

SunFounder RGB Matrix Module for Raspberry Pi

Welcome to use SunFounder RGB Matrix module. You can find the information you need for use here.

This is a module with 8 × 8 RGB LEDs on board. It also has a SH1.0-4P I2C control interface, which is convenient to connect to other I2C devices or other single-chip microcomputers.

Here is the Email: cs@sunfounder.com.

	Features

	Assemble RGB Matrix HAT

	Preparation
	What Do We Need?
	Required Components

	Optional Components

	Installing the OS

	Set up Your Raspberry Pi
	If You Have a Screen

	If You Have No Screen

	Projects
	Hello Matrix

	Dazzling Light

	Moving Eye

	Christmas Tree

	Greedy Snake

	Camera Recognition

	Custom Shape

	Custom Dynamic Shape

	Appendix
	I2C Configuration

	Remote Desktop
	VNC

	XRDP

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes, under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.

Features

[image: _images/feature.png]

	Working voltage: DC 3.3V

	Lamp bead: FM-N3535RGBW-SH

	Driver: SLED 1734X LED driver

	Communication method: I2C

	Color depth: 24 bit (R/G/B each 8 bit color, 256 x 256 x 256=16777216 colors can be combined)

	Resolution: 8*8=64 DOTS

	Pixel pitch: 4.7mm

	matrix size: 36.5mm*36.5mm

Documentation

	PCB [https://github.com/sunfounder/sf-pdf/blob/master/datasheet/RGB_Martix_for_RPi/RPI-8x8%20RGB%20Matrix%20Pcb.pdf]

	Schematic [https://github.com/sunfounder/sf-pdf/blob/master/datasheet/RGB_Martix_for_RPi/RPI-8x8%20RGB%20Matrix%20Sch.pdf]

	Datasheet [https://github.com/sunfounder/sf-pdf/blob/master/datasheet/RGB_Martix_for_RPi/IC_datasheet/SLED1734_V1.6_EN.pdf]

Assemble RGB Matrix HAT

[image: _images/assemble_raspberrypi.png]

Projects

In this chapter, you will learn how to use RGB Matrix HAT and do some interesting projects.

Download the Code

Use the following command to download the code from the github repository.

git clone https://github.com/sunfounder/rgb_matrix

Note

Since RGB Matrix HAT uses I2C for communication, you need to do I2C Configuration before running the following projects.

Projects

	Hello Matrix

	Dazzling Light

	Moving Eye

	Christmas Tree

	Greedy Snake

	Camera Recognition

	Custom Shape

	Custom Dynamic Shape

Hello Matrix

In this project, you will learn how to make RGB Matix HAT display different patterns and characters in different colors.

[image: _images/hello_matrix.png]
Run the code

When the program runs, you will see a point, a line, a rectangle, an ellipse, and the text ‘Hi, SunFounder’ appears on the RGB Matrix HAT in turn.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 hello_matrix.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time

rr = RGB_Matrix(0x74) # create an RGB_Matrix object

point_coor = [3,1]
rr.draw_point(point_coor,fill=(255,255,0)) #draw a point
rr.display()
time.sleep(3)

line_coor = [0,2,7,2]
rr.draw_line(line_coor,fill=(255,0,0)) # draw a line
rr.display()
time.sleep(3)

rectangle_coor = [0,4,2,6]
rr.draw_rectangle(rectangle_coor,fill=(255,0,0)) #draw a rectangle
rr.display()
time.sleep(3)

ellipse_coor = [5,5]
radius = 2
rr.draw_ellipse(ellipse_coor,radius,fill=(0,255,0)) #draw a ellipse
rr.display() #display the picture which you draw
time.sleep(3)

text = 'Hi, SunFounder'
rr.show_text(text, delay=200,color=(0,0,255)) # show text
rr.display()
time.sleep(4)

How it works?

from rgb_matrix import RGB_Matrix

rr = RGB_Matrix(0x74)

Import the RGB_Matrix class, and then create its object rr for us to call its class member functions.

point_coor = [3,1]
rr.draw_point(point_coor,fill=(255,255,0)) #draw a point
rr.display()
time.sleep(3)

The above code is to display a yellow dot on the (3,1) coordinate of the RGB dot matrix.

draw_point() is a function that draws a point with 2 parameters: the first parameter is the coordinate on the RGB Matrix HAT, and the second parameter sets the color for the point.

The x,y coordinate directions of the dot matrix are as follows, with the first RGB LED in the upper left corner as the coordinate origin.

[image: _images/hello2.png]
The fill tuple contains three elements R, G and B (red, green and blue) in the range 0-255. For example, when fill=(255,0,0), red is displayed. Refer to: https://www.rapidtables.com/web/color/RGB_Color.html for more color value combinations.

Once the coordinate and color are determined, the display() function is called to implement on the RGB dot matrix HAT.

line_coor = [0,2,7,2]
rr.draw_line(line_coor,fill=(255,0,0)) # draw a line
rr.display()
time.sleep(3)

The above code draws a red line starting at coordinate (0,2) and ending at (7,2).

draw_line() is a line drawing function, line_coor=[0,2,7,2] stores the coordinates of the start and end of the line (2 points determine a line). fill=(255,0,0) represents the line color is red.

rectangle_coor = [0,4,2,6]
rr.draw_rectangle(rectangle_coor,fill=(255,0,0)) #draw a rectangle
rr.display()
time.sleep(3)

The above code draws a red rectangle with coordinates (0, 4) and coordinates (2, 6) as diagonal coordinates.

draw_rectangle() is a function that draws a rectangle. The list rectangle_coor = [0,4,2,6] represents the two diagonal coordinates of the rectangle (0,4) and (2,6). The fill=(255,0,0) indicates that the rectangle color is red.

ellipse_coor = [5,5]
radius = 2
rr.draw_ellipse(ellipse_coor,radius,fill=(0,255,0)) #draw a ellipse
rr.display() #display the picture which you draw
time.sleep(3)

The above code draws a green circle with the coordinates (5,5) as the center and a radius of 2.

draw_ellipse() is a function that draws a circle with three arguments that determine the center, radius and color of the circle.

text = 'Hi, SunFounder'
rr.show_text(text, delay=200,color=(0,0,255)) # show text
rr.display()
time.sleep(4)

The above code is to move and display ‘Hi, SunFounder’ on the RGB Matrix HAT.

show_text() is used to display text information, text represents the string to be displayed, delay represents the moving time, the larger the value, the slower the text moving speed.

Dazzling Light

In the previous project, we learned to use some simple functions to make RGB Matrix HAT work. So here, we will use the draw_line() function with different colors to make RGB Matrix HAT make more cool effects.

[image: _images/dazzling2.png]
Run the code

As the program runs, you will see the colors on the RGB Matrix HAT changing from right to left.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 dazzling_lights.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time

def ColorHSV(hue):

 if hue < 510: # Red to Green-1
 b = 0
 if hue < 255: # Red to Yellow-1
 r = 255
 g = hue # g = 0 to 254
 else: # Yellow to Green-1
 r = 510 - hue # r = 255 to 1
 g = 255

 elif hue < 1020: # Green to Blue-1
 r = 0
 if hue < 765: # Green to Cyan-1
 g = 255
 b = hue - 510 # b = 0 to 254
 else: # Cyan to Blue-1
 g = 1020 - hue # g = 255 to 1
 b = 255

 elif hue < 1530: # Blue to Red-1
 g = 0
 if hue < 1275: # Blue to Magenta-1
 r = hue - 1020 # r = 0 to 254
 b = 255
 else: # Magenta to Red-1
 r = 255
 b = 1530 - hue # b = 255 to 1

 else: # Last 0.5 Red (quicker than % operator)
 r = 255
 g = b = 0

 list = [r, g, b]
 return list

def flash():
 list = [[0, 0, 0, 7],
 [1, 0, 1, 7],
 [2, 0, 2, 7],
 [3, 0, 3, 7],
 [4, 0, 4, 7],
 [5, 0, 5, 7],
 [6, 0, 6, 7],
 [7, 0, 7, 7]]

 firsthue = 0
 hue = 0
 while firsthue < 1530:
 j = 0
 for i in list:
 hue = firsthue + j * 95
 j = j + 1
 if hue > 1530:
 hue = hue - 1530
 temp = ColorHSV(hue)
 #print(temp[0],temp[1],temp[2])
 #time.sleep(2)
 rr.draw_line(i, (temp[0], temp[1], temp[2]))
 rr.display()
 firsthue = firsthue + 11

if __name__ == "__main__":
 rr = RGB_Matrix(0X74)

 while True:
 flash()

How it works?

In reality, there are three primary colors of red, yellow, and blue, and there are generally three primary colors of red, green, and blue in the display screen, that is, RGB. Their values ​​are generally used
FF0000,00FF00,0000FF means, converted to decimal is (255,0,0),(0,255,0),(0,0,255).
This website [https://www.rapidtables.com/web/color/RGB_Color.html] can help us better understand the three primary colors.

def ColorHSV(hue):

 if hue < 510: # Red to Green-1
 b = 0
 if hue < 255: # Red to Yellow-1
 r = 255
 g = hue # g = 0 to 254
 else: # Yellow to Green-1
 r = 510 - hue # r = 255 to 1
 g = 255

 elif hue < 1020: # Green to Blue-1
 r = 0
 if hue < 765: # Green to Cyan-1
 g = 255
 b = hue - 510 # b = 0 to 254
 else: # Cyan to Blue-1
 g = 1020 - hue # g = 255 to 1
 b = 255

 elif hue < 1530: # Blue to Red-1
 g = 0
 if hue < 1275: # Blue to Magenta-1
 r = hue - 1020 # r = 0 to 254
 b = 255
 else: # Magenta to Red-1
 r = 255
 b = 1530 - hue # b = 255 to 1

 else: # Last 0.5 Red (quicker than % operator)
 r = 255
 g = b = 0

 list = [r, g, b]
 return list

Reference from Adafruit_NeoPixel [https://github.com/adafruit/Adafruit_NeoPixel/blob/216ccdbff399750f5b02d4cc804c598399e39713/Adafruit_NeoPixel.cpp#L2414].

Because red is centered on the rollover point (the +32768 above, essentially a fixed-point +0.5), the above actually yields 0 to 1530, where 0 and 1530 would yield the same thing. Rather than apply a costly modulo operator, 1530 is handled as a special case below.

So you’d think that the color “hexcone” (the thing that ramps from pure red, to pure yellow,
to pure green and so forth back to red, yielding six slices),
and with each color component having 256 possible values (0-255),
might have 1536 possible items (6*256), but in reality there’s 1530. This is because the last element in
each 256-element slice is equal to the first element of the next
slice, and keeping those in there this would create small
discontinuities in the color wheel. So the last element of each
slice is dropped…we regard only elements 0-254, with item 255
being picked up as element 0 of the next slice. Like this:

	Red to not-quite-pure-yellow is: 255, 0, 0 to 255, 254, 0

	Pure yellow to not-quite-pure-green is: 255, 255, 0 to 1, 255, 0

	Pure green to not-quite-pure-cyan is: 0, 255, 0 to 0, 255, 254

	and so forth.

Hence, 1530 distinct hues (0 to 1529), and hence why the constants below are not the multiples of 256 you might expect.

def flash():
 list = [[0,0,0,7],
 [1,0,1,7],
 [2,0,2,7],
 [3,0,3,7],
 [4,0,4,7],
 [5,0,5,7],
 [6,0,6,7],
 [7,0,7,7]]

The list list stores the starting and ending coordinates of the 8 vertical lines (from left to right), so that each line can be given a different color in the code later to achieve the colorful effect.

firsthue = 0
hue = 0
while firsthue < 1530:
 j = 0
 for i in list:
 hue = firsthue + j*95
 j = j + 1
 if hue > 1530:
 hue = hue-1530
 temp = ColorHSV(hue)
 rr.draw_line(i,(temp[0],temp[1],temp[2]))
 rr.display()
 firsthue = firsthue + 11

firshue and hue are passed to ColorHSV() as parameters.

Define a two-layer loop, the inner for loop is to draw eight lines in eight different colors,
The outer while loop is to add 11 to the hue values ​​of the eight colors to achieve the effect of color flow.

For example, in the first for loop, 0, 95, 190, 285, 380, 475, 570, 665 are used as the hue value of the initial color of the 8 lines, and then enter the outer loop to increase the hue value of each line color by 11 to become 11, 106, 201, 296, 391, 486, 581, 676 to achieve the effect of line color sliding.

Moving Eye

In this project, we will use the draw_rectangle() and draw_point() functions to draw an eye pattern and achieve the effect of moving the eye around.

[image: _images/moving_eyes2.png]
Run the code

When the program is running, you will see an eye moving around on the RGB matrix HAT.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 moving_eyes.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time

def up(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[1] -= 1
 list[3] -= 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def down(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[1] += 1
 list[3] += 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def left(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] -= 1
 list[2] -= 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def right(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] += 1
 list[2] += 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def left_down(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] -= 1
 list[2] -= 1
 list[1] += 1
 list[3] += 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def left_up(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] -= 1
 list[2] -= 1
 list[1] -= 1
 list[3] -= 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def right_up(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] += 1
 list[2] += 1
 list[1] -= 1
 list[3] -= 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

def right_down(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[0] += 1
 list[2] += 1
 list[1] += 1
 list[3] += 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

if __name__ == "__main__":
 rr = RGB_Matrix(0X74)

 rectangle_coor = [0,0,7,7]
 rr.draw_rectangle(rectangle_coor,fill=(251,248,40))

 point_arry = [[0,0],[1,0],[0,1],[6,0],[7,0],[7,1],[0,6],[0,7],[1,7],[7,6],[7,7],[6,7]]
 for i in range(len(point_arry)):
 rr.draw_point(point_arry[i],fill=(0,0,0))

 list = [3,3,4,4]
 rr.draw_rectangle(list,fill=(0,0,0),outline=None, width=0)

 rr.display()
 while True:
 up(list,3)
 down(list,6)
 up(list,6)
 down(list,6)
 up(list,3)
 time.sleep(1)
 right_down(list,2)
 up(list,4)
 left(list,4)
 down(list,4)
 right(list,4)
 left_up(list,2)
 time.sleep(1)

How it works?

rectangle_coor = [0,0,7,7]
rr.draw_rectangle(rectangle_coor,fill=(251,248,40))

point_arry = [[0,0],[1,0],[0,1],[6,0],[7,0],[7,1],[0,6],[0,7],[1,7],[7,6],[7,7],[6,7]]
for i in range(len(point_arry)):
 rr.draw_point(point_arry[i],fill=(0,0,0))

list = [3,3,4,4]
rr.draw_rectangle(list,fill=(0,0,0),outline=None, width=0)

rr.display()

	The list rectangle_coor represents a rectangle (the whole RGB dot matrix) from coordinates (0, 0) to (7, 7), and then use the draw_rectangle() function to fill this rectangle with yellow.

	The list point_arry represents the 12 points in the four corners, then use the draw_point() function to set the color of each point to (0, 0, 0), i.e., extinguish these points. This depicts the outline of an eye.

	The list represents a small rectangle from (3, 3) to (4, 4), and then use the draw_rectangle() function to set the color of this rectangle to (0, 0, 0) to make the rectangle go out. This will describe the outline of the eyeball.

	Finally, the eye pattern is displayed on the RGB Matrix HAT using the display() function.

while True:
 up(list,3)
 down(list,6)
 up(list,6)
 down(list,6)
 up(list,3)
 time.sleep(1)
 right_down(list,2)
 up(list,4)
 left(list,4)
 down(list,4)
 right(list,4)
 left_up(list,2)
 time.sleep(1)

The main loop is to make the eyeball keep moving up and down, then turn one cycle, and finally return to the original position.

We call some functions to move the eyeball, for example up(list,3) is to move the eyeball up three squares, now look at how this function is implemented.

def up(list,step=1):
 for i in range(0,step):
 rr.draw_rectangle(list,fill=(251,248,40))
 list[1] -= 1
 list[3] -= 1
 rr.draw_rectangle(list,fill=(0,0,0))
 rr.display()

The up() function has 2 parameters list and step, the internal logic is to move the rectangle list up step squares (default is 1).

	Define a for() loop with the number of loops determined by step. In the for() loop, set the color of the rectangle list to yellow.

	list = [3,3,4,4] are the 2 diagonal coordinates (3,3) and (4,4), list[1] and list[3] are subtracted by one, meaning that the y-values of the 2 diagonal coordinates are subtracted by one.

	Then the modified list = [3,2,4,3] color is set to (0,0,0) by the function draw_rectangle() and displayed on the dot matrix by the function display().

	After one for loop in this way, the pupil is moved up one square.

Christmas Tree

In this project, we will use the draw_point() function to make a colorful Christmas tree.

[image: _images/tree2.png]
Run the code

When the program runs, you will see a shiny Christmas tree appear on the RGB Matrix HAT.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 christmas_tree.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time
from color import Color

def tree():

 for i in green_coor:
 rr.draw_point(i,(0,255,0))

 for i in yellow_coor:
 rr.draw_point(i,(255,255,0))

 for i in red_coor:
 rr.draw_point(i,(255,0,0))

 rr.display()

def dot():
 col = Color()

 for i in flash_coor:
 rr.draw_point(i,col.random())
 rr.display()

if __name__ == "__main__":
 rr = RGB_Matrix(0X74)

 rectangle_coor = [0,0,7,7]

 green_coor = [[3,0],[4,0],
 [2,1],[3,1],[5,1],
 [1,2],[2,2],[4,2],[5,2],[6,2],
 [1,3],[2,3],[3,3],[4,3],[6,3],
 [2,4],[4,4],[5,4],
 [1,5],[3,5],[5,5],[6,5],
 [1,6],[2,6],[3,6],[4,6],[5,6],[6,6]
]

 flash_coor = [[4,1],[3,2],[5,3],[3,4],[2,5],[4,5]]
 red_coor = [[0,3],[7,3],[0,6],[7,6]]
 yellow_coor = [[3,0],[4,0],[3,6],[4,6],[3,7],[4,7]]

 tree()
 while True:
 dot()

How it works?

from color import Color

Import the color class Color, which is a class that we encapsulate to manipulate RGB Matrix HAT colors. In this project, we will use a class function random() to display random colors.

green_coor = [[3,0],[4,0],
 [2,1],[3,1],[5,1],
 [1,2],[2,2],[4,2],[5,2],[6,2],
 [1,3],[2,3],[3,3],[4,3],[6,3],
 [2,4],[4,4],[5,4],
 [1,5],[3,5],[5,5],[6,5],
 [1,6],[2,6],[3,6],[4,6],[5,6],[6,6]]

flash_coor = [[4,1],[3,2],[5,3],[3,4],[2,5],[4,5]]
red_coor = [[0,3],[7,3],[0,6],[7,6]]
yellow_coor = [[3,0],[4,0],[3,6],[4,6],[3,7],[4,7]]

Divide the Christmas tree into four parts, the red part, the yellow part, the green part, and the blinking part, so we need four lists to store these coordinates.

def tree():

 for i in green_coor:
 rr.draw_point(i,(0,255,0))

 for i in yellow_coor:
 rr.draw_point(i,(255,255,0))

 for i in red_coor:
 rr.draw_point(i,(255,0,0))

 rr.display()

Define a tree() function to draw the green(0, 255, 0), yellow(255, 255, 0) and red(255, 0, 0) parts of the Christmas tree.

def dot():
 col = Color()

 for i in coor:
 rr.draw_point(i,col.random())
 rr.display()

For the blinking points in the Christmas tree, we can use the random() function in the Color class to achieve. The function of random() is to return a random RGB value, that is, to display random colors in a loop to achieve a blinking effect.

tree()
while True:
 dot()

Finally, two functions are called to draw the Christmas tree. The blinking is continuous, so dot() should be called in the loop.

Greedy Snake

In this project, we use the RGB matrix HAT as the display screen to create a snake eating game by reading the values of the keyboard keys to change the display effect.

[image: _images/snake.png]
Run the code

When the program runs, the snake game starts, the keyboard a and d controls the snake to turn left and right.
Each time the snake eats a bean, score plus one. When it encounters itself, the score returns to zero.
After a period of time, the screen will turn blue, and the score will be displayed after a while. Press q to end the game, and Ctrl+C to exit the program.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 snake_game.py

Code

You can view the code by typing the command nano snake_game.py in Terminal or by clicking on github-snake_game.py [https://github.com/sunfounder/rgb_matrix/blob/master/raspberrypi/snake_game.py].

How it works?

def readchar():
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

This function is used to read keyboard input and return the entered characters.

def Keyboard_control():
 while True:

 global power_val,key
 # key = 'n'
 key=readkey()
 time.sleep(0.22)
 if key=='q':
 print("quit")
 break

Keyboard_control() is used for keyboard control. Call readkey() in an infinite loop to receive the characters input by the keyboard. In addition, the logic of snake-eating is also an infinite loop, then multithreading may be needed when there are multiple infinite loops in a program.

def snake_game():
 global key
 rr = RGB_Matrix(0X74)
 rectangle_coor = [0,0,7,7]
 #rr.draw_rectangle(rectangle_coor,fill=(51,51,0)) #draw a rectangle
 coor_1 = np.asarray([0,2])
 coor_2 = np.asarray([1,2])
 coor_3 = np.asarray([2,2])
 coor_4 = np.asarray([3,2])
 coor_list = [coor_1,coor_2,coor_3,coor_4]
 ...

snake_game() is used to represent snake-eating logic. The received key value is a character entered by the keyboard, which needs to be declared as a global variable with globla.

There are three main parts of snake logic:

	In the first part, when the a or d key is not pressed, first judge the horizontal and vertical, and then judge the forward direction, and then add 1 or subtract 1 to the horizontal or vertical coordinates of each point to achieve the effect of moving up, down, left, and right.

	The second part is to judge whether the a or d key is pressed. If yes, then judge the horizontal and vertical direction and then determine the forward direction, and then add one or subtract one to the coordinates of each point of the snake head, and the snake head coordinates are additionally processed to achieve the effect of turning the head.

	The third part is to determine whether the snake head is in contact with dot. If yes, set eat_flag to False and add an element to the list of snakes to achieve the effect of growing snakes.

[image: _images/snake_flow.png]
if __name__ == "__main__":
 t1 = threading.Thread(target=Keyborad_control)
 t2 = threading.Thread(target=snake_game)
 t1.setDaemon(True)
 t2.setDaemon(True)
 t1.start()
 t2.start()
 while True:
 pass

The Thread method in the threading ``class can help us create a thread, and the parameter is ``target=function name.

	SetDaemon(True) sets the thread as a daemon thread. It is generally used in an unimportant thread with an infinite loop.

	Start() starts the thread.

Camera Recognition

In this project, we will make a color recognizer, connect a camera module to the Raspberry Pi, use PiCamera and OpenCV to process the objects captured by the camera, and express its colors with RGB Matrix HAT.

Note

This example needs to enable the Raspberry Pi Camera function [https://docs.sunfounder.com/projects/raphael-kit/en/latest/components/component_camera_module.html#camera-module].

Then install third-party dependencies

sudo pip3 install opencv-contrib-python
sudo apt-get install -y python3-h5py libatlas-base-dev
sudo pip3 install -U numpy

Run the code

When the program is running, hold the camera moduel and aim at some brightly colored objects, you will find that the RGB Matrix HAT also shows similar colors.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 camera.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

To run this example, you need to turn on Camera on raspi-config => Interfacing => Camera
Then run the following command to install dependencies
sudo pip3 install opencv-contrib-python
sudo apt-get install -y python3-h5py libatlas-base-dev
sudo pip3 install -U numpy

from picamera.array import PiRGBArray # Generates a 3D RGB array
from picamera import PiCamera
import time
import cv2

from PIL import Image
from rgb_matrix import RGB_Matrix

rr = RGB_Matrix(0X74)

camera = PiCamera()
camera.resolution = (1280, 720)
raw_capture = PiRGBArray(camera, size=(1280, 720))
Allow the camera to warmup
time.sleep(0.1)
Grab an image from the camera
for frame in camera.capture_continuous(raw_capture, format="rgb", use_video_port=True):

 image = frame.array

 # Convert image to 8x8 for RGB matrix
 img = cv2.resize(image, (8, 8), interpolation = cv2.INTER_AREA)
 im_pil = Image.fromarray(img)

 # Render
 rr.image(list(im_pil.getdata()))

 raw_capture.truncate(0)

How it works?

from picamera.array import PiRGBArray # Generates a 3D RGB array
from picamera import PiCamera
import time
import cv2

from PIL import Image
from rgb_matrix import RGB_Matrix

	Import PiCamera to support the use of the camera.

	Import PiRGBArray to help the Raspberry Pi output the captured images in the form of an array.

	Import OpenCV vision library where cv2` is the name of the C++ namespace of Opencv.

	Import the image processing library PIL of the python platform.

camera = PiCamera()
camera.resolution = (1280, 720)raw_capture = PiRGBArray(camera, size=(1280, 720))

Create a PiCamera object and call PiRGBArray() to generate an RGB three-dimensional array with a resolution of (1280, 720) and pass it to raw_capture.

for frame in camera.capture_continuous(raw_capture, format="rgb", use_video_port=True):

 image = frame.array

Traverse the images captured by the camera and pass them to the image in the form of an RGB three-dimensional array.

img = cv2.resize(image, (8, 8), interpolation = cv2.INTER_AREA)
im_pil = Image.fromarray(img)

Convert the picture into an 8x8 RGB Matrix HAT and pass it to im_pil in the form of an array.

rr.image(list(im_pil.getdata()))

Convert im_pil into a list form to be used as a parameter of rr.image to light up the RGB Matrix HAT.

raw_capture.truncate(0)

Clear raw_capture in this loop.

Custom Shape

In the previous project, we made a Christmas tree with point coordinates. In this project, we used straight lines to piece together a pattern of Pac-Man.

[image: _images/DIYshape2.png]
[image: _images/DIYshape22.png]
Run the code

When the program runs, you will see a Pac-Man appearing on the RGB Matrix HAT, and its mouth is continuously opening and closing.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 custom_shape.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time
import random

def pacman():

 rectangle_coor = [0,0,7,7]

 list = [[2,0,5,0],
 [1,1,6,1],
 [0,2,1,2],
 [3,2,5,2],
 [0,3,4,3],
 [0,4,4,4],
 [0,5,5,5],
 [1,6,6,6],
 [2,7,5,7]]

 fill = (144,192,22)
 for i in list:
 rr.draw_line(i,fill)

 rr.display()
 time.sleep(1)

 rr.draw_rectangle(rectangle_coor,fill=(0,0,0))

def pacman2():

 rectangle_coor = [0,0,7,7]

 list = [[2,0,5,0],
 [1,1,6,1],
 [0,2,1,2],
 [3,2,7,2],
 [0,3,7,3],
 [0,4,3,4],
 [0,5,7,5],
 [1,6,6,6],
 [2,7,5,7]]

 fill = (144,192,22)
 for i in list:
 rr.draw_line(i,fill)

 rr.display()
 time.sleep(1)

 rr.draw_rectangle(rectangle_coor,fill=(0,0,0))

if __name__ == "__main__":
 rr = RGB_Matrix(0X74)

 rectangle_coor = [0,0,7,7]

 while True:
 pacman()
 time.sleep(0.5)
 pacman2()

How it works?

def pacman():

 rectangle_coor = [0,0,7,7]

 list = [[2,0,5,0],
 [1,1,6,1],
 [0,2,1,2],
 [3,2,5,2],
 [0,3,4,3],
 [0,4,4,4],
 [0,5,5,5],
 [1,6,6,6],
 [2,7,5,7]]

def pacman2():

 rectangle_coor = [0,0,7,7]

 list = [[2,0,5,0],
 [1,1,6,1],
 [0,2,1,2],
 [3,2,7,2],
 [0,3,7,3],
 [0,4,3,4],
 [0,5,7,5],
 [1,6,6,6],
 [2,7,5,7]]

Define two functions pacman() and pacman2() to represent the two states of Pac-Man. These two states are composed of many lines, and two lists are defined to store the starting and ending coordinates of these lines respectively. rectangle_coor represents the entire RGB matrix HAT, which can be used to clear the screen.

fill = (144,192,22)
for i in list:
 rr.draw_line(i,fill)

rr.display()
time.sleep(1)

rr.draw_rectangle(rectangle_coor,fill=(0,0,0))

The above code exists in both functions pacman() and pacman2() and is used to display the 2 states of Pac-Man in yellow in the RGB Matrix HAT and then clear the screen.

while True:
 pacman()
 time.sleep(0.5)
 pacman2()

Call pacman() and pacman2() cyclically to increase the dynamic effect of Pac-Man.

You can also imagine other more interesting patterns, this website [https://gurgleapps.com/tools/matrix#tp-color] may be able to get some references.

Custom Dynamic Shape

Here, based on the previous project, a continuous animation of Pac-Man eating dots will be created.

[image: _images/DIY2shape2.png]
[image: _images/DIY2shape22.png]
Run the code

When the program is running, you will see Pac-Man on the RGB matrix cap move from left to right and leave after eating the rightmost dot.

cd /home/pi/rgb_matrix/raspberrypi
sudo python3 custom_dynamic_shape.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like rgb_matrix/raspberrypi. After modifying the code, you can run it directly to see the effect.

from rgb_matrix import RGB_Matrix
import time
import random

def pacman(a,k):

 list2 = [[a-4,0,a-1,0],
 [a-5,1,a,1],
 [a-6,2,a-5,2],
 [a-3,2,a-1,2],
 [a-6,3,a-2,3],
 [a-6,4,a-2,4],
 [a-6,5,a-1,5],
 [a-5,6,a,6],
 [a-4,7,a-1,7]]

 fill = (144,192,22)
 for i in range(0,k+1):
 for j in list2:
 rr.draw_line(j,fill)

 rr.display()

 for j in list2:
 rr.draw_line(j,fill=(0,0,0))

 for i in range(0,9):
 list2[i][0] += 1
 list2[i][2] += 1

 time.sleep(0.1)

def pacman2():

 rr.draw_rectangle(rectangle_coor,fill=(0,0,0))

 list = [[2,0,5,0],
 [1,1,6,1],
 [0,2,1,2],
 [3,2,7,2],
 [0,3,7,3],
 [0,4,3,4],
 [0,5,7,5],
 [1,6,6,6],
 [2,7,5,7]]

 fill = (144,192,22)
 for i in list:
 rr.draw_line(i,fill)

 rr.display()
 time.sleep(0.1)

 rr.draw_rectangle(rectangle_coor,fill=(0,0,0))

def pac():

 coor = [6,3,7,4]
 rr.draw_rectangle(coor,fill=(82,52,25))

if __name__ == "__main__":
 rr = RGB_Matrix(0X74)

 rectangle_coor = [0,0,7,7]

 while True:
 pac()
 pacman(0,6)
 pacman2()
 pacman(6,7)

How it works?

while True:
 pac()
 pacman(0,6)
 pacman2()
 pacman(6,7)

We can disassemble Pac-Man into three actions, pac() represents the position of the dot.

	pacman(0,6) means that Pac-Man moves from the far left to the side of the dot.

	pacman2() mouth closed to indicate the action of eating.

	pacman(6,7) indicates to continue to leave after eating.

def pacman(a,k):

 list2 = [[a-4,0,a-1,0],
 [a-5,1,a,1],
 [a-6,2,a-5,2],
 [a-3,2,a-1,2],
 [a-6,3,a-2,3],
 [a-6,4,a-2,4],
 [a-6,5,a-1,5],
 [a-5,6,a,6],
 [a-4,7,a-1,7]]

 fill = (144,192,22)
 for i in range(0,k+1):
 for j in list2:
 rr.draw_line(j,fill)

 rr.display()

 for j in list2:
 rr.draw_line(j,fill=(0,0,0))

 for i in range(0,9):
 list2[i][0] += 1
 list2[i][2] += 1

 time.sleep(0.1)

The pacman() function is used to make Pac-man move from the left to the right in an open-mouthed state until it disappears. It has two parameters a and k, a represents the starting position of Pac-man and k represents the number of squares moved to the right.

	list2 stores the coordinates of Pac-man’s open-mouth state, drawn as lines, with the x-coordinate of each line determined by a.

	Define a two-level for loop. The inner loop does three things: draws Pac-Man, moves each line in list2 one square to the right, and removes the movement.

	The outer layer repeats the loop k times, which means Pac-Man moves k squares to the right.

Index

Assemble the Shield

[image: _images/assemble_arduino.png]

Christmas Tree

In this project, we will use the draw_point() function to make a colorful Christmas tree.

[image: _images/tree1.png]
Code

When the program runs, you will see a shiny Christmas tree appear on the RGB Matrix Shield.

 Custom Dynamic Shape

Custom Dynamic Shape

Now, based on the previous project, make several patterns display more consistently.

[image: _images/DIYshape1.png]
[image: _images/DIY2shape12.png]
Code

When the program runs, Pac-Man will move to the right, then it will stop and turn its head to smile at you, and finally continue to move to the right.

 Custom Shape

Custom Shape

To draw interesting patterns on RGB Matrix Shield, we define ShowHex() function to facilitate drawing custom patterns.

First you should get the hexadecimal array of the pattern. It is recommended to use the LED Matrix tool [https://gurgleapps.com/tools/matrix#tp-color], which can be used to design fonts or images for the RGB matrix, and you can also adjust it based on the original pattern.

You can select the corresponding character or pattern in the Sprites page, then set a specific color in the Colour page, and finally get the HEX array of that pattern or character from the Code page.

For example, we get two HEX arrays of Pac-Man.

[image: _images/pacman.png]
[image: _images/pacman2.png]
Code

When the program runs, you will see two Pac-Man pictures are constantly switching.

 Dazzling Light

Dazzling Light

In the previous project, we learned to use some simple functions to make RGB Matrix Shield work. So here, we will use the draw_line() function with different colors to make RGB Matrix HAT make more cool effects.

[image: _images/dazzling1.png]
Code

We have written two light blinking modes, dazzling_light() and dazzling_light()2 for reference.
When the program is running, you will first see the RGB matrix shield flowing on displaying different colors. After a while, you will notice that the flow of light becomes more smooth.

 Projects

Projects

This page show you the examples provided with RGB Matrix.

Note

Before downloading the code, make sure you have Add the Library.

	Hello Matrix

	Dazzling Light

	Moving Eye

	Christmas Tree

	Custom Shape

	Custom Dynamic Shape

Run the sketch

	Open the one sketch under the path rgb_matrix\arduino.

	Select the Board and Port.

[image: _images/select_board.png]
[image: _images/select_port.png]

	Compile.

[image: _images/compile.png]

	Upload.

[image: _images/upload.png]
[image: _images/upload2.png]

 Hello Matrix

Hello Matrix

Introduce

In this project, you will learn how to make RGB Matix HAT display different patterns and characters in different colors.

[image: _images/hello_matrix_arduino.png]
Code

When the program runs, you will see a dot, a line, a rectangle, a love pattern, the letter A, and the text Hi, SunFouder appear on the RGB Matrix Shield in turn.

 Moving Eye

Moving Eye

Introduce

In this project, we will use the draw_rectangle() and draw_point() functions to draw a