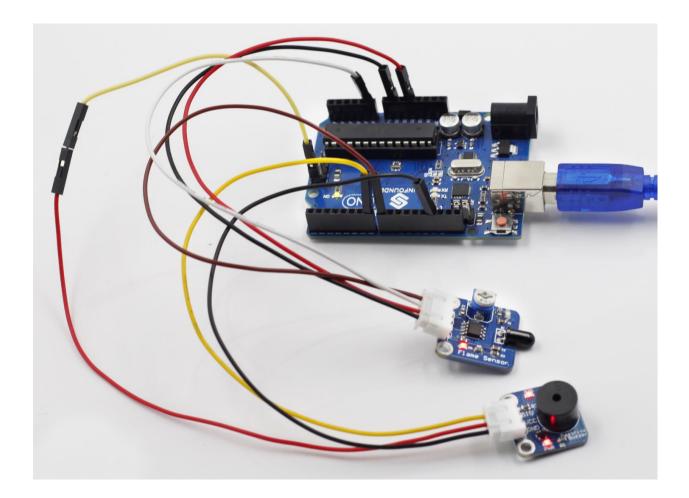

Step 1: Build the circuit

The wiring between the flame sensor and SunFounder Uno board:

Flame Sensor	SunFounder Uno
D0	8
A0	A0
VCC	5V
GND	GND

The wiring between the passive buzzer and SunFounder Uno board:

Passive Buzzer	SunFounder Uno		
SIG	7		
VCC	5V		
GND	GND		



Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code

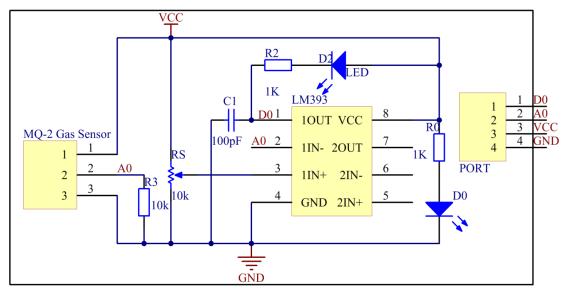
Now, ignite a lighter near the flame sensor. Then the buzzer will beep, and the LED on the flame sensor module and that attached to pin 13 of the SunFounder board will light up.

1.3.10 Lesson 10 Flammable Gas Detection

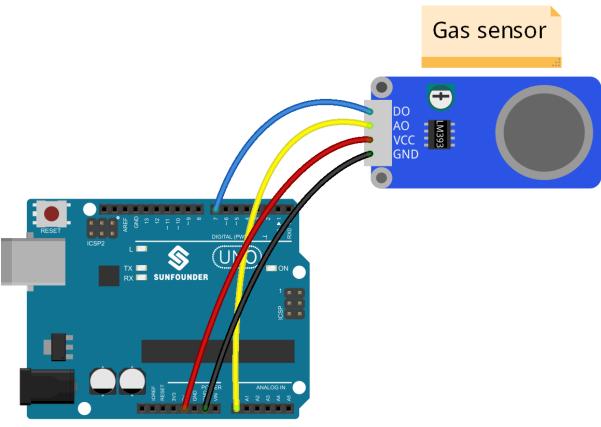
Introduction

Gas Sensor MQ-2 is a sensor for flammable gas and smoke by detecting the concentration of combustible gas in the air. They are often used in gas detecting equipment for smoke and flammable gasses such as LPG, i-butane, propane, methane and alcohol in household, industry or automobile.

Components


- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * MQ-2 gas sensor module

• 1 * 4-Pin anti-reverse cable


Principle

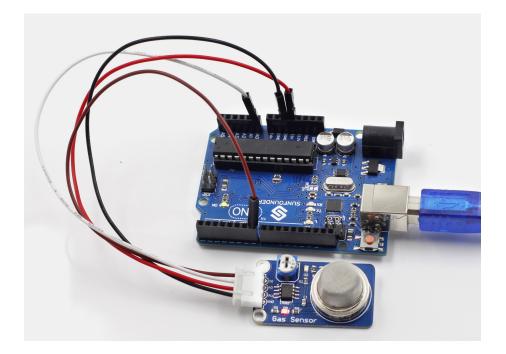
MQ-2 gas sensor applies SnO2 (an oxygen-deficient n-type semiconductor) which has a lower conductivity in the clear air as a gas-sensing material. In an atmosphere where there may be inflammable gases, the conductivity of the gas sensor raises along with the inflammable gas concentration increases. MQ-2 performs a good detection to different inflammable gases such as natural gas, especially sensitive to liquefied gas, propane and hydrogen.

In this experiment, release some combustible gas around the sensor and the value at A0 increases. Once the concentration of the gas exceeds a limit, D0 outputs low level and the corresponding LED will light up. Please note that the sensor needs burn-in time so the readings can be more consistent and reliable.

Experimental Procedures

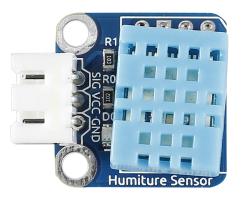
fritzing

Step 2: Open the code file


Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code


Now, ignite a lighter. Then the sensor detects the gas emitted. Thus, the LED on the gas sensor and that attached to pin 13 on the SunFounder Uno board will light up. Also you can see the value at A0 and D0 printed on Serial Monitor.

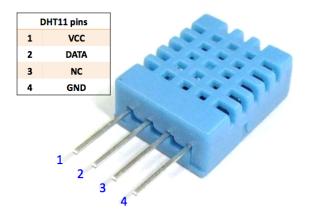
Note: It is normal that the gas sensor generates heat. Actually, the higher the temperature is, the sensor is more sensitive.

1.3.11 Lesson 11 Humiture Detection

Introduction

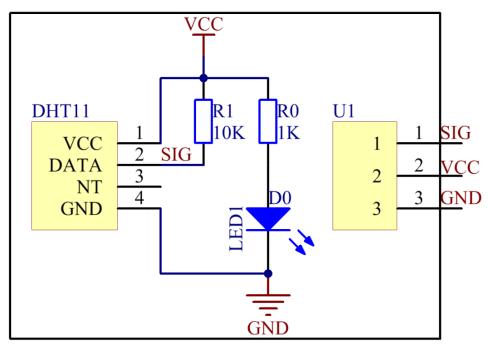
The digital temperature and humidity sensor DHT11 is a composite sensor that contains a calibrated digital signal output of temperature and humidity. The technology of a dedicated digital modules collection and the temperature and humidity sensing technology are applied to ensure that the product has high reliability and excellent long-term stability.

The sensor includes a resistive sense of wet component and an NTC temperature measurement device, and is connected with a high-performance 8-bit microcontroller.

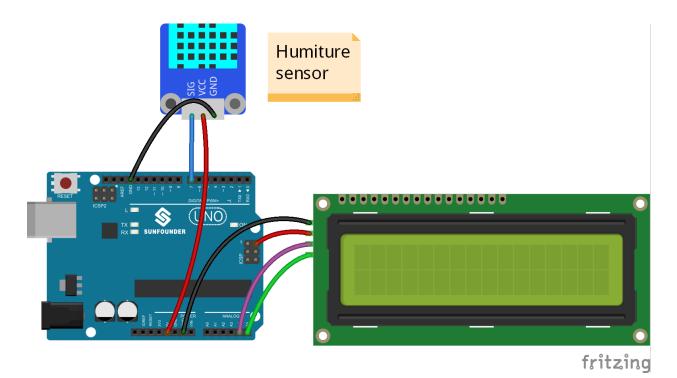

Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Humiture sensor module
- 1 * I2C LCD1602
- 1 * 3-Pin anti-reverse cable

- 1 * 4-Pin anti-reverse cable
- 1 * Dupont wire (F to F)


Principle

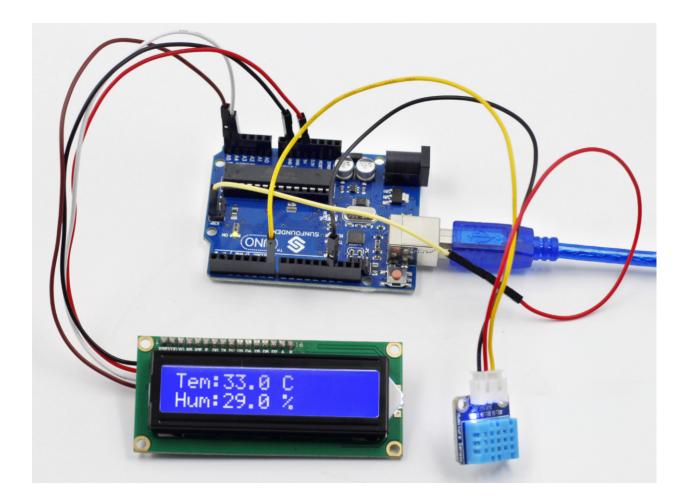
Only three pins are available for use: VCC, GND, and DATA. The communication process begins with the DATA line sending start signals to DHT11, and DHT11 receives the signals and returns an answer signal. Then the host receives the answer signal and begins to receive 40-bit humiture data (8-bit humidity integer + 8-bit humidity decimal + 8-bit temperature integer + 8-bit temperature decimal + 8-bit checksum).



For more information, please refer to the datasheet of DHT11.

The schematic diagram

Experimental Procedures



Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

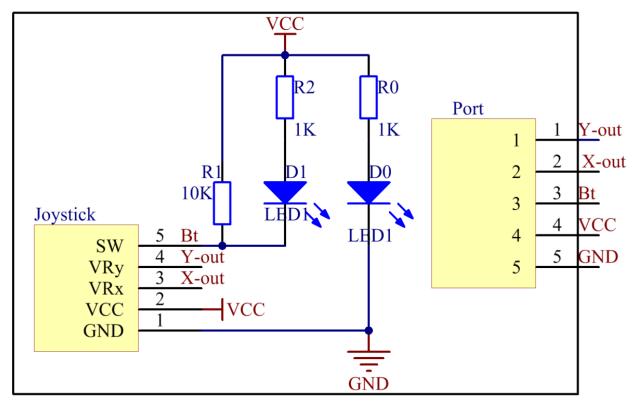
Code

Now, you can see the value of current humidity and temperature displayed on the LCD.

1.3.12 Lesson 12 Joystick PS2

Introduction

A joystick is an input device consisting of a stick that pivots on a base and reports its angle or direction to the device it is controlling. Joysticks are often used to control video games and robots. A Joystick PS2 is used here.

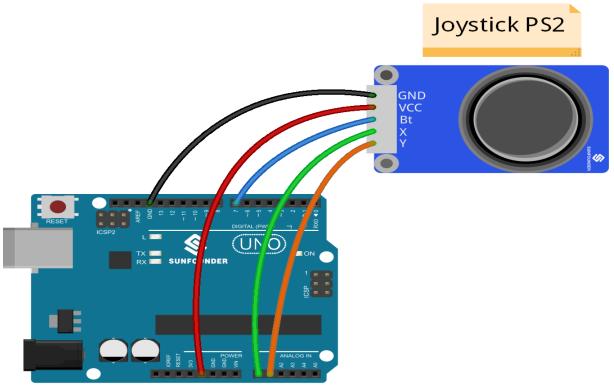

Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Joystick PS2 module

• 1 * 5-Pin anti-reverse cable

Principle

This module has two analog outputs (corresponding to X and Y coordinates) and one digital output representing whether it is pressed on Z axis.



Experimental Procedures

Step 1: Build the circuit

The wiring between the Joystick PS2 and SunFounder Uno board:

Joystick PS2	SunFounder Uno
GND	GND
VCC	5V
Bt	7
X	A0
у	A1

fritzing


Step 2: Open the code file

Step 3: Select correct Board and Port

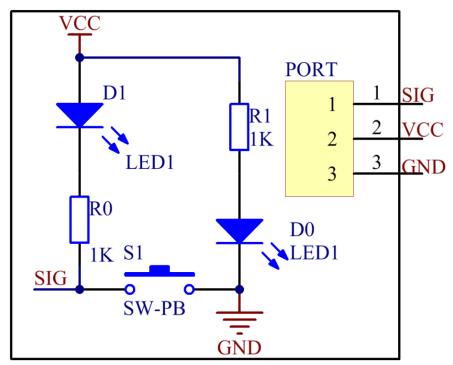
Step 4: Upload the sketch to the SunFounder Uno board

Code

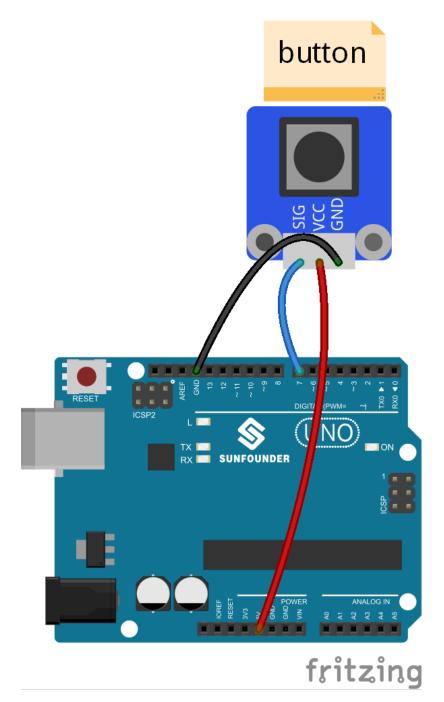
Now, push the rocker and the coordinates of X and Y axes displayed on Serial Monitor will change accordingly; press the button, and the coordinate of Z=0 will also be displayed.

1.3.13 Lesson 13 Controlling an LED by Button

Introduction


As you can see, an LED has been attached to pin 13 on most of the SunFounder boards already. So just a button module can be used to build a simple circuit to make the LED light up.

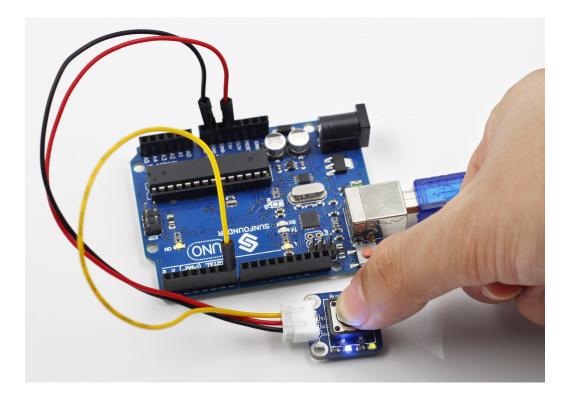
Components


- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Button module
- 1 * 3-Pin anti-reverse cable

Principle

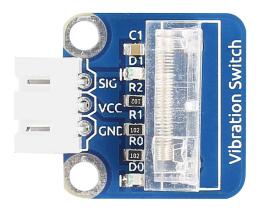
Since the LED has been attached to pin 13, just connect the button module to digital pin 7. When the button module identifies inductive button-pressing signals, the LED will be on. Otherwise it will be off.

Experimental Procedures



Step 3: Select correct Board and Port

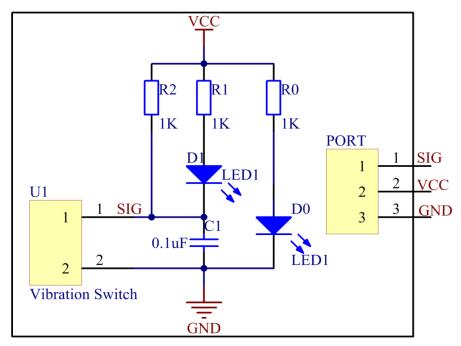
Step 4: Upload the sketch to the SunFounder Uno board


Code

Now, press the button, and then the LED on the button module and that hooked up with pin 13 of the SunFounder Uno board will light up.

1.3.14 Lesson 14 Vibration Switch

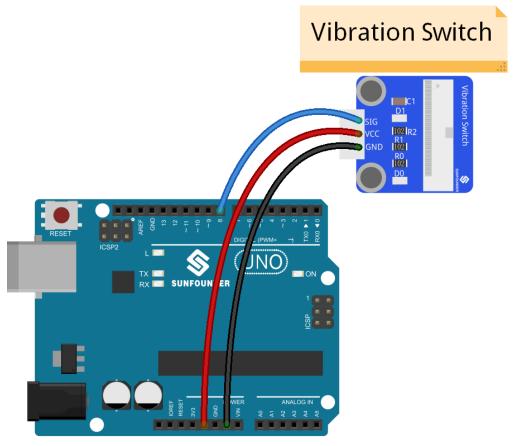
Introduction


A vibration switch, also called spring switch or shock sensor, is an electronic switch which senses vibration amplitude and transfers the signals to a circuit device thus switching on the circuit. It composes of conductive vibration spring, switch, trigger pin, and packaging agent.

Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Vibration switch module
- Jumper wires

Principle

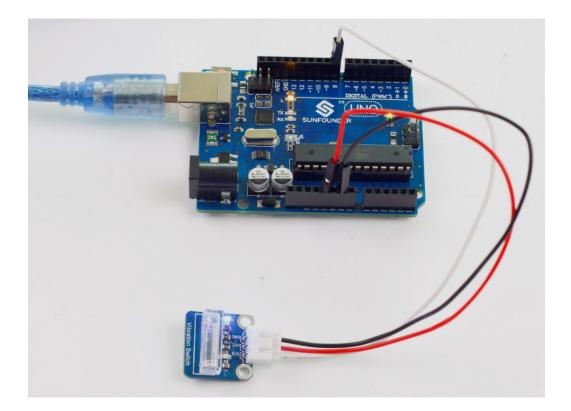

In a vibration switch module, the conductive vibration spring and trigger pin are precisely placed in the switch and fixed by adhesive. Normally, the spring and the trigger pin are separated. Once the sensor detects shock, the spring will vibrate and contact with the trigger pin, thus conducting and generating trigger signals. The schematic diagram:

Experimental Procedures

Step 1: Build the circuit

With the LED attached to pin 13 already, connect the vibration switch to digital pin 8. When the vibration switch generates vibration signals, pin SIG will output low level, and the LED on the module and that attached to pin 13 will light up.

fritzing


Step 2: Open the code file (Lesson 14 Vibration Switch)

Step 3: Select correct Board and Port

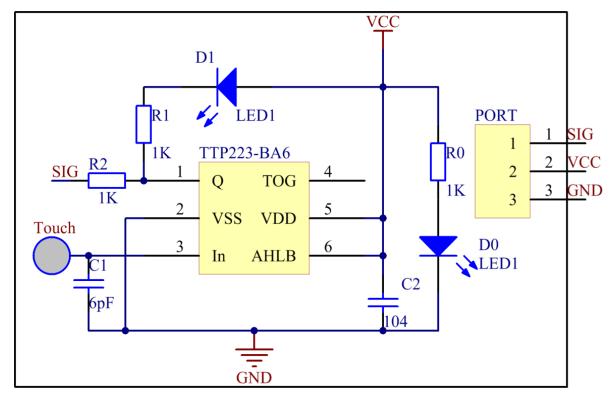
Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, shake the switch module, and you should see the LED attached to pin 13 on SunFounder Uno board and that on the module light up.

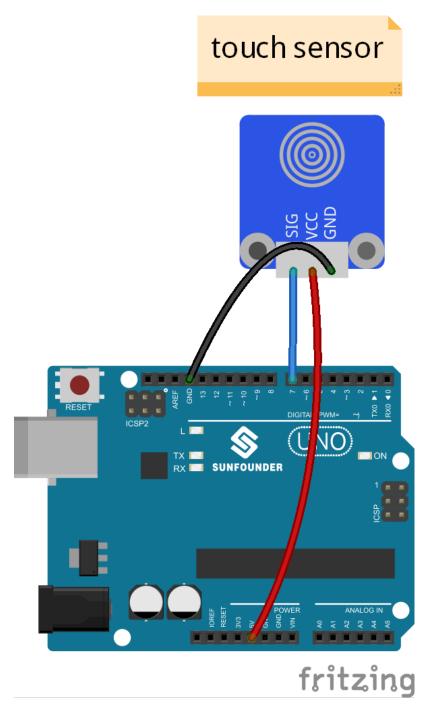
1.3.15 Lesson 15 Touch Switch

Introduction



A metal touch sensor is a type of switch that only operates when it's touched by a charged body. It has a high-frequency transistor which is energized when receiving electromagnetic signals.

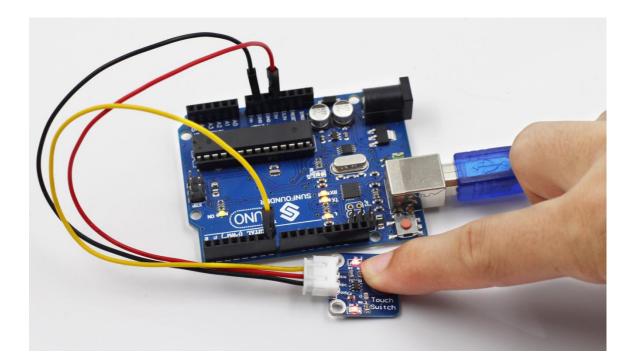
Components


- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Touch Switch module
- 1 * 3-Pin anti-reverse cable

Principle

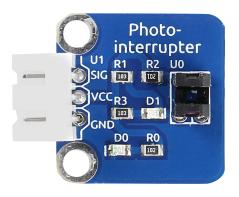
In this experiment, touch the base electrode of the transistor to make it conduct electricity, for human body itself is a kind of conductor and an antenna that can receive electromagnetic waves in the air.

Experimental Procedures



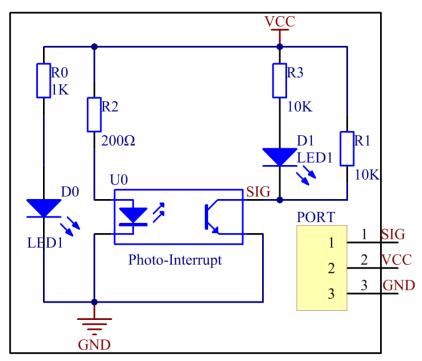
Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board


Code

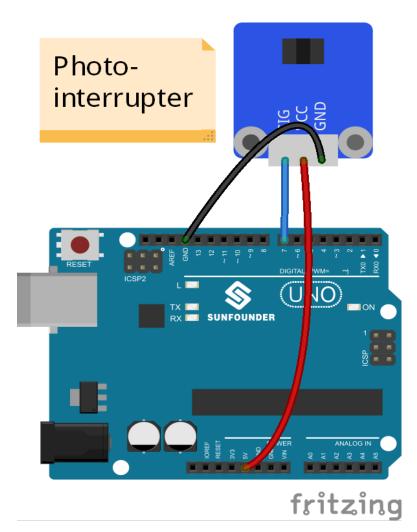
When the module is electrified, the original state of pin SIG is low and the LED onside is on. Now, touch the electrode with your finger. Then it outputs high and the LED on it and that attached to pin 13 on the SunFounder Uno board will go out. Move away and touch it again, and it'll output low with the LEDs turned on, and so forth. Thus, the output level changes between high and low with each touch, together with LEDs brightening and dimming.

1.3.16 Lesson 16 Photo-interrupter


A photo-interrupter is a sensor with a light-emitting component and light-receiving component packaged face to face. It applies the principle that light is interrupted when an object passes through the sensor. Therefore, photo-interrupters are widely used in speed measurement.

Components

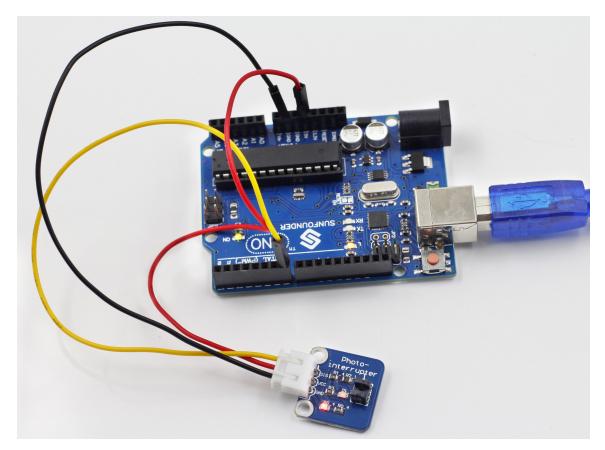
- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Photo-interrupter module
- 1 * 3-Pin anti-reverse cable


Principle

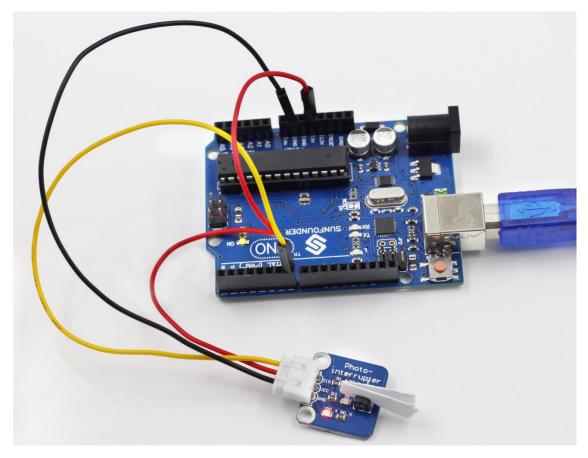
Basically a photo-interrupter consists of two parts: transmitter and receiver. The transmitter (e.g., an LED or a laser) emits light and then the light goes to the receiver. If the light beam between the transmitter and receiver is interrupted

by an obstacle, the receiver will detect no incident light even for a moment and the output level will change. In this experiment, we will turn an LED on or off by using this change.

Experimental Procedures



Step 3: Select correct Board and Port


Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, stick a piece of paper in the gap of the sensor, and the LED attached to pin 13 on the SunFounder Uno will go out; remove the paper, and then the LED will light up again.

Before

With paper interrupting

1.3.17 Lesson 17 Photoswitch

Introduction

The sensor is in fact a photoresistor which changes its resistance with varying light intensity. It can be used to make a photoswitch.

Components

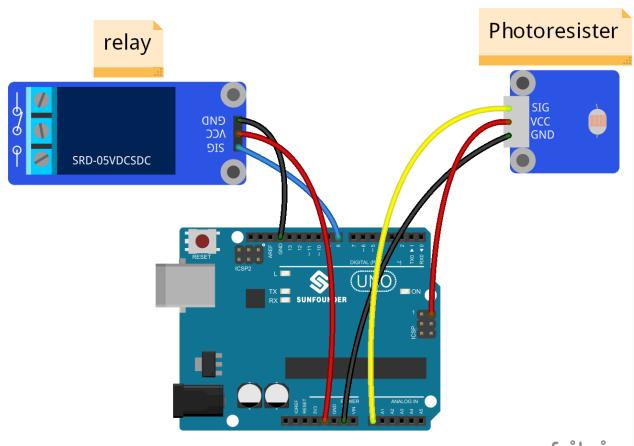
- 1 * SunFounder Uno board
- 1 * USB data cable

- 1 * Relay module
- 1 * Photoresistor sensor module
- 2 * 3-Pin anti-reverse cable
- 1 * Dupont wire (F to F)

Principle

A photoresistor or light-dependent resistor (LDR) or photocell is a light-controlled variable resistor. The resistance of a photoresistor decreases with increasing incident light intensity; in other words, it exhibits photoconductivity. A photoresistor can be applied in light-sensitive detector circuits, and light- and dark-activated switching circuits. In this experiment, hook up the photoresistor to A0 of the SunFounder board, and relay to pin 8. When the value reaches or even exceeds 400, the normally open contact of the relay is closed and the LED at pin 13 on the SunFounder Uno board will light up; otherwise, it will be off. In this way you can make a photoswitch.

Experimental Procedures


Step 1: Build the circuit

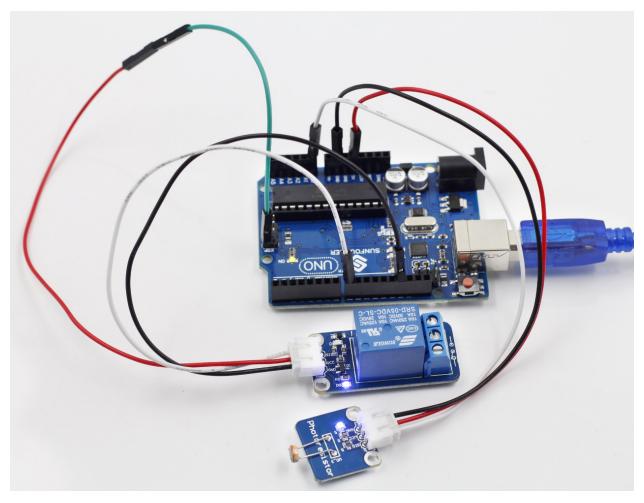
The wiring between the relay and SunFounder Uno board:

Relay	SunFounder Uno
GND	GND
VCC	5V
SIG	8

The wiring between the photoresistor and SunFounder Uno board:

Photoresistor	SunFounder Uno
SIG	A0
VCC	5V
SIG	A0

fritzing

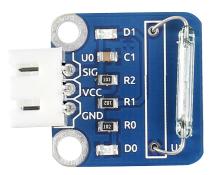

Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code

Now hold the photoresistor with your fingers and check the value at A0 on Serial Monitor. You can see when the resistance is up to 400ohm, the normally open contact of the relay is closed and the LED connected to pin 13 on the SunFounder Uno board lights up; or else, it keeps out.



Summary

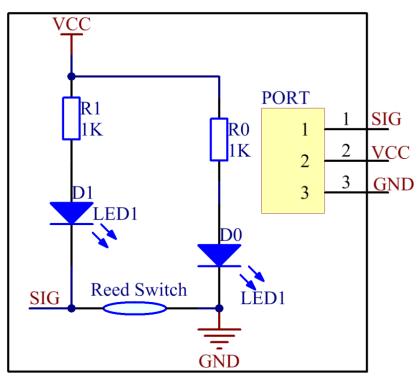
In this experiment we've use the sensor making a photoswitch. You may try other applications. For instance, connect a bulb to the relay module based on the circuit. Then when it gets dimmer, the normally open contact of the relay is closed and the bulb will light up. The same way applies to the street light.

1.3.18 Lesson 18 Reed Switch

Introduction

A reed switch is also a sensor used to detect the magnetic field. Hall sensors are generally used to measure the speed of intelligent vehicles and count assembly lines, while reed switches are often used to detect the existence of a magnetic field.

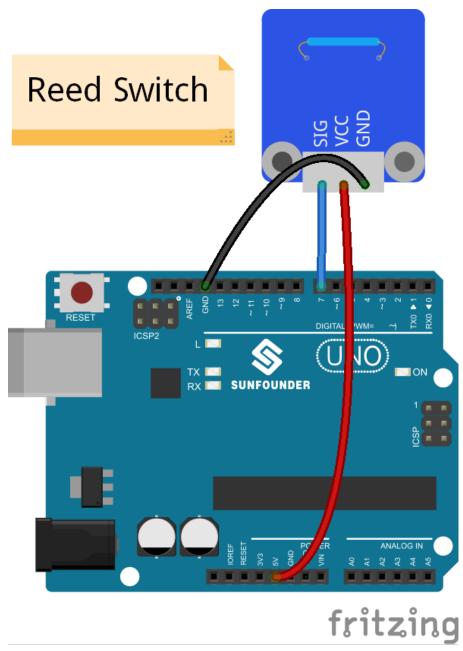
Components


- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Reed Switch module
- 1 * 3-Pin anti-reverse cable
- 1 * Magnet

Principle

A reed switch is a type of line switch component that realizes control by magnetic signals. It induces by a magnet. The "switch" here means dry reed pipe, which is a kind of contact passive electronic switch component with the advantage of simple structure, small size, and convenient control. The shell of a reed switch is commonly a sealed glass pipe in which two iron elastic reed electroplates are equipped and inert gases are filled. Normally, the two reeds made of special materials in the glass tube are separated. However, when a magnetic substance approaches the glass tube, the two reeds in the glass tube are magnetized to attract each other and contact under the function of magnetic field lines. As a result, the two reeds will pull together to connect the circuit connected with the nodes.

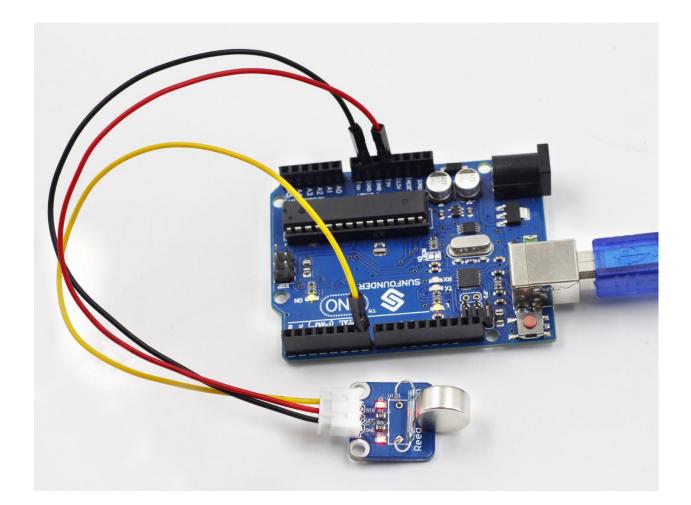
After external magnetic force disappears, the two reeds will be separated with each other because they have the same magnetism, so the circuit is also disconnected. Therefore, as a line switch component controlling by magnetic signals, the dry reed pipe can be used as a sensor to count, limit positions and so on. At the same time, it is widely used in a variety of communication devices.


In this experiment, since an LED has been attached to pin 13, just connect pin SIG of the reed switch to digital pin 7 of SunFounder Uno board. When the reed switch identifies magnetic field signals, the LED will be on. Otherwise it will be off.

The schematic diagram

Experimental Procedures

Step 1: Build the circuit


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, use a magnet to approach the reed switch, and the LED on the reed switch module and that on the SunFounder board light up. Move the magnet farther and the LED will go out.

1.3.19 Lesson 19 Relay

Introduction

As we know relay is a device which is used to provide connection between two or more points or device in response to the input signal applied. In another words relay provide isolation between the controller and the device as we know devices may work on AC as well as on DC. However, they receive signals from microcontroller which works on DC hence we require a relay to bridge the gap. Relay is extremely useful when you need to control a large amount of current or voltage with small electrical signal.

Components

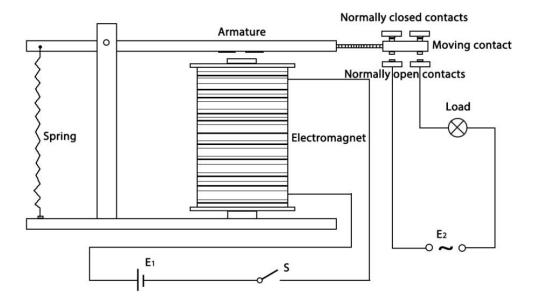
- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Relay module

• 1 * 3-Pin anti-reverse cable

Principle

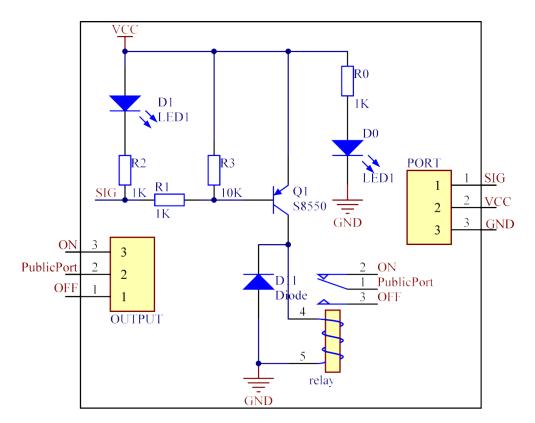
Relay – There are 5 parts in every relay:

1. **Electromagnet** – It consists of an iron core wounded by coil of wires. When electricity is passed through, it becomes magnetic. Therefore, it is called electromagnet.

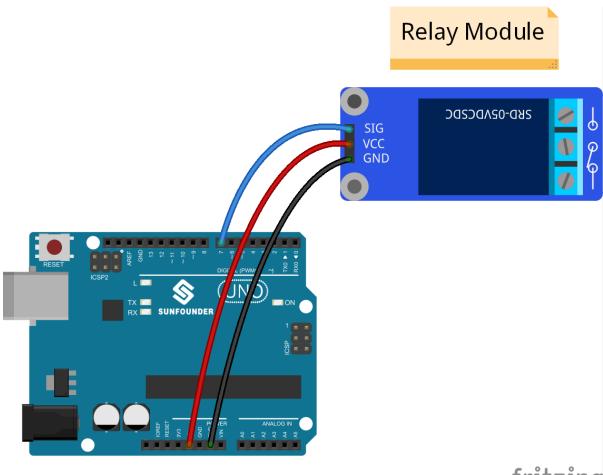

2. Armature – The movable magnetic strip is known as armature. When current flows through them, the coil is it energized thus producing a magnetic field which is used to make or break the normally open (N/O) or normally close (N/C) points. And the armature can be moved with direct current (DC) as well as alternating current (AC).

3. **Spring** – When no currents flow through the coil on the electromagnet, the spring pulls the armature away so the circuit cannot be completed.

- 4. Set of electrical contacts There are two contact points:
- Normally open connected when the relay is activated, and disconnected when it is inactive.
- Normally close not connected when the relay is activated, and connected when it is inactive.
- 5. Molded frame Relays are covered with plastic for protection.


Working of Relay

The working principle of relay is simple. When power is supplied to the relay, currents start flowing through the control coil; as a result, the electromagnet starts energizing. Then the armature is attracted to the coil, pulling down the moving contact together thus connecting with the normally open contacts. So the circuit with the load is energized. Then breaking the circuit would a similar case, as the moving contact will be pulled up to the normally closed contacts under the force of the spring. In this way, the switching on and off of the relay can control the state of a load circuit.

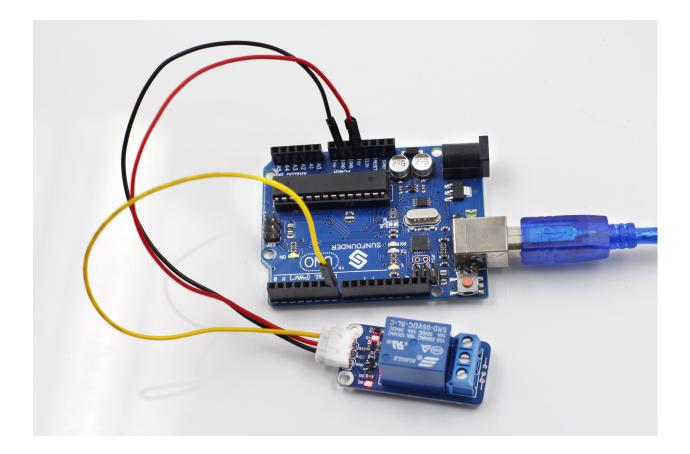


So in this experiment, hook the SIG to the SunFounder Uno board. Send a low level to SIG; the PNP transistor is energized and the coil of the relay is electrified. Thus, the normally open contact of the relay is closed, while

the normally closed contact of the relay will be off the public port. Send a high level to SIG; the transistor will be de-energized and the relay will restore to the initial state.

Experimental Procedures

fritzing


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

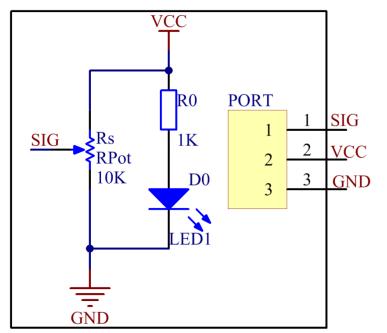
Code

Now, you may hear the ticktock. That's the normally closed contact opened and the normally open contact closed.

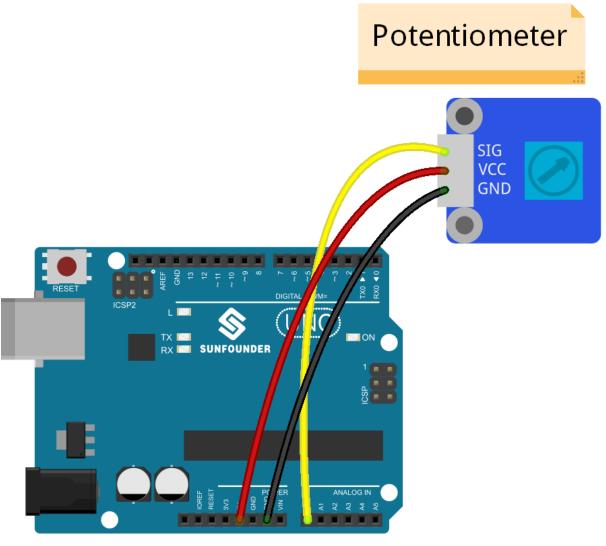
1.3.20 Lesson 20 Blinking an LED by Potentiometer

Introduction

A potentiometer can help to control the interval at which the LED on the SunFounder board blinks.


Components

- 1 * SunFounder Uno board
- 1 * 3-Pin anti-reverse cable
- 1 * Potentiometer module
- 1 * USB cable

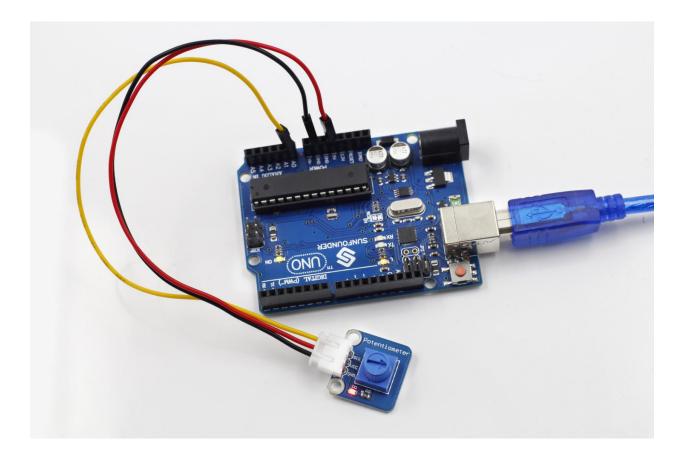

Principle

An analog potentiometer is an analog electronic component. What's the difference between an analog one and a digital one? Simply put, a digital potentiometer refers to just two states like on/off, high/low levels, i.e. either 0 or 1, while a digital one supports analog signals like a number from 1 to 1000. The signal value changes over time instead of keeping an exact number. Analog signals include light intensity, humidity, temperature, and so on.

In this experiment, hook up the pin SIG of the potentiometer module to A0 of the SunFounder Uno board and check the value at A0. Then use the value to control the interval at which the LED connected with pin 13 of the Uno board blinks. Rotate the shaft of the potentiometer and the LED blink interval will increases or decreases.

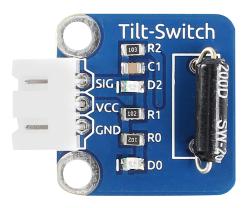
Experimental Procedures

fritzing


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board


Code

Rotate the shaft of the potentiometer and the interval at which the LED attached to pin 13 of the SunFounder Uno blinks will increase or decrease.

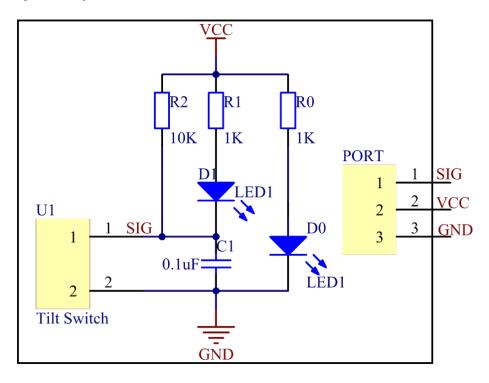
1.3.21 Lesson 21 Tilt Switch

Introduction

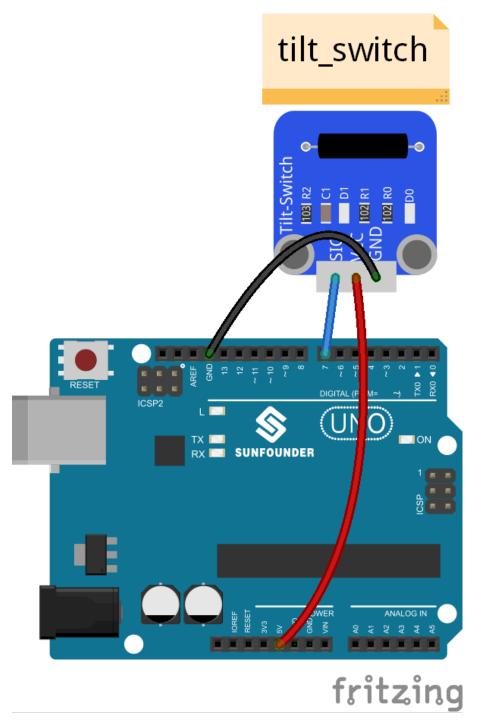
The tilt switch sensor module is a ball tilt switch with a metal ball inside. It is used to detect inclinations of a small angle.

Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Tilt switch module


• 1 * 3-Pin anti-reverse cable

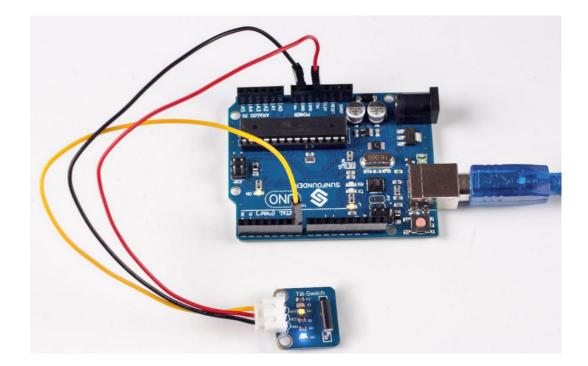
Principle


The principle is very simple. When the switch is tilted in a certain angle, the ball inside rolls down and touches the two contacts connected to the pins outside, thus triggering circuits. Otherwise the ball will stay away from the contacts, thus breaking the circuits.

In this experiment, we use a tilt switch module and an LED that has been attached to pin 13 of the SunFounder board to build a simple circuit.

With the LED attached to pin 13, connect pin SIG to digital pin 7 of the SunFounder Uno board. Then the tilt switch outputs low signals and the LED will be on. Otherwise it will be off.

Experimental Procedures


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code

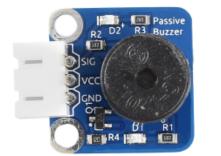
Now, tilt the switch and the LED attached to pin 13 on SunFounder Uno board will light up.

1.3.22 Lesson 22 Buzzer

Introduction

A buzzer is an audio signaling device. Buzzers can be categorized into active and passive ones (see as below).

GND


Active

R1

102

REMOVE SEAL AFTER WASHING

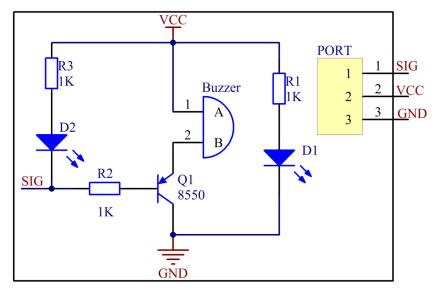
D1

Components

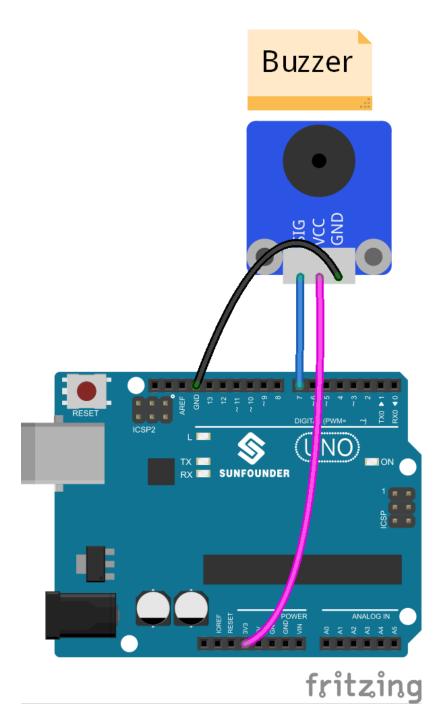
- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Active buzzer
- 1 * Passive buzzer
- 2 * 3-Pin anti-reverse cable

Principle

Place the pins of two buzzers face up and you can see the one with a green circuit board is a passive buzzer, while the other with a black tape, instead of a board, is an active buzzer, as shown below.


Active buzzer

Passive buzzer

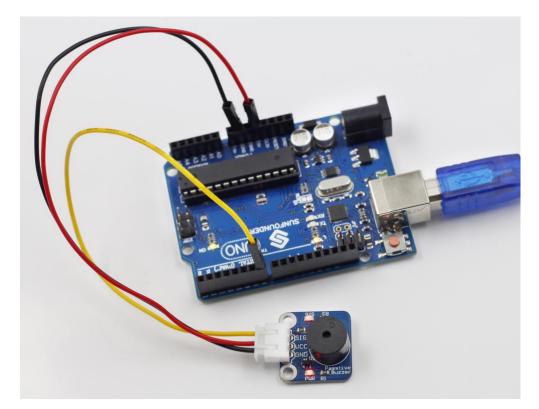

Active buzzer Passive buzzer

An active buzzer has a built-in oscillating source, so it will make sounds when electrified. But a passive buzzer does not have such source, so it will not beep if DC signals are used; instead, you need to use square waves whose frequency is between 2K and 5K to drive it. The active buzzer is often more expensive than the passive one because of multiple built-in oscillating circuits.

The schematic diagram:

Experimental Procedures

Passive Buzzer


Step 2: Open the code file (Passive)

Step 3: Select correct Board and Port

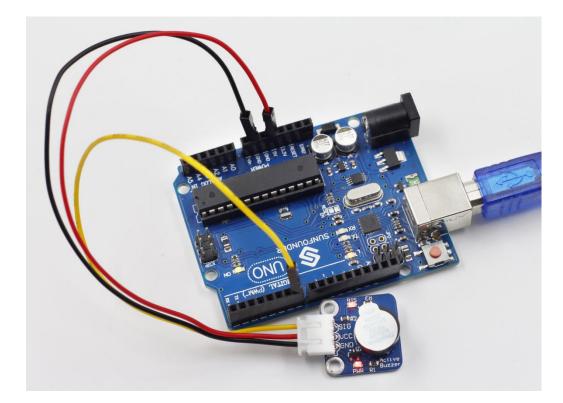
Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, you can hear the passive buzzer beeping. It also works in the same way if you use an active one here.

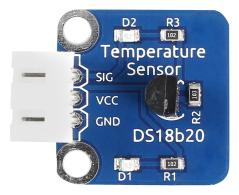
Active Buzzer

Note: The active buzzer has a built-in oscillating source, so it will beep as long as it is wired up.


Step 2: Open the code file (Active)

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

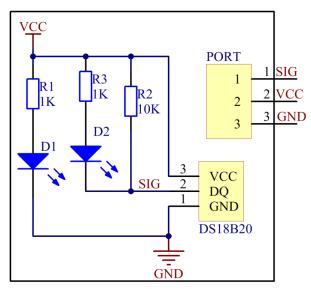

Code

Now, you can hear the active buzzer beeping. But it won't work if you use a passive one here.

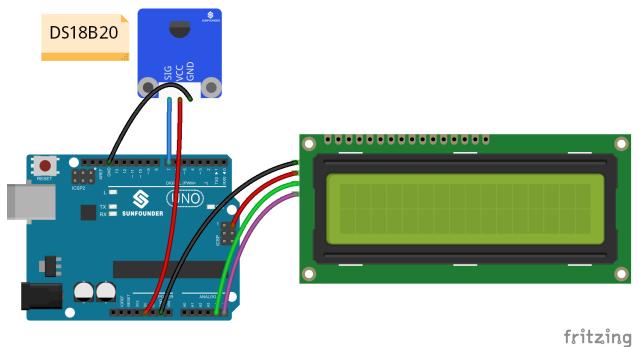
1.3.23 Lesson 23 Digital Temperature Sensor

Introduction

Temperature Sensor DS18B20 is a commonly used digital temperature sensor featured with small size, low-cost hardware, strong anti-interference capability and high precision. The digital temperature sensor is easy to wire and can be applied a various occasions after packaging. Different from conventional AD collection temperature sensors, it uses a 1-wire bus and can directly output temperature data.


Components

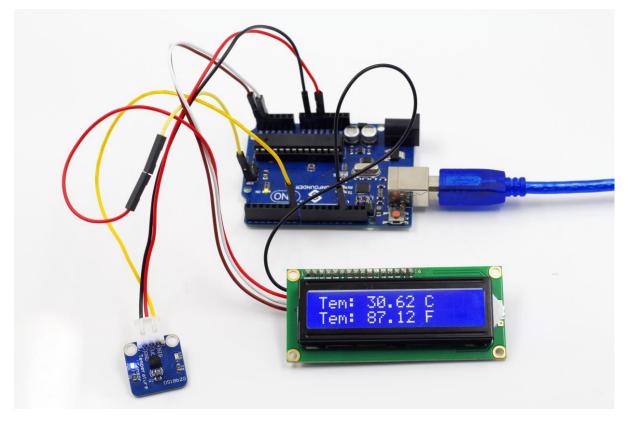
- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * DS18B20 Temperature Sensor module
- 1 * I2C LCD1602


- 1 * 3-Pin anti-reverse cable
- 1 * 4-Pin anti-reverse cable
- 1 * Dupont wire (F to F)

Principle

With a unique single-wire interface, DS18B20 requires only one pin for a two-way communication with a microprocessor. It supports multi-point networking to measure multi-point temperatures. Eight DS18B20s can be connected at most, because too many of them will consume too much of the power supply and cause low voltage thus instability of signal transmission. The schematic diagram is as follows:

Experimental Procedures


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code

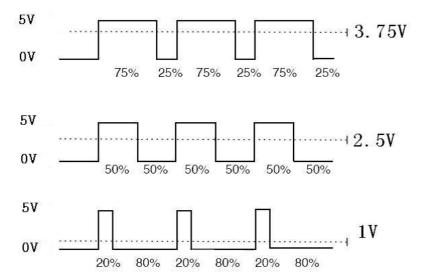
Now, you can see the value of current temperature displayed on the LCD.

1.3.24 Lesson 24 Rainbow LED

Introduction

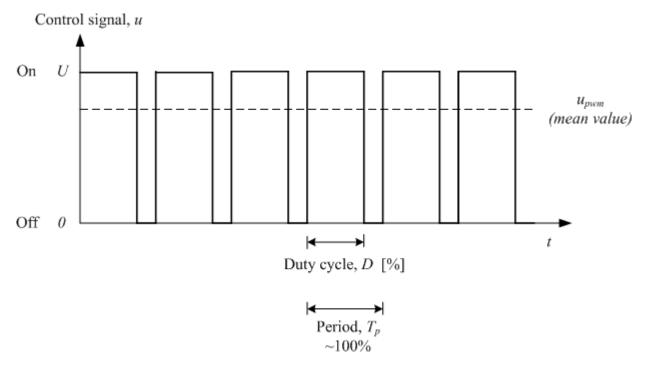
RGB LED modules can emit various colors of light. Three LEDs of red, green, and blue are packaged into a transparent or semitransparent plastic shell with four pins led out. The three primary colors, red, green, and blue, can be mixed

and compose all kinds of colors by brightness, so you can make an RGB LED emit colorful light by controlling the circuit.


Components

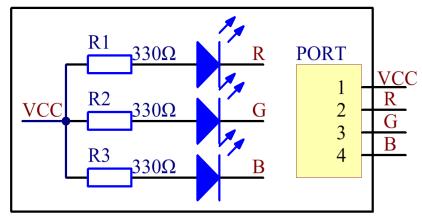
- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * RGB LED module
- 1 * 4-Pin anti-reverse cable

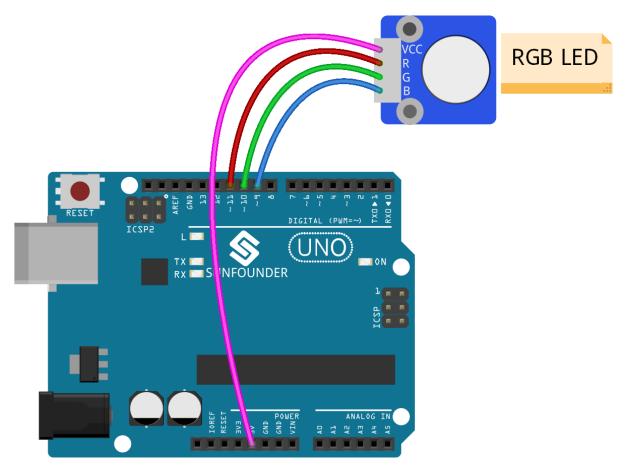
Principle


In this experiment, we will use PWM technology to the brightness of RGB.

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital means. Digital control is used to create a square wave, a signal switched between on and off. This on-off pattern can simulate voltages in between full on (5V) and off (0V) by changing the portion of the time the signal spends on versus the time that the signal spends off. The duration of "on time" is called the pulse width. To get varying analog values, you change, or modulate, that pulse width. If you repeat this on-off pattern fast enough with an LED for example, the result is as if the signal is a steady voltage between 0 and 5v controlling the brightness of the LED. (See the PWM description on the official website of Arduino).

We can see from the oscillogram above that the amplitude of DC voltage output is 5V. However, the actual voltage output is only 3.75V through PWM, for the high level only takes up 75% of the total voltage within a period.


Here are the three basic parameters of PWM:

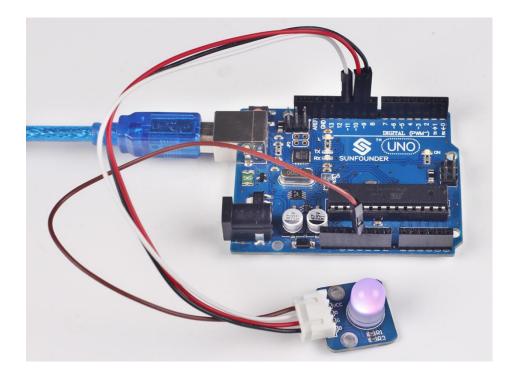

- 1. The term duty cycle describes the proportion of "on" time to the regular interval or "period" of time
- 2. Period describes the reciprocal of pulses in one second.
- 3. The voltage amplitude is 0-5V.

Here we input any value between 0 and 255 to the three pins of the RGB LED to make it display different colors.

RGB LEDs can be categorized into common anode LED and common cathode LED. In this experiment, we use a common anode RGB LED.

Experimental Procedures

fritzing


Step 2: Open the code file

Step 3: Select correct Board and Port

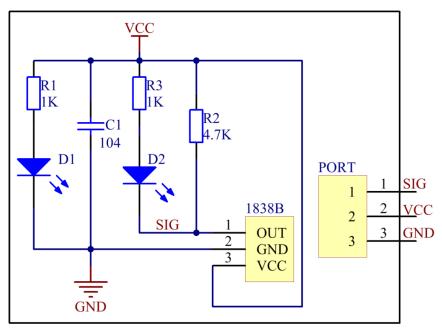
Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, you can see RGB LED flash red, green and blue first, and then change to red, orange, yellow, green, blue, indigo and purple.

1.3.25 Lesson 25 Infrared Receiver

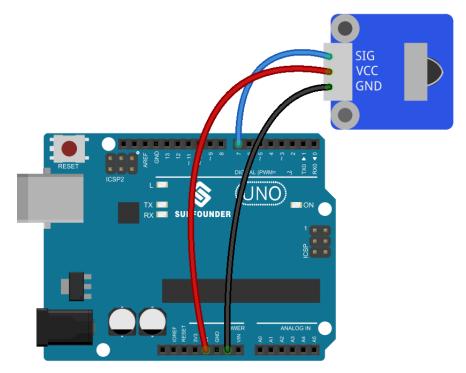
Introduction


An infrared-receiver is a component which receives infrared signals and can independently receive infrared ray and output signals compatible with TTL level. It's similar with a normal plastic-packaged transistor in size and is suitable for all kinds of infrared remote control and infrared transmission.

Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Infrared-receiver module
- 1 * Remote controller
- 1 * 3-Pin anti-reverse cable

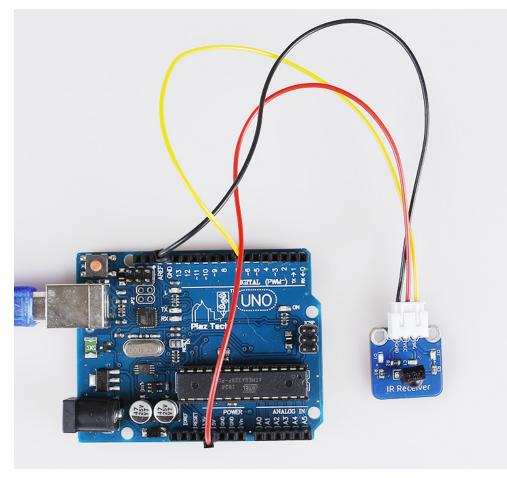
Principle


Control a certain key (for example, Power key) via a remote controller by programming. When you press the key, infrared rays will be emitted from the remote controller and received by the infrared receiver, and the LED on the

SunFounder Uno board will light up. Add an LED to connect with pin 13 of the Uno board, so you can see remotely whether the Power or another key is pressed down.

Experimental Procedures

Step 1: Build the circuit


Step 2: Open the code file

Step 3: Select correct Board and Port

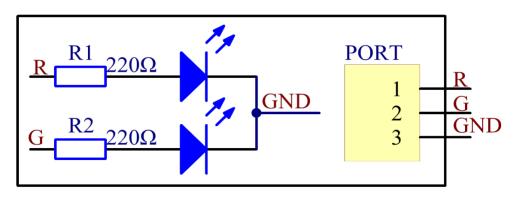
Step 4: Upload the sketch to the SunFounder Uno board

Code

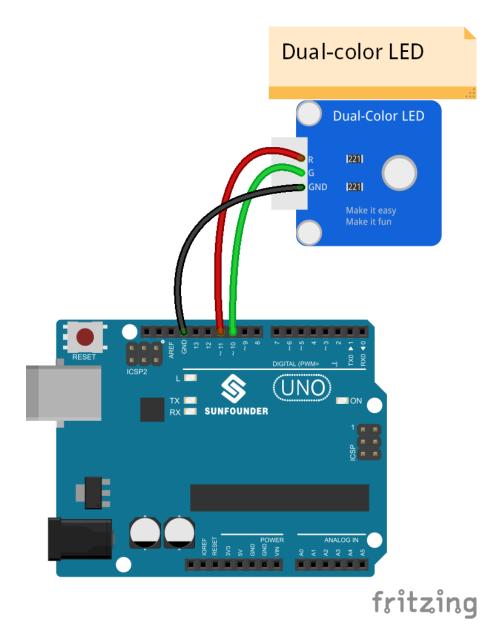
Now, press the Power key of a remote controller, and the LED attached to pin 13 on the SunFounder Uno board will light up. Then press any other key, and the LED will go out.

1.3.26 Lesson 26 Dual-color LED

A dual-color light emitting diode (LED) is capable of emitting two different colors of light, typically red and green, rather than only one color. It is housed in a 3mm or 5mm epoxy package. It has 3 leads; common cathode or common


anode is available. A dual-color LED features two LED terminals, or pins, arranged in the circuit in anti-parallel and connected by a cathode/anode. Positive voltage can be directed towards one of the LED terminals, causing that terminal to emit light of the corresponding color; when the direction of the voltage is reversed, the light of the other color is emitted. In a dual-color LED, only one of the pins can receive voltage at a time. As a result, this type of LED frequently functions as indicator lights for a variety of devices, including televisions, digital cameras, and remote controls.

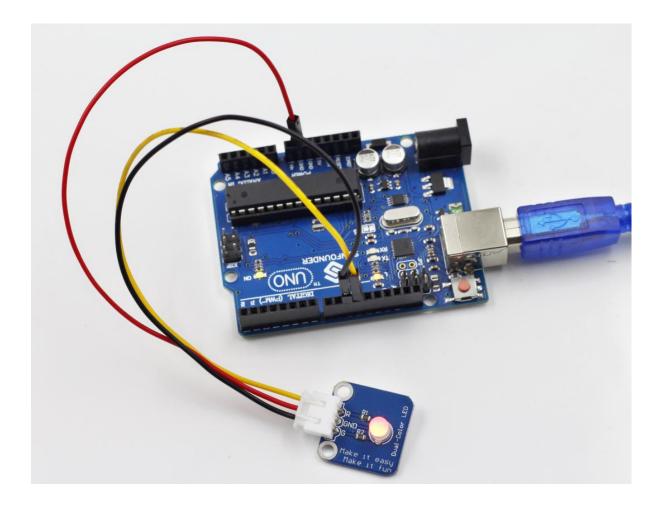
Components


- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Dual-color LED module
- 1 * 3-Pin anti-reverse cable

Principle

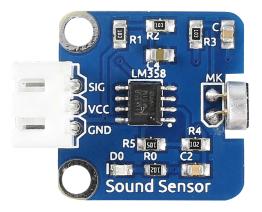
Control the LED brightness by the digital port. The color of the LED changes from red to green as well as flashes a mixed color.

Experimental Procedures


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

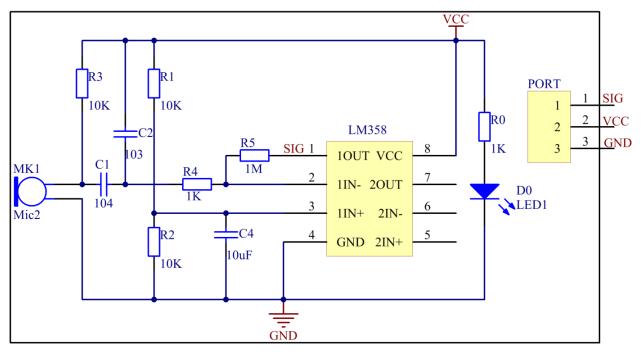

Code

Now, you can see the dual-color LED changes from red to green alternately, as well as flashing a mixed color during the alternation.

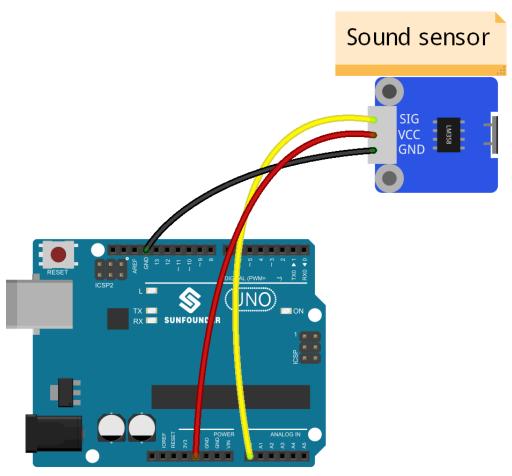
1.3.27 Lesson 27 Sound Sensor

Introduction

Sound Sensor is a component that receives sound waves and converts them into electrical signals. It detects the sound intensity in ambient environment like a microphone.


Components

• 1 * SunFounder Uno board


- 1 * USB data cable
- 1 * Sound Sensor module
- 1 * 3-Pin anti-reverse cable

Principle

The sensor has a capacitive electret microphone which is sensitive to sound. Sound waves cause the thin film of the electret to vibrate and then the capacitance changes, thus producing the corresponding changed voltage. Since the voltage change is extremely weak, it needs to be amplified. LM358 here is a power amplifier of 100 times gain. Connect the SIG output pin of the sound sensor to A0 of the SunFounder Uno board. Then you can see the value of sound intensity on Serial Monitor, or display the wave forms on an oscilloscope if you have connected one. The schematic diagram:

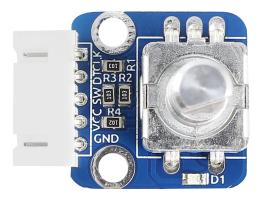
Experimental Procedures

fritzing

Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board


Code

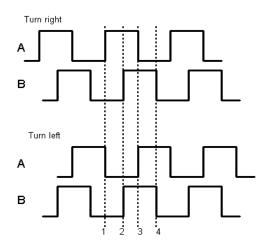
Now you can see the value of sound intensity on Serial Monitor. When the volume reaches to a certain value, the LED attached to pin 13 on the SunFounder Uno will light up.

1.3.28 Lesson 28 Rotary Encoder

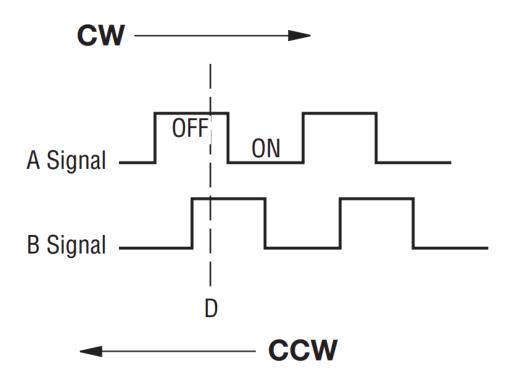
Introduction

A rotary encoder is an electro-mechanical device that converts the angular position or motion of a shaft or axle to an analog or digital code. Rotary encoders are usually placed at the side which is perpendicular to the shaft. Rotary encoders act as sensors for detecting angle, speed, length, position and acceleration in automation field.

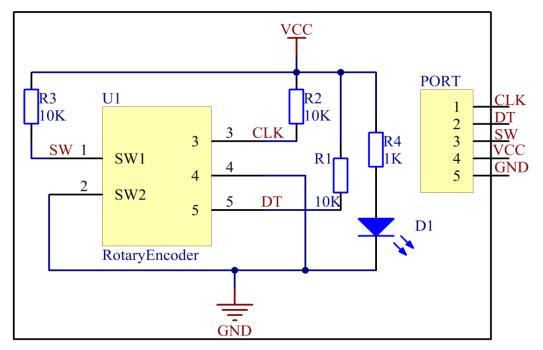
Components


- 1 * SunFounder Uno board
- 1 * USB data cable

- 1 * Rotary Encoder module
- 1 * 5-Pin anti-reverse cable

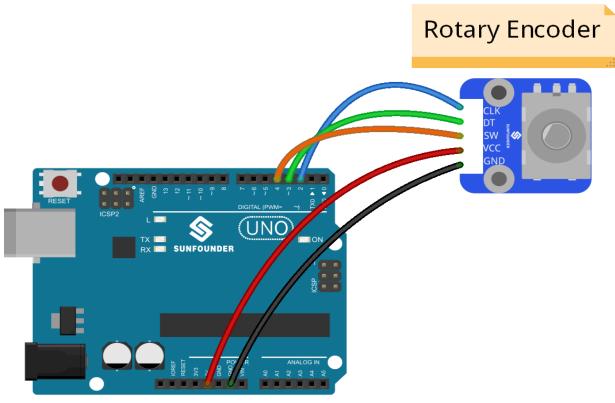

Principle

There are mainly two types of rotary encoder: absolute and incremental (relative) ones. The output of absolute encoders indicates the current position of the shaft, making them angle transducers. The output of incremental encoders provides information about the motion of the shaft, which is typically further processed elsewhere into information such as speed, distance, and position.


In this experiment, we will use the latter. An incremental encoder is a rotary sensor to turn rotational displacement into a series of digital pulse signals which are then used to control the angular displacement. It generates two-phase square waves whose phase difference is 90° . Usually the two-phase square waves are called channel A and channel B as shown below.

It is difficult to distinguish between the left turn and right turn during SCM programming. However, when using an oscilloscope to observe the left turn and right turn of a switch, you will find a phase difference between the signals of the two output pins as shown below.

It shows that if output 1 is high and output 2 is high, then the switch rotates clockwise; if output 1 is high and output 2 is low, then the switch rotates counterclockwise. As a result, during SCM programming, if output 1 is high, then you can tell whether the rotary encoder rotates left or right as long as you know the state of output 2.



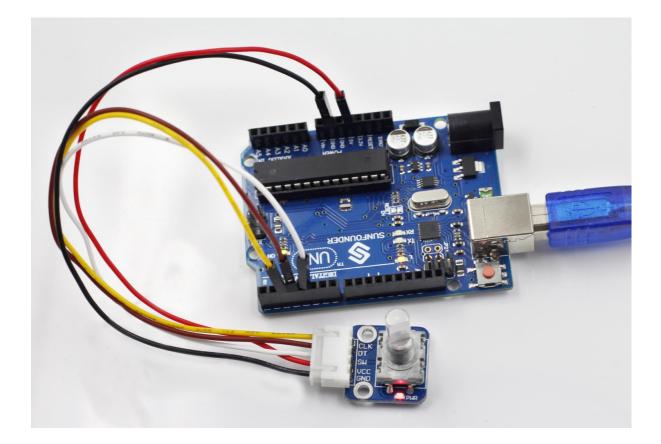
Experimental Procedures

Step 1: Build the circuit

Rotary Encoder	SunFounder Uno
CLK	2
DT	3
SW	4
VCC	5V
GND	GND

The wiring between the rotary encoder and SunFounder Uno board:

fritzing


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

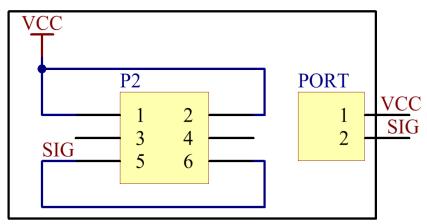
Code

Now, you can see the angular displacement of the rotary encoder printed on Serial Monitor. When the rotary encoder rotates clockwise, the angular displacement increases; when it does counterclockwise, the value decreases. Press the switch on the rotary encoder, the value will return to zero.

1.3.29 Lesson 29 Laser Transmitter

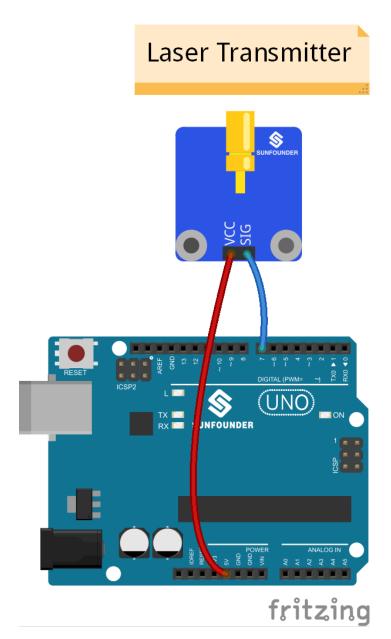
Introduction

Laser is widely used in medical treatment, military, and other fields due to its good directivity and energy concentration. The Laser Transmitter module, as the name suggests, is a one that can emit laser.


Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Laser transmitter module
- 1 * 2-Pin anti-reverse cable

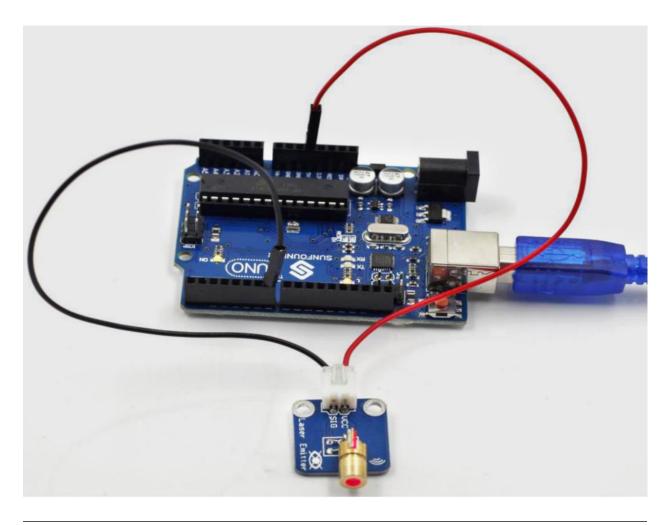
Principle


A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. Lasers differ from other sources of light because they emit light coherently.

Spatial coherence allows a laser to be focused to a tight spot, enabling applications like laser cutting and lithography, and a laser beam to stay narrow over long distances (collimation), enabling applications such as laser pointer. Lasers can also have high temporal coherence which allows them to have a very narrow spectrum, i.e., they only emit light of a single color. And its temporal coherence can be used to produce pulses of light—as short as a femtosecond.

Experimental Procedures

Step 1: Build the circuit


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, you can see the Laser Transmitter module send out Morse signals.

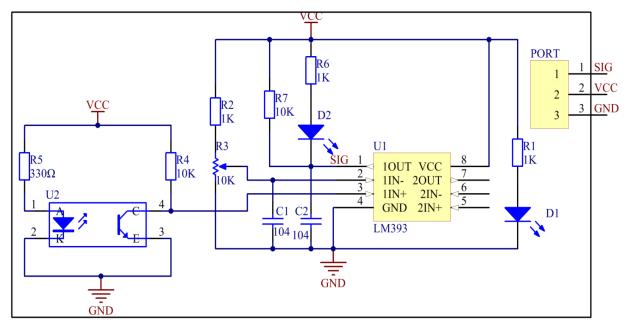
Note: DO NOT look directly at the laser head. It can cause great harm to your eyes.

1.3.30 Lesson 30 IR Tracking Sensor

Introduction

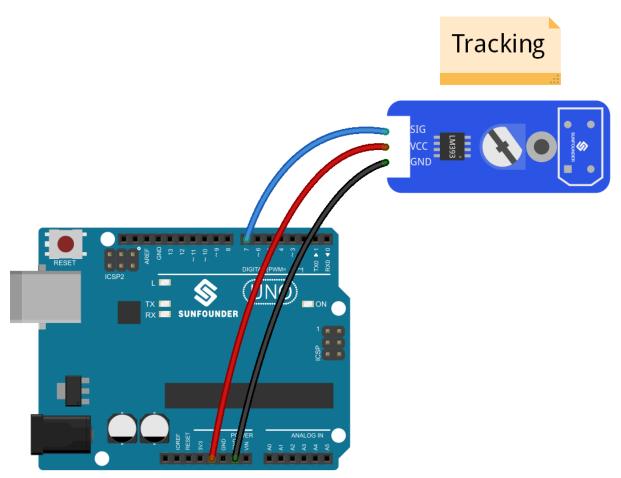
The infrared tracking sensor uses a TRT5000 sensor. The blue LED of TRT5000 is the emission tube and after electrified it emits infrared light invisible to human eye. The black part of the sensor is for receiving; the resistance of the resistor inside changes with the infrared light received.

Components


• 1 * SunFounder Uno board

- 1 * USB data cable
- 1 * Tracking sensor module
- 1 * 3-Pin anti-reverse cable

Principle


The IR emission tube of TCRT5000 sensor constantly emits infrared light. Since the black absorbs light, when the IR emission tube shines on a black surface, the reflected light is less and so less IR rays are received by the receiving tube. It indicates the resistance is large; then the comparator outputs high and the indicator LED goes out. Similarly, when it shines on a white surface, the reflected light becomes more. So the resistance of the receiving tube is lower; thus, the comparator outputs low and the indicator LED lights up.

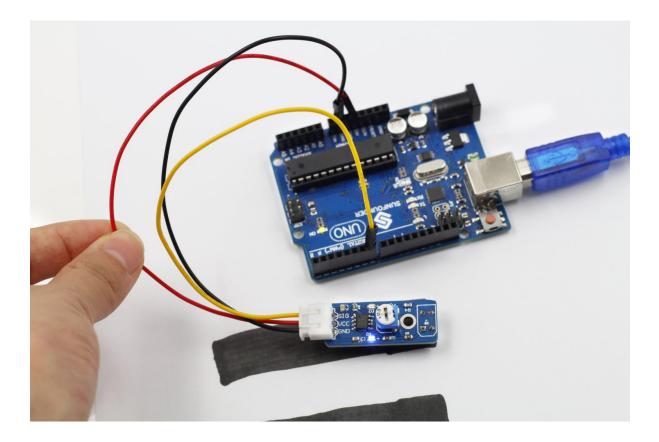
In this experiment, use a tracking sensor module and the LED attached to pin 13 on the SunFounder Uno board to build a simple circuit. Since the LED has been attached to pin 13, connect the pin SIG to digital pin 7 of the Uno board. When the module gets on a black line, it output high and the corresponding LED stays off; when it meets a white line, it outputs low and the LED lights up. See the schematic diagram below.

Experimental Procedures

Step 1: Build the circuit

fritzing

Step 2: Open the code file


Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, draw two black bold lines on the paper. If the rays emitted by the sensor encounter the black lines, the LED attached to pin 13 on the SunFounder Uno board will light up; otherwise, it is off.

Note: The black line should be wider than the TCRT5000 sensor.

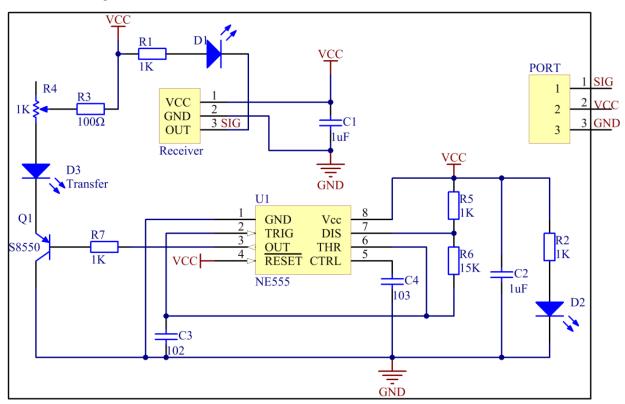
1.3.31 Lesson 31 IR Obstacle Avoidance Sensor

Introduction

An IR Obstacle Sensor works in accordance with the infrared reflection principle to detect obstacles. When there is no object, the infrared receiver receives no signals; when there is an object ahead which blocks and reflects the infrared light, the infrared receiver will receive signals.

Components

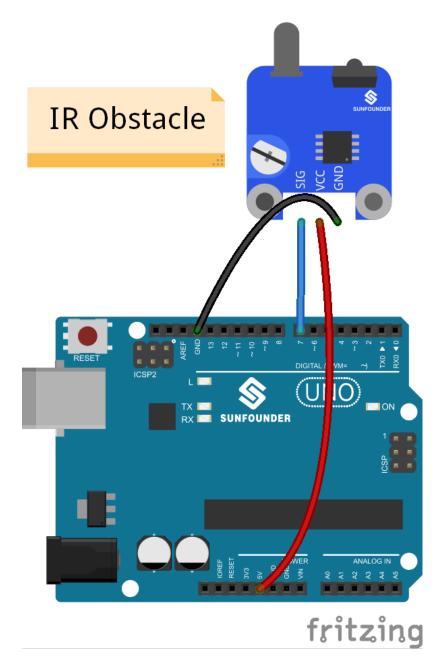
- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Obstacle avoidance sensor module
- 1 * 3-Pin anti-reverse cable


Principle

An obstacle avoidance sensor mainly consists of an infrared transmitter, an infrared receiver and a potentiometer. According to the reflecting character of an object, if there is no obstacle, the emitted infrared ray will weaken with the distance it spreads and finally disappear. If there is an obstacle, when the infrared ray encounters it, the ray will be reflected back to the infrared receiver. Then the infrared receiver detects this signal and confirms an obstacle in front.

In this experiment, we will use an Obstacle Avoidance Sensor module and the LED attached to pin 13 of the Sun-Founder Uno board to build a simple circuit.

Since the LED has been attached to pin 13, connect the pin SIG to digital pin 7 of the Uno board. When the Obstacle Avoidance Sensor detects an obstacle, the LED will be on. Otherwise it will be off.

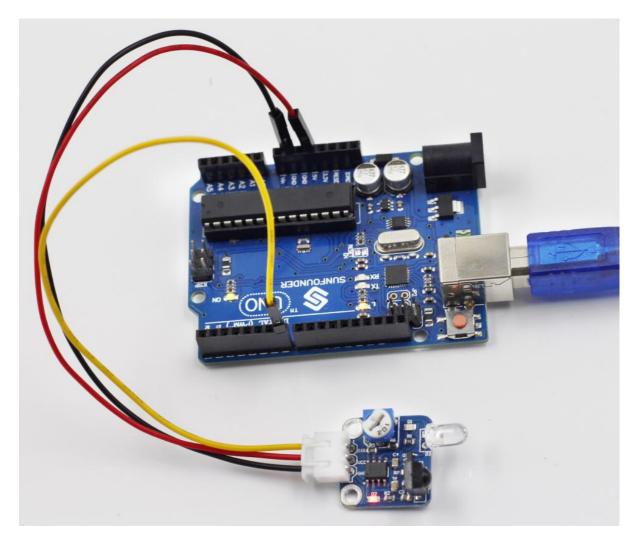

Note: The detection distance of the infrared sensor is adjustable - you may adjust it by the potentiometer.

The schematic diagram is as follows:

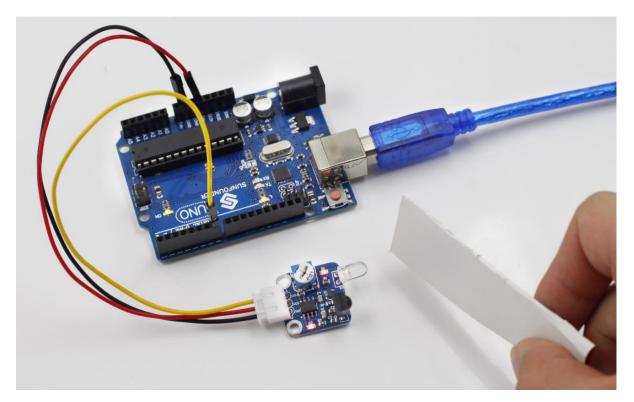
Experimental Procedures

Step 1: Build the circuit

Step 2: Open the code file


Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board


Code

Now, place a piece of paper in front of the Obstacle Avoidance Sensor, and the LED attached to pin 13 on the Sun-Founder Uno board will light up.

Note: The obstacle should better be white.

Before

With obstacle

1.3.32 Lesson 32 Color Detection

Introduction

The Color Sensor is a complete color detector. It consists of a TAOS TCS3200 RGB sensor chip and 4 white LEDs. It can detect and measure a nearly limitless range of visible colors to a certain degree.

Components

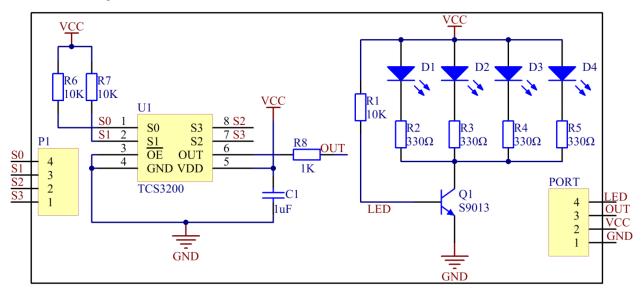
- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Color sensor

- 1 * 4-Pin anti-reverse cable
- 1 * 3-Pin anti-reverse cable

Principle

The color of an object we can see in fact is the chromatic light the object reflects in the white light (sunlight) after it absorbs the rest ones. The white color is a mixture of various visible colors, which means it includes each colored light like red (\mathbf{R}), yellow (\mathbf{Y}), green (\mathbf{G}), blue (\mathbf{B}), and purple (\mathbf{P}). Based on the theory of three primary colors, any color is made by mixing the three primary colors (red, green, and blue) in a certain proportion.

Thus, knowing the proportion you can get the color of the tested object. For TCS3200, when a color filter is selected, it only allows a specific primary color to pass through and blocks the other two colors. With the light intensity value of the three primary colors, by analysis we can know the color of light reflected to TCS3200D.

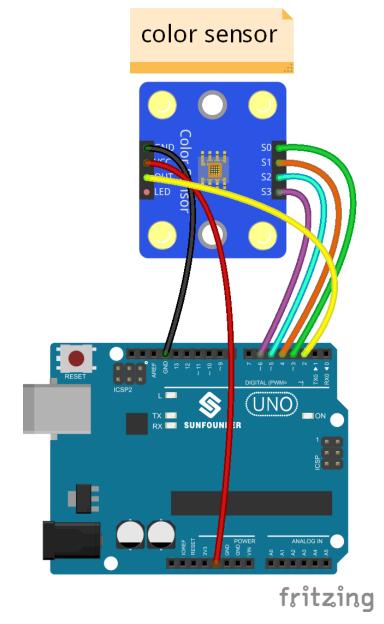

The TCS3200D sensor has 4 types of filter: red filter, green filter, blue filter, and clear with no filter. The filter is selected based on the high/low of pin S2 and S3 on the module (see the table below):

S2	S 3	Photo Diode Type
L	L	Red
L	Н	Blue
Η	L	Clear (no filter)
Η	Н	Green

The module contains a programmable converter which transforms colorlight to frequency. When the part of RGB colors in the light reflected by the object passes through the filter selected to the TAOS TCS3200RGB chip, the builtin oscillator outputs square waves. The frequency of the waves is directly proportional to the light intensity – the more intense the light is, the higher is the frequency. Also, the frequency of the OUT pin on the sensor module is proportional to that of the oscillator; the proportion depends on the high/low of pin S0 and S1, as shown in the table.

S 0	S 1	OUTPUT Frequency Scaling (f0)
L	L	Power Down
L	Н	2%
Η	L	20%
Η	H	100%

The schematic diagram of the module:

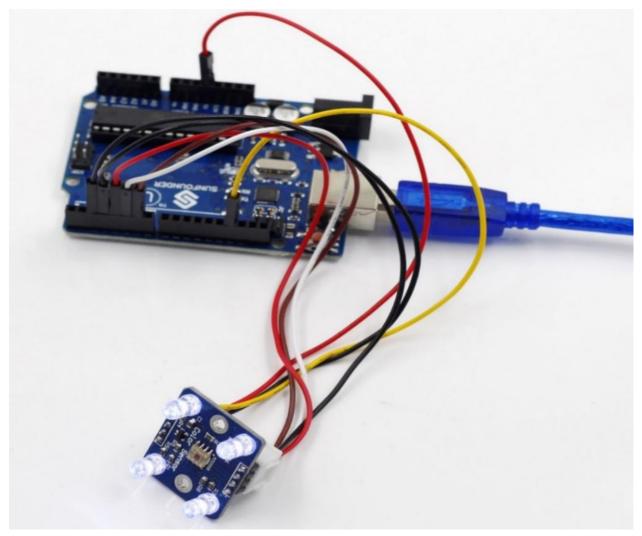


Experimental Procedures

Step 1: Build the circuit

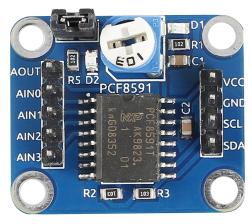
The wiring between the color sensor and SunFounder Uno board:

Color Sensor	SunFounder Uno
GND	GND
VCC	5V
OUT	2
SO	3
S1	4
S2	5
S3	6


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

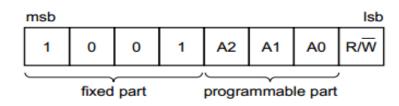

Code

Now you may check the RGB value of the color on Serial Monitor.

1.3.33 Lesson 33 Analog-Digital Converter

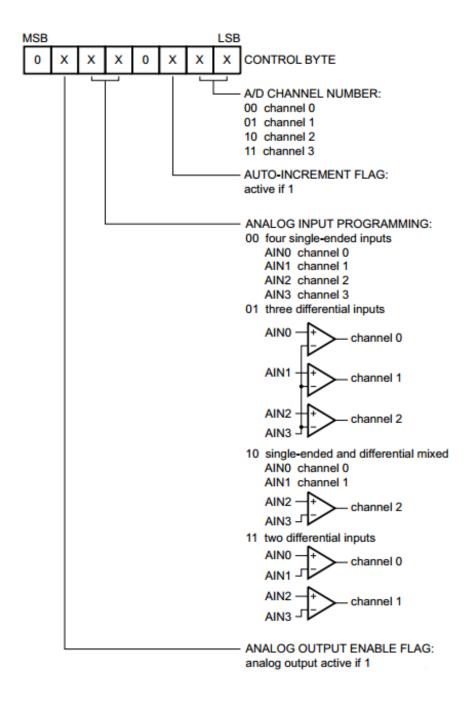
Introduction

The PCF8591 is a single-chip, single-supply and low-power 8-bit CMOS data acquisition device with four analog inputs, one analog output and a serial I2C-bus interface. Three address pins A0, A1 and A2 are used for programming the hardware address, allowing the use of up to eight devices connected to the I2C-bus without additional hardware. Address, control and data to and from the device are transferred serially via the two-line bidirectional I2C-bus.

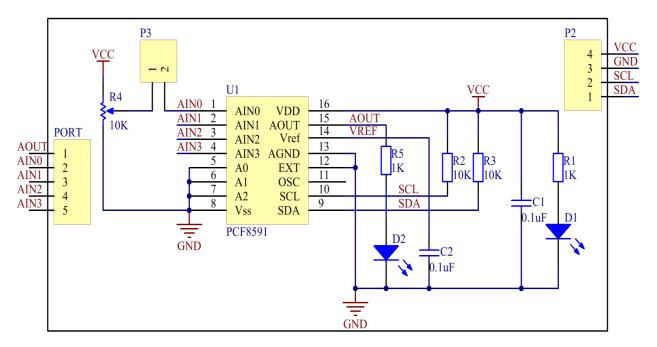

Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * AD/DA Converter PCF8591
- 5 * DuPont wires (M to F)

Principle


Addressing

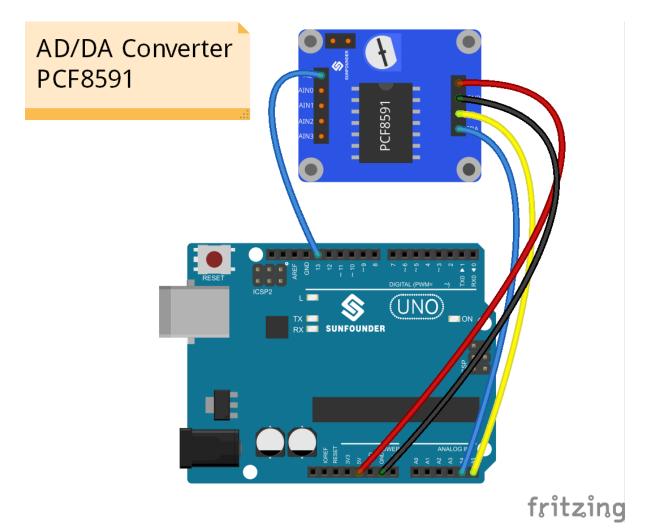
Each PCF8591 device in an I2C-bus system is activated by sending a valid address to the device. The address consists of a fixed part and a programmable part. The programmable part must be set according to the address pins A0, A1 and A2. The address always has to be sent as the first byte after the start condition in the I2C-bus protocol. The last bit of the address byte is the read/write-bit which sets the direction of the following data transfer (see the figure below).



Control byte

The second byte sent to a PCF8591 device will be stored in its control register and is required to control the device function. The upper nibble of the control register is used for enabling the analog output, and for programming the analog inputs as single-ended or differential inputs. The lower nibble selects one of the analog input channels defined by the upper nibble (see Fig.5). If the auto-increment flag is set, the channel number is incremented automatically after each A/D conversion. See the figure below.

In this experiment, set the second byte sent to a PCF8591 device as high, so as to enable the analog output – make AOUT output an analog quantity which changes gradually. The indicator light D2 on the AD/DA converter PCF8591 gradually lights up and goes out alternately. The same happens to the LED attached to pin 13 of the SunFounder Uno board if it is hooked up with AOUT.

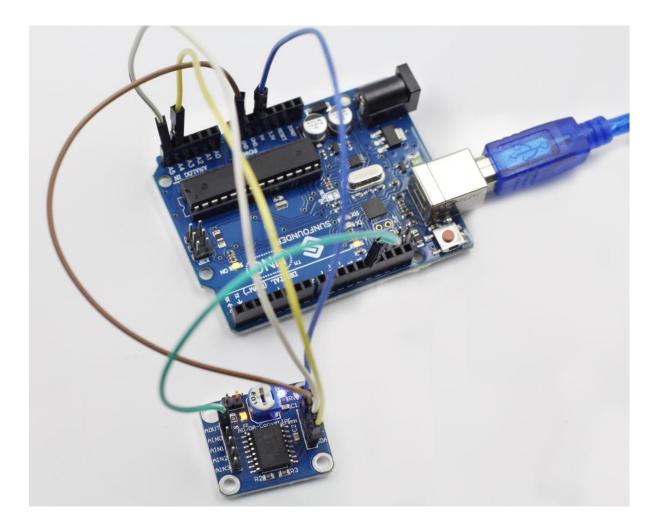


Experimental Procedures

Step 1: Build the circuit

The wiring between PCF8591 and SunFounder Uno board:

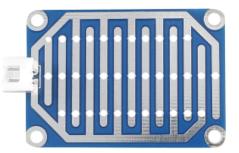
PCF8591	SunFounder Uno
VCC	5V
GND	GND
SDA	A4
SCL	A5
AOUT	13


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code


We can see the indicator light D2 on the AD/DA converter PCF8591 gradually lights up and goes out alternately. The same happens to the LED attached to pin 13 of the SunFounder Uno board

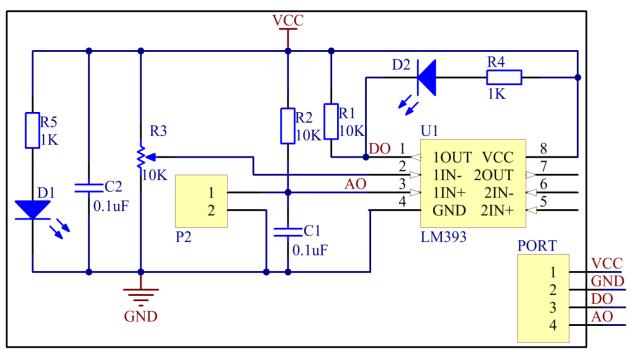
1.3.34 Lesson 34 Raindrop Detection

Introduction

A raindrop sensor, or raindrop detection sensor, is used to detect whether it is raining and also the rainfall. It is widely used in the automatic wiper system, smart lighting system and sunroof system of automobiles.

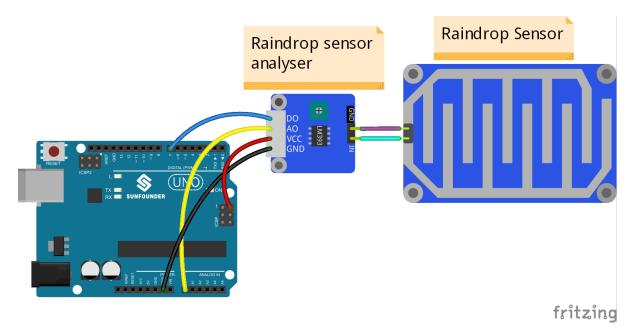
Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Raindrop Sensor


- 1 * Raindrop Sensor Analyser
- 1 * 4-Pin anti-reverse cable
- 1 * 2-Pin ribbon cable

Principle

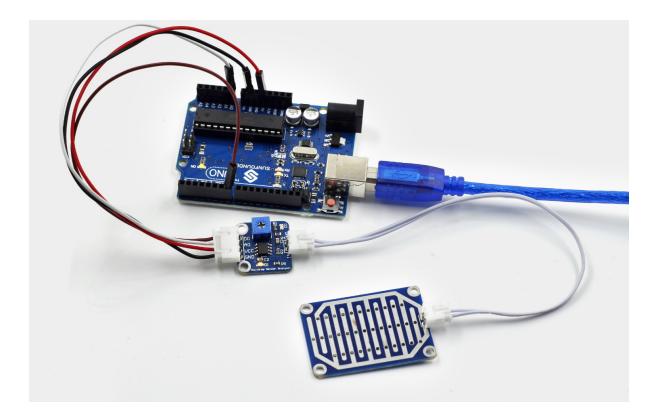
In a raindrop/water wiper system, detect the rainfall with the raindrop sensor and convert the signals detected by a controller. Then the interval of the wiper scraping will be set automatically based on the signals, so as to control the motor of the wiper conveniently. In a smart lighting system, detect the driving environment and adjust the lighting mode automatically, to improve the driving safety in a severe environment. In a smart sunroof system, detect whether it is raining – to close the sunroof automatically if raindrops are detected.


In this experiment, we use the module and the LED attached to pin 13 of the SunFounder Uno board to build a circuit. Hook up A0 of the raindrop sensor module with A0 of the Uno board, D0 to pin 7. Drop some water onto the sensor. The more drops, the lower value at A0. When the quantity of the raindrops exceeds the threshold set, D0 will change from high to low and the corresponding LED will light up.

The schematic diagram is shown as below:

Experimental Procedures

Step 1: Build the circuit


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code

Now drop some water onto the sensor, When the quantities of the raindrops exceeds the threshold, the LED on the raindrop sensor module and that hooked up with pin 13 of the SunFounder Uno board light up; otherwise, they stay turned off. You may adjust the sensitivity of the sensor by the potentiometer on it, which means to set the threshold for it.

1.3.35 Lesson 35 Distance Detection by Ultrasonic

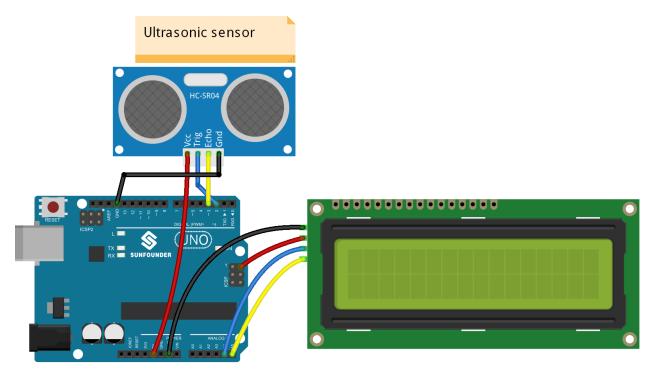
Introduction

The ultrasonic sensor uses sound to accurately detect objects and measure distances. It sends out ultrasonic waves and converts them into electronic signals.

Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Ultrasonic sensor
- 1 * I2C LCD1602
- 2 * 4-Pin anti-reverse cable
- 1 * Dupont wire (F to F)

Principle

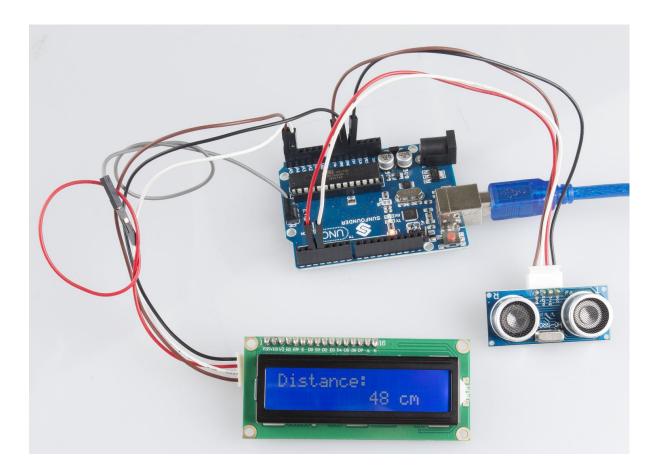

The sensor works by sending a sound wave out and calculating the time it takes for the sound wave to get back to the ultrasonic sensor. By doing this, it can tell us how far away objects are relative to the ultrasonic sensor.

Experimental Procedures

Step 1: Build the circuit

The wiring between the ultrasonic sensor and SunFounder Uno board:

Ultrasonic Sensor	SunFounder Uno
VCC	5V
Trig	2
Echo	3
GND	GND


Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, move a piece of paper close to the sensor or remove it farther. You can see the value displayed on the LCD changes accordingly; it indicates the distance between the paper and the ultrasonic sensor.

1.3.36 Lesson 36 Thermostatic Water Tank

Introduction

After having learnt so many modules independently, let's combine these modules together to make some funny interactive works. In this lesson, we will use a Rotary Encoder module, a Thermistor module, a Relay module, a Button module and an I2C LCD1602, all of which we have learnt previously, to assemble a Thermostatic Water Tank. The tank can be used in the test department of medical organizations and colleges, scientific research, chemical industry, printing and dyeing industry to distil, dry, inspissate and heat chemical medicines and cultivate biological products in constant temperature, as well as to boil and disinfect equipment.

Components

- 1 * SunFounder Uno board
- 1 * USB data cable
- 1 * Rotary Encoder module
- 1 * Thermistor module
- 1 * I2C LCD1602
- 1 * Relay module
- 1 * Button module
- 3 * 3-Pin anti-reverse cable
- 1 * 5-Pin anti-reverse cable

- 1 * 4-Pin anti-reverse cable
- 2 * Dupont wire (M to M)
- 1 * Breadboard

Principle

How a thermostatic water tank works

Set a temperature value for the tank. When the temperature is lower than that set, the tank gets heated and is power off till the temperature reaches the set value. Thus, the tank can keep a constant temperature all the time.

Based on the principle, in this experiment, use an LCD screen and a thermistor module to both display value of the current temperature and the value set. Also use a rotary encoder to allow the set temperature value adjustable.

When the temperature is lower than that set, the normally open contact of the relay is closed and the characters on the LCD blur. Touch the thermistor with fingers and the temperature gets higher. When it reaches or is higher than the value set, the contact is open and the characters will become clear again.

For more about each component in the experiment, please see the previous experiments.

Experimental Procedures

Step 1: Build the circuit

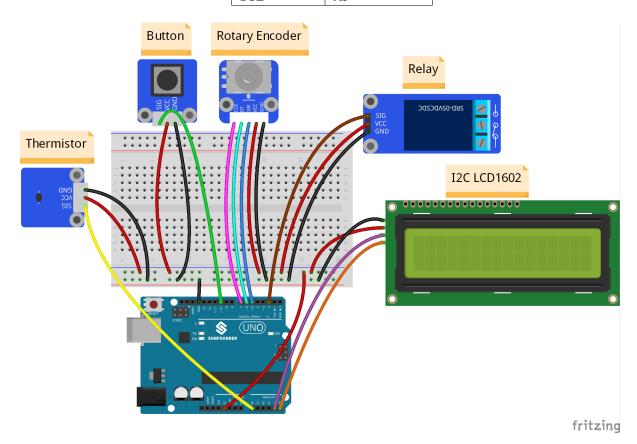
The wiring between the Button module and SunFounder Uno board:

Button	SunFounder Uno
SIG	10
VCC	5V
GND	GND

The wiring between the Thermistor module and SunFounder Uno is as shown below:

Thermistor	SunFounder Uno
SIG	A0
VCC	5V
GND	GND

The wiring between the Rotary Encoder module and SunFounder Uno:


Rotary Encoder	SunFounder Uno
CLK	7
DT	6
SW	5
VCC	5V
GND	GND

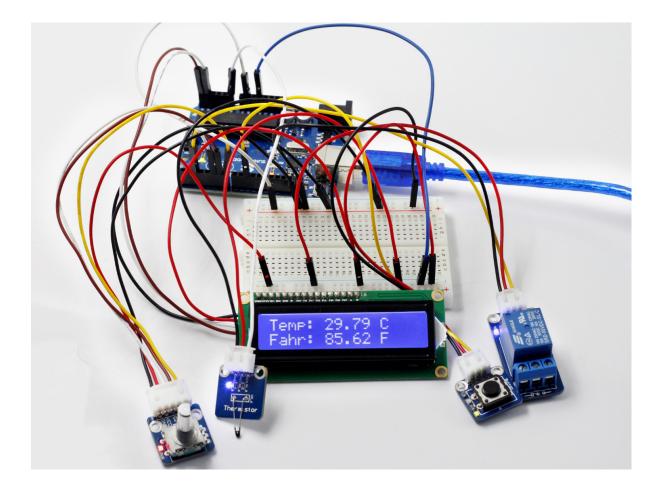
The wiring between the Relay module and SunFounder Uno:

Relay	SunFounder Uno
SIG	2
VCC	5V
GND	GND

The wiring between the I2C LCD1602 module and SunFounder Uno:

I2C LCD1602	SunFounder Uno
VCC	5V
GND	GND
SDA	A4
SCL	A5

Step 2: Open the code file


Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

Code

Now, after the startup, the LCD1602 first displays **Thermostatic Water Tank** and then the value of the current temperature. Press the button on the Button module to enter setup mode. Then rotate the Rotary Encoder to change the threshold of the temperature value. After setting a value, like 30°C, you can press the switch on the Rotary Encoder module to confirm.

If the current temperature is lower than 30° C (the threshold you just set), the normally open contact of the relay is closed. Thus, the characters on the LCD become blurred and the LED on the SunFounder Uno goes out. Touch the thermistor. Then the value displayed on the LCD will increase and at last the LED on the Uno board will light up. Release your fingers and the value of temperature displayed on the LCD will decrease. When the value reaches the threshold, the contact is open, characters on the LCD blurred, and LED out.

1.4 Thank You

Thanks to the evaluators who evaluated our products, the veterans who provided suggestions for the tutorial, and the users who have been following and supporting us. Your valuable suggestions to us are our motivation to provide better products!

Particular Thanks

- Len Davisson
- Kalen Daniel
- Juan Delacosta

Now, could you spare a little time to fill out this questionnaire?

Note: After submitting the questionnaire, please go back to the top to view the results.

CHAPTER

TWO

COPYRIGHT NOTICE

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study, investigation, enjoyment, or other non-commercial or nonprofit purposes, under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.