

SunFounder Raphael Kit for Raspberry Pi

About the Raphael Kit

Raphael Kit is a Raspberry Pi learning kit that contains almost all kinds of components, especially a camera module and a speaker, which can realize functions such as monitoring system, voice broadcast and smart doorbell.

It contains a lot of commonly used input and output components and modules, as well as some basic electronic components (such as resistors and capacitors), which can provide powerful help for your programming learning.

Contains 4 programming languages: Python, C, Scratch and Java (processing). There are a total of 133 projects for you to choose from.

If you want to learn another projects which we don’t have, please feel free to send Email and we will update to our online tutorials as soon as possible, any suggestions are welcomed.

Here is the Email: cs@sunfounder.com.

	Introduction

	Components List and Introduction
	Components List

	Components Introductions

	Preparation
	What Do We Need?

	Installing the OS

	Set up Your Raspberry Pi

	GPIO Extension Board

	Download the Code

	Play with C
	Check and Install the WiringPi

	Output
	1.1 Displays

	1.2 Sound

	1.3 Drivers

	Input
	2.1 Controllers

	2.2 Sensors

	Extension
	3.1.1 Counting Device

	3.1.2 Welcome

	3.1.3 Reversing Alarm

	3.1.4 Smart Fan

	3.1.5 Battery Indicator

	3.1.6 Traffic Light

	3.1.7 Overheat Monitor

	3.1.8 Password Lock

	3.1.9 Alarm Bell

	3.1.10 Morse Code Generator

	3.1.11 GAME– Guess Number

	3.1.12 GAME - 10 Second

	3.1.13 GAME– NotNot

	Play with Python
	Check the RPi.GPIO

	Output
	1.1 Displays

	1.2 Sound

	1.3 Drivers

	Input
	2.1 Controllers

	2.2 Sensors

	Audiovisual
	3.1.1 Photograph Module

	3.1.2 Video Module

	3.1.3 Audio Module

	3.1.4 Text-to-speech

	IOT
	Quick Guide on Cloud4RPi

	Learn More about control.py

	Projects

	Extension
	4.1.1 Camera

	4.1.2 Music Player

	4.1.3 Speech Clock

	4.1.4 Automatic Capture Camera

	4.1.5 Intelligent Visual Doorbell

	4.1.6 Magnetic Induction Alarm System

	4.1.7 Counting Device

	4.1.8 Welcome

	4.1.9 Reversing Alarm

	4.1.10 Smart Fan

	4.1.11 Battery Indicator

	4.1.12 Traffic Light

	4.1.13 Overheat Monitor

	4.1.14 Password Lock

	4.1.15 Alarm Bell

	4.1.16 Morse Code Generator

	4.1.17 GAME– Guess Number

	4.1.18 GAME - 10 Second

	4.1.19 AttendanceSystem

	Play with Processing
	What is Processing？

	Install the Processing

	Install Hardware I/O

	Projects
	Draw a Matchmaker

	Hello Mouse

	Blinking Dot

	Clickable Dot

	Clickable Color Blocks

	Inflating the Dot

	Dot on the Swing

	Metronome

	Show Number

	Drag Number

	Play with Nodejs
	What is Nodejs？

	Install or update nodejs and npm

	Check the pigpio

	Output
	1.1 Displays

	1.2 Sound

	1.3 Drivers

	Input
	2.1 Controllers

	2.2 Sensors

	Extension
	3.1.1 Photograph Module

	Play with Scratch
	Quick Guide on Scratch
	Install Scratch 3

	About Scratch 3’s Interface

	Projects
	1.1 Wand

	1.2 Colorful Balls

	1.3 Tumbler

	1.4 Hare

	1.5 Wake up the Owl

	1.6 Vanishing Vase

	1.7 Piggy Bank

	1.8 Service Bell

	1.9 Drumming

	1.10 Drumming in the Air

	1.11 Repelling locusts

	1.12 Water Lamp

	1.13 Doorbell

	1.14 123 Wooden Man

	1.15 Inflating the Balloon

	1.16 Fishing Game

	1.17 Rotating fan

	1.18 Eating Banana Game

	Appendix
	Install the Libraries

	I2C Configuration

	SPI Configuration

	Audio Configuration

	Remote Desktop

	Filezilla Software

	FAQ
	C code is not working?

	Thank You

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes, under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.

Introduction

C and Python projects are arranged according to component types. C language projects have three categories: Input, Output and Extension, while Python projects have 2 more categories, Audiovisual and IoT, and 6 more expansion projects.

Scratch and Java have only arranged some sample projects according to the degree of difficulty of the project because of the compatibility of the IDE.

Each project introduces the required components, implementation steps, and code explanations, so that even if you have no programming or circuit knowledge, you can complete each project and expand on it.

If you want to learn another projects which we don’t have, please feel free to send Email and we will update to our online tutorials as soon as possible, any suggestions are welcomed.

Here is the Email: cs@sunfounder.com.

Components List and Introduction

Components List

After opening the package, please check whether the quantity of components is compliance with product description and whether all components are in good condition.

	Components List [https://github.com/sunfounder/sf-pdf/raw/master/components_list/a0000672-raphael-kit.pdf]

Components Introductions

Below is the introduction to each component, which contains the operating principle of the component and the corresponding projects.

Basic

	Breadboard

	Resistor

	Transistor

	Capacitor

	Diode

Chip

	74HC595

	L293D

	ADC0834

Display

	LED

	RGB LED

	LED Bar Graph

	7-segment Display

	4-Digit 7-Segment Display

	LED Matrix Module

	I2C LCD1602

Sound

	Buzzer

	Audio Module and Speaker

Driver

	DC Motor

	Servo

	Power Supply Module

	Relay

Controller

	Button

	Micro Switch

	Slide Switch

	Potentiometer

	Joystick Module

	Rotary Encoder Module

	Keypad

Sensor

	Photoresistor

	Thermistor

	Tilt Switch

	Touch Switch Module

	Reed Switch Module

	Obstacle Avoidance Module

	Speed Sensor Module

	PIR Motion Sensor Module

	Ultrasonic Module

	Humiture Sensor Module

	MPU6050 Module

	MFRC522 Module

	Camera Module

Preparation

In this chapter, we firstly learn to start up Raspberry Pi. The content
includes installing the OS, Raspberry Pi network and how to open terminal.

Note

You can check the complete tutorial on the official website of the Raspberry Pi: raspberry-pi-setting-up [https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up].

If your Raspberry Pi is set up, you can skip the part and go into the next chapter.

	What Do We Need?
	Required Components

	Optional Components

	Installing the OS

	Set up Your Raspberry Pi
	If You Have a Screen

	If You Have No Screen

What Do We Need?

Required Components

Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs
into a computer monitor or TV, and uses a standard keyboard and mouse.
It is a capable little device that enables people of all ages to explore
computing, and to learn how to program in languages like Scratch and
Python.

Our kit applies to the following versions of the product of Raspberry Pi.

[image: RPi2]
Power Adapter

To connect to a power socket, the Raspberry Pi has a micro USB port (the
same found on many mobile phones). You will need a power supply which
provides at least 2.5 amps.

Micro SD Card

Your Raspberry Pi needs an Micro SD card to store all its files and the
Raspberry Pi OS. You will need a micro SD card with a capacity of at
least 8 GB

Optional Components

Screen

To view the desktop environment of Raspberry Pi, you need to use the
screen that can be a TV screen or a computer monitor. If the screen has
built-in speakers, the Pi plays sounds via them.

Mouse & Keyboard

When you use a screen , a USB keyboard and a USB mouse are also needed.

HDMI

The Raspberry Pi has a HDMI output port that is compatible with the HDMI
ports of most modern TV and computer monitors. If your screen has only
DVI or VGA ports, you will need to use the appropriate conversion line.

Case

You can put the Raspberry Pi in a case; by this means, you can protect
your device.

Sound or Earphone

The Raspberry Pi is equipped with an audio port about 3.5 mm that can be
used when your screen has no built-in speakers or when there is no
screen operation.

Installing the OS

Required Components

	Any Raspberry Pi

	1 * Personal Computer

	1 * Micro SD card

	

Step 1

Raspberry Pi have developed a graphical SD card writing tool that works
on Mac OS, Ubuntu 18.04 and Windows, and is the easiest option for most
users as it will download the image and install it automatically to the
SD card.

Visit the download page: https://www.raspberrypi.org/software/. Click on
the link for the Raspberry Pi Imager that matches your operating system,
when the download finishes, click it to launch the installer.

[image: _images/image11.png]
Step 2

When you launch the installer, your operating system may try to block
you from running it. For example, on Windows I receive the following
message:

If this pops up, click on More info and then Run anyway, then
follow the instructions to install the Raspberry Pi Imager.

[image: _images/image12.png]
Step 3

Insert your SD card into the computer or laptop SD card slot.

Step 4

Download the raspios_armhf-2020-05-28 [https://downloads.raspberrypi.org/raspios_armhf/images/raspios_armhf-2021-05-28/2021-05-07-raspios-buster-armhf.zip] image and select it in Raspberry Pi Imager.

[image: img/otherOS.png]

Warning

Raspberry Pi OS has major changes after the 2021-05-28 version, which may cause some functions to be unavailable. Please do not use the latest version for now.

Step 5

Select the SD card you are using.

[image: _images/image14.png]
Step 6

Press Ctrl+Shift+X to open the Advanced options page to enable
SSH and configure wifi, these 2 items must be set, the others depend on
your choice . You can choose to always use this image customization
options.

[image: _images/image15.png]
Then scroll down to complete the wifi configuration and click SAVE.

Note

wifi country should be set the two-letter ISO/IEC alpha2
code [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements] for
the country in which you are using your Raspberry Pi, please refer to
the following link: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements

[image: _images/image16.png]
Step 7

Click the WRITE button.

[image: _images/image17.png]
Step 8

If your SD card currently has any files on it, you may wish to back up
these files first to prevent you from permanently losing them. If there
is no file to be backed up, click Yes.

[image: _images/image18.png]
Step 9

After waiting for a period of time, the following window will appear to
represent the completion of writing.

[image: _images/image19.png]

Set up Your Raspberry Pi

If You Have a Screen

If you have a screen, it will be easy for you to operate on the
Raspberry Pi.

Required Components

	Any Raspberry Pi

	1 * Power Adapter

	1 * Micro SD card

	1 * Screen Power Adapter

	1 * HDMI cable

	1 * Screen

	1 * Mouse

	1 * Keyboard

	Insert the SD card you’ve set up with Raspberry Pi OS into the micro SD card slot on the underside of your Raspberry Pi.

	Plug in the Mouse and Keyboard.

	Connect the screen to Raspberry Pi’s HDMI port and make sure your screen is plugged into a wall socket and switched on.

Note

If you use a Raspberry Pi 4, you need to connect the screen to the HDMI0 (nearest the power in port).

	Use the power adapter to power the Raspberry Pi. After a few seconds, the Raspberry Pi OS desktop will be displayed.

[image: _images/image201.png]

If You Have No Screen

If you don’t have a display, you can log in to the Raspberry Pi
remotely, but before that, you need to get the IP of the Raspberry Pi.

Get the IP Address

After the Raspberry Pi is connected to WIFI, we need to get the IP
address of it. There are many ways to know the IP address, and two of
them are listed as follows.

1. Checking via the router

If you have permission to log in the router(such as a home network), you
can check the addresses assigned to Raspberry Pi on the admin interface
of router.

The default hostname of the Raspberry Pi OS is raspberrypi, and you
need to find it. (If you are using ArchLinuxARM system, please find
alarmpi.)

2. Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry
Pi. You can apply the software, Advanced IP scanner and so on.

Scan the IP range set, and the name of all connected devices will be
displayed. Similarly, the default hostname of the Raspberry Pi OS is
raspberrypi, if you haven’t modified it.

Use the SSH Remote Control

We can open the Bash Shell of Raspberry Pi by applying SSH. Bash is the
standard default shell of Linux. The Shell itself is a program written
in C that is the bridge linking the customers and Unix/Linux. Moreover,
it can help to complete most of the work needed.

For Linux or/Mac OS X Users

Step 1

Go to Applications->Utilities, find the Terminal, and open
it.

[image: _images/image21.png]
Step 2

Type in ssh pi@ip_address . “pi”is your username and “ip_address” is
your IP address. For example:

ssh pi@192.168.18.197

Step 3

Input”yes”.

[image: _images/image22.png]
Step 4

Input the passcode and the default password is raspberry.

[image: _images/image23.png]
Step 5

We now get the Raspberry Pi connected and are ready to go to the next
step.

[image: _images/image24.png]

Note

When you input the password, the characters do not display on
window accordingly, which is normal. What you need is to input the
correct password.

For Windows Users

If you’re a Windows user, you can use SSH with the application of some
software. Here, we recommend PuTTY.

Step 1

Download PuTTY.

Step 2

Open PuTTY and click Session on the left tree-alike structure. Enter
the IP address of the RPi in the text box under Host Name (or IP
address) and 22 under Port (by default it is 22).

[image: _images/image25.png]
Step 3

Click Open. Note that when you first log in to the Raspberry Pi with
the IP address, there prompts a security reminder. Just click Yes.

Step 4

When the PuTTY window prompts “login as:”, type in
“pi”(the user name of the RPi), and password: “raspberry”
(the default one, if you haven’t changed it).

Note

When you input the password, the characters do not display on window accordingly, which is normal. What you need is to input the correct password.

If inactive appears next to PuTTY, it means that the connection has been broken and needs to be reconnected.

[image: _images/image26.png]
Step 5

Here, we get the Raspberry Pi connected and it is time to conduct the next steps.

Note

If you are not satisfied with using the command window to control the Raspberry Pi, you can also use the remote desktop function, which can help us manage the files in the Raspberry Pi easily.

For details on how to do this, please refer to Remote Desktop.

GPIO Extension Board

Before starting to learn the commands, you first need to know more about
the pins of the Raspberry Pi, which is key to the subsequent study.

We can easily lead out pins of the Raspberry Pi to breadboard by GPIO
Extension Board to avoid GPIO damage caused by frequent plugging in or
out. This is our 40-pin GPIO Extension Board and GPIO cable for
Raspberry Pi model B+, 2 model B and 3, 4 model B.

[image: _images/image32.png]
Pin Number

The pins of Raspberry Pi have three kinds of ways to name and they are wiringPi, BCM and Board.

Among these naming methods, 40-pin GPIO Extension board uses the naming method, BCM. But for some special pins, such as I2C port and SPI port, they use the Name that comes with themselves.

The following table shows us the naming methods of WiringPi, Board and the intrinsic Name of each pin on GPIO Extension board. For example, for the GPIO17, the Board naming method of it is 11, the wiringPi naming method is 0, and the intrinsic naming method of it is GPIO0.

Note

1）In C Language, what is used is the naming method WiringPi.

2）In Python Language, the applied naming methods are Board and BCM, and the function GPIO.setmode() is used to set them.

3）In Scratch 3 and Processing, the applied naming method is BCM.

[image: _images/gpio_board.png]

Download the Code

Before you download the code, please note that the example code is
ONLY test on Raspberry Pi OS. We provide two methods for download:

Method 1: Use git clone (Recommended)

Log into Raspberry Pi and then change directory to /home/pi.

cd /home/pi/

Note

cd to change to the intended directory from the current path. Informally, here is to go to the path /home/pi/.

Clone the repository from GitHub.

git clone https://github.com/sunfounder/raphael-kit.git

Method 2: Download the code

Download the source code from github: https://github.com/sunfounder/raphael-kit

[image: _images/image33.png]

Play with C

	Check and Install the WiringPi

	Output
	1.1 Displays
	1.1.1 Blinking LED

	1.1.2 RGB LED

	1.1.3 LED Bar Graph

	1.1.4 7-segment Display

	1.1.5 4-Digit 7-Segment Display

	1.1.6 LED Dot Matrix Module

	1.1.7 I2C LCD1602

	1.2 Sound
	1.2.1 Active Buzzer

	1.2.2 Passive Buzzer

	1.3 Drivers
	1.3.1 Motor

	1.3.2 Servo

	1.3.3 Relay

	Input
	2.1 Controllers
	2.1.1 Button

	2.1.2 Micro Switch

	2.1.3 Touch Switch Module

	2.1.4 Slide Switch

	2.1.5 Tilt Switch

	2.1.6 Rotary Encoder Module

	2.1.7 Potentiometer

	2.1.8 Keypad

	2.1.9 Joystick

	2.2 Sensors
	2.2.1 Photoresistor

	2.2.2 Thermistor

	2.2.3 DHT-11

	2.2.4 Reed Switch Module

	2.2.5 IR Obstacle Avoidance Module

	2.2.6 Speed Sensor Module

	2.2.7 PIR

	2.2.8 Ultrasonic Sensor Module

	2.2.9 MPU6050 Module

	2.2.10 MFRC522 RFID Module

	Extension
	3.1.1 Counting Device

	3.1.2 Welcome

	3.1.3 Reversing Alarm

	3.1.4 Smart Fan

	3.1.5 Battery Indicator

	3.1.6 Traffic Light

	3.1.7 Overheat Monitor

	3.1.8 Password Lock

	3.1.9 Alarm Bell

	3.1.10 Morse Code Generator

	3.1.11 GAME– Guess Number

	3.1.12 GAME - 10 Second

	3.1.13 GAME– NotNot

Check and Install the WiringPi

wiringPi is a C language GPIO library applied to the Raspberry Pi
platform and the Raspberry Pi OS installs it by default. It complies with GUN Lv3. The functions in wiringPi are
similar to those in the wiring system of Arduino. They enable the users
familiar with Arduino to use wiringPi more easily.

wiringPi includes lots of GPIO commands which enable you to control all
kinds of interfaces on Raspberry Pi. You can test whether the wiringPi
library is installed successfully or not by the following instruction.

gpio -v

[image: _images/image30.png]

Note

	If your Raspberry Pi OS is version 10.31 and above, there will be an error message: wiringPi.h: NO such file or directory.

	If you are using Raspberry Pi 4B, but the GPIO version is 2.50, it will cause no response after the C language code is running, that is, GPIO pins do not work.

At this time, you need to manually update to version 2.52, the update steps are as follows :

cd /tmp

wget https://project-downloads.drogon.net/wiringpi-latest.deb

sudo dpkg -i wiringpi-latest.deb

Check with:

gpio -v

and make sure it’s version 2.52.

gpio readall

[image: _images/image31.png]
For more details about wiringPi, you can refer to WiringPi [http://wiringpi.com/download-and-install/].

Output

1.1 Displays

	1.1.1 Blinking LED

	1.1.2 RGB LED

	1.1.3 LED Bar Graph

	1.1.4 7-segment Display

	1.1.5 4-Digit 7-Segment Display

	1.1.6 LED Dot Matrix Module

	1.1.7 I2C LCD1602

1.2 Sound

	1.2.1 Active Buzzer

	1.2.2 Passive Buzzer

1.3 Drivers

	1.3.1 Motor

	1.3.2 Servo

	1.3.3 Relay

1.1.1 Blinking LED

Introduction

In this project, we will learn how to make a blinking LED by programming.
Through your settings, your LED can produce a series of interesting
phenomena. Now, go for it.

Components

[image: _images/blinking_led_list.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

Schematic Diagram

In this experiment, connect a 220Ω resistor to the anode (the long pin
of the LED), then the resistor to 3.3 V, and connect the cathode (the
short pin) of the LED to GPIO17 of Raspberry Pi. Therefore, to turn on
an LED, we need to make GPIO17 low (0V) level. We can get this
phenomenon by programming.

Note

Pin11 refers to the 11th pin of the Raspberry Pi from left to right, and its corresponding wiringPi and BCM pin numbers are shown in the following table.

In the C language related content, we make GPIO0 equivalent to 0 in the
wiringPi. Among the Python language related content, BCM 17 is 17 in the
BCM column of the following table. At the same time, they are the same
as the 11th pin on the Raspberry Pi, Pin 11.

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

[image: _images/image48.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image49.png]
Step 2: Go to the folder of the code.

	If you use a screen, you’re recommended to take the following steps.

Go to /home/pi/ and find the folder raphael-kit.

Find C in the folder, right-click on it and select Open in
Terminal.

[image: _images/image50.png]
Then a window will pop up as shown below. So now you’ve entered the path
of the code 1.1.1_BlinkingLed.c .

[image: _images/image51.png]
In the following projects, we will use command to enter the code file
instead of right-clicking. But you can choose the method you prefer.

	If you log into the Raspberry Pi remotely, use cd to change directory:

cd /home/pi/raphael-kit/c/1.1.1/

Note

Change directory to the path of the code in this experiment via cd.

In either way, now you are in the folder C. The subsequent
procedures based on these two methods are the same. Let’s move on.

Step 3: Compile the code

gcc 1.1.1_BlinkingLed.c -o BlinkingLed -lwiringPi

Note

gcc is GNU Compiler Collection. Here, it functions like
compiling the C language file 1.1.1_BlinkingLed.c and outputting an
executable file.

In the command, -o means outputting (the character immediately
following -o is the filename output after compilation, and an executable
named BlinkingLed will generate here) and -lwiringPi is to load
the library wiringPi (l is the abbreviation of library).

Step 4: Run the executable file output in the previous step.

sudo ./BlinkingLed

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

To control the GPIO, you need to run the program, by the
command, sudo (superuser do). The command ./ indicates the current
directory. The whole command is to run the BlinkingLed in the
current directory.

After the code runs, you will see the LED flashing.

If you want to edit the code file 1.1.1_BlinkingLed.c, stop the code and then type the following command to open it:

nano 1.1.1_BlinkingLed.c

Press Ctrl+X to exit. If you have modified the code, there will be a
prompt asking whether to save the changes or not. Type in Y (save)
or N (don’t save). Then press Enter to exit. Repeat Step 3
and Step 4 to see the effect after modifying.

[image: _images/image53.png]
Code

The program code is shown as follows:

#include <wiringPi.h>
#include <stdio.h>
#define LedPin 0
int main(void)
{
 // When initialize wiring failed, print message to screen
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }
 pinMode(LedPin, OUTPUT);// Set LedPin as output to write value to it.
 while(1){
 // LED on
 digitalWrite(LedPin, LOW);
 printf("...LED on\n");
 delay(500);
 // LED off
 digitalWrite(LedPin, HIGH);
 printf("LED off...\n");
 delay(500);
 }
 return 0;
}

Code Explanation

#include <wiringPi.h>

The hardware drive library is designed for the C language of Raspberry
Pi. Adding this library is conducive to the initialization of hardware,
and the output of I/O ports, PWM, etc.

#include <stdio.h>

Standard I/O library. The pintf function used for printing the data
displayed on the screen is realized by this library. There are many
other performance functions for you to explore.

#define LedPin 0

Pin GPIO17 of the T_Extension Board is corresponding to the GPIO0 in
wiringPi. Assign GPIO0 to LedPin, LedPin represents GPIO0 in the code
later.

if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;

This initialises wiringPi and assumes that the calling program is going
to be using the wiringPi pin numbering scheme.

This function needs to be called with root privileges.
When initialize wiring failed, print message to screen. The function
return is used to jump out of the current function. Using return in
main() function will end the program.

pinMode(LedPin, OUTPUT);

Set LedPin as output to write value to it.

digitalWrite(LedPin, LOW);

Set GPIO0 as 0V (low level). Since the cathode of LED is connected to
GPIO0, thus the LED will light up if GPIO0 is set low. On the contrary,
set GPIO0 as high level, LED will go out.

printf("...LED off\n");

The printf function is a standard library function and its function
prototype is in the header file stdio.h.

The general form of the call is: printf(" format control string ", output table columns). The format
control string is used to specify the output format, which is divided
into format string and non-format string. The format string starts with
% followed by format characters, such as %d for decimal integer
output. Unformatted strings are printed as prototypes. What is used here
is a non-format string, followed by \n that is a newline character,
representing automatic line wrapping after printing a string.

delay(500);

Keeps the current HIGH or LOW state for 500ms.

This is a function that suspends the program for a period of time. And
the speed of the program is determined by our hardware. Here we turn on
or off the LED. If there is no delay function, the program will run the
whole program very fast and continuously loop. So we need the delay
function to help us write and debug the program.

return 0;

Usually, it is placed behind the main function, indicating that the
function returns 0 on successful execution.

Phenomenon Picture

[image: _images/image54.jpeg]

1.1.2 RGB LED

Introduction

In this project, we will control an RGB LED to flash various colors.

Components

[image: _images/list_rgb_led.png]

	GPIO Extension Board

	Breadboard

	Resistor

	RGB LED

Schematic Diagram

After connecting the pins of R, G, and B to a current limiting resistor,
connect them to the GPIO17, GPIO18, and GPIO27 respectively. The longest
pin (GND) of the LED connects to the GND of the Raspberry Pi. When the
three pins are given different PWM values, the RGB LED will display
different colors.

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

[image: _images/rgb_led_schematic.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image61.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/1.1.2/

Step 3: Compile the code.

gcc 1.1.2_rgbLed.c -lwiringPi

Note

When the instruction gcc is executed, if -o is not called, then the executable file is named a.out.

Step 4: Run the executable file.

sudo ./a.out

After the code runs, you will see that RGB displays red, green, blue, yellow, pink, and cyan.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>
#define uchar unsigned char
#define LedPinRed 0
#define LedPinGreen 1
#define LedPinBlue 2

void ledInit(void){
 softPwmCreate(LedPinRed, 0, 100);
 softPwmCreate(LedPinGreen,0, 100);
 softPwmCreate(LedPinBlue, 0, 100);
}

void ledColorSet(uchar r_val, uchar g_val, uchar b_val){
 softPwmWrite(LedPinRed, r_val);
 softPwmWrite(LedPinGreen, g_val);
 softPwmWrite(LedPinBlue, b_val);
}

int main(void){

 if(wiringPiSetup() == -1){ //when initialize wiring failed, printf messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 ledInit();
 while(1){
 printf("Red\n");
 ledColorSet(0xff,0x00,0x00); //red
 delay(500);
 printf("Green\n");
 ledColorSet(0x00,0xff,0x00); //green
 delay(500);
 printf("Blue\n");
 ledColorSet(0x00,0x00,0xff); //blue
 delay(500);
 printf("Yellow\n");
 ledColorSet(0xff,0xff,0x00); //yellow
 delay(500);
 printf("Purple\n");
 ledColorSet(0xff,0x00,0xff); //purple
 delay(500);
 printf("Cyan\n");
 ledColorSet(0xc0,0xff,0x3e); //cyan
 delay(500);
 }
 return 0;
}

Code Explanation

#include <softPwm.h>

Library used for realizing the pwm function of the software.

void ledInit(void){
 softPwmCreate(LedPinRed, 0, 100);
 softPwmCreate(LedPinGreen,0, 100);
 softPwmCreate(LedPinBlue, 0, 100);
}

The function is to use software to create a PWM pin, set its period
between 0x100us-100x100us.

The prototype of the function softPwmCreate(LedPinRed, 0, 100) is as
follows:

int softPwmCreate(int pin,int initialValue,int pwmRange);

	Parameter pin: Any GPIO pin of Raspberry Pi can be set as a PWM pin.

	Parameter initialValue: The initial pulse width is that initialValue times100us.

	Parameter pwmRange: the period of PWM is that pwmRange times100us.

void ledColorSet(uchar r_val, uchar g_val, uchar b_val){
 softPwmWrite(LedPinRed, r_val);
 softPwmWrite(LedPinGreen, g_val);
 softPwmWrite(LedPinBlue, b_val);
}

This function is to set the colors of the LED. Using RGB, the formal
parameter r_val represents the luminance of the red one, g_val
of the green one, b_val of the blue one.

The prototype of the function softPwmWrite(LedPinBlue, b_val) is as
follows：

void softPwmWrite (int pin, int value) ;

	Parameter pin: Any GPIO pin of Raspberry Pi can be set as a PWM pin.

	Parameter Value: The pulse width of PWM is value times 100us. Note that value can only be less than pwmRange defined previously, if it is larger than pwmRange, the value will be given a fixed value, pwmRange.

ledColorSet(0xff,0x00,0x00);

Call the function defined before. Write 0xff into LedPinRed and 0x00
into LedPinGreen and LedPinBlue. Only the Red LED lights up after
running this code. If you want to light up LEDs in other colors, just
modify the parameters.

Phenomenon Picture

[image: _images/image62.jpeg]

1.1.3 LED Bar Graph

Introduction

In this project, we sequentially illuminate the lights on the LED Bar
Graph.

Components

[image: _images/list_led_bar.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED Bar Graph

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO25

	Pin 22

	6

	25

	SDA1

	Pin 3

	8

	2

	SCL1

	Pin 5

	9

	3

	SPICE0

	Pin 24

	10

	8

[image: _images/schematic_led_bar.png]

Experimental Procedures

Step 1: Build the circuit.

Note

Pay attention to the direction when connecting. If you connect it backwards, it will not light up.

[image: _images/image66.png]
Step 2: Go to the folder of the code.

cd ~/raphael-kit/c/1.1.3/

Step 3: Compile the code.

gcc 1.1.3_LedBarGraph.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, you will see the LEDs on the LED bar turn on and off regularly.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

int pins[10] = {0,1,2,3,4,5,6,8,9,10};
void oddLedBarGraph(void){
 for(int i=0;i<5;i++){
 int j=i*2;
 digitalWrite(pins[j],HIGH);
 delay(300);
 digitalWrite(pins[j],LOW);
 }
}
void evenLedBarGraph(void){
 for(int i=0;i<5;i++){
 int j=i*2+1;
 digitalWrite(pins[j],HIGH);
 delay(300);
 digitalWrite(pins[j],LOW);
 }
}
void allLedBarGraph(void){
 for(int i=0;i<10;i++){
 digitalWrite(pins[i],HIGH);
 delay(300);
 digitalWrite(pins[i],LOW);
 }
}
int main(void)
{
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }
 for(int i=0;i<10;i++){ //make led pins' mode is output
 pinMode(pins[i], OUTPUT);
 digitalWrite(pins[i],LOW);
 }
 while(1){
 oddLedBarGraph();
 delay(300);
 evenLedBarGraph();
 delay(300);
 allLedBarGraph();
 delay(300);
 }
 return 0;
}

Code Explanation

int pins[10] = {0,1,2,3,4,5,6,8,9,10};

Create an array and assign it to the pin number corresponding to the LED
Bar Graph (0,1,2,3,4,5,6,8,9,10) and the array will be used to control
the LED.

void oddLedBarGraph(void){
 for(int i=0;i<5;i++){
 int j=i*2;
 digitalWrite(pins[j],HIGH);
 delay(300);
 digitalWrite(pins[j],LOW);
 }
}

Let the LED on the odd digit of the LED Bar Graph light on in turn.

void evenLedBarGraph(void){
 for(int i=0;i<5;i++){
 int j=i*2+1;
 digitalWrite(pins[j],HIGH);
 delay(300);
 digitalWrite(pins[j],LOW);
 }
}

Make the LED on the even digit of the LED Bar Graph light on in turn.

void allLedBarGraph(void){
 for(int i=0;i<10;i++){
 digitalWrite(pins[i],HIGH);
 delay(300);
 digitalWrite(pins[i],LOW);
 }
}

Let the LED on the LED Bar Graph light on one by one.

Phenomenon Picture

[image: _images/image67.jpeg]

1.1.4 7-segment Display

Introduction

Let’s try to drive a 7-segment display to show a figure from 0 to 9 and
A to F.

Components

[image: _images/list_7_segment.png]

	GPIO Extension Board

	Breadboard

	Resistor

	7-segment Display

	74HC595

Schematic Diagram

Connect pin ST_CP of 74HC595 to Raspberry Pi GPIO18, SH_CP to GPIO27, DS
to GPIO17, parallel output ports to 8 segments of the LED segment
display. Input data in DS pin to shift register when SH_CP (the clock
input of the shift register) is at the rising edge, and to the memory
register when ST_CP (the clock input of the memory) is at the rising
edge. Then you can control the states of SH_CP and ST_CP via the
Raspberry Pi GPIOs to transform serial data input into parallel data
output so as to save Raspberry Pi GPIOs and drive the display.

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

[image: _images/schematic_7_segment.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image73.png]
Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/c/1.1.4/

Step 3: Compile.

gcc 1.1.4_7-Segment.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

After the code runs, you’ll see the 7-segment display display 0-9, A-F.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#define SDI 0 //serial data input
#define RCLK 1 //memory clock input(STCP)
#define SRCLK 2 //shift register clock input(SHCP)
unsigned char SegCode[16] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};

void init(void){
 pinMode(SDI, OUTPUT);
 pinMode(RCLK, OUTPUT);
 pinMode(SRCLK, OUTPUT);
 digitalWrite(SDI, 0);
 digitalWrite(RCLK, 0);
 digitalWrite(SRCLK, 0);
}

void hc595_shift(unsigned char dat){
 int i;
 for(i=0;i<8;i++){
 digitalWrite(SDI, 0x80 & (dat << i));
 digitalWrite(SRCLK, 1);
 delay(1);
 digitalWrite(SRCLK, 0);
 }
 digitalWrite(RCLK, 1);
 delay(1);
 digitalWrite(RCLK, 0);
}

int main(void){
 int i;
 if(wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }
 init();
 while(1){
 for(i=0;i<16;i++){
 printf("Print %1X on Segment\n", i); // %X means hex output
 hc595_shift(SegCode[i]);
 delay(500);
 }
 }
 return 0;
}

Code Explanation

unsigned char SegCode[16] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};

A segment code array from 0 to F in Hexadecimal (Common cathode).

void init(void){
 pinMode(SDI, OUTPUT);
 pinMode(RCLK, OUTPUT);
 pinMode(SRCLK, OUTPUT);
 digitalWrite(SDI, 0);
 digitalWrite(RCLK, 0);
 digitalWrite(SRCLK, 0);
}

Set ds, st_cp, sh_cp three pins to OUTPUT, and the initial state as 0.

void hc595_shift(unsigned char dat){}

To assign 8 bit value to 74HC595’s shift register.

digitalWrite(SDI, 0x80 & (dat << i));

Assign the dat data to SDI(DS) by bits. Here we assume dat=0x3f(0011 1111, when i=2, 0x3f will shift left(<<) 2 bits. 1111 1100 (0x3f << 2) & 1000 0000 (0x80) = 1000 0000, is true.

digitalWrite(SRCLK, 1);

SRCLK’s initial value was set to 0, and here it’s set to 1, which is to generate a rising edge pulse, then shift the DS date to shift register.

digitalWrite(RCLK, 1);

RCLK’s initial value was set to 0, and here it’s set to 1, which is to generate a rising edge, then shift data from shift register to storage register.

while(1){
 for(i=0;i<16;i++){
 printf("Print %1X on Segment\n", i); // %X means hex output
 hc595_shift(SegCode[i]);
 delay(500);
 }
 }

In this for loop, we use %1X to output i as a hexadecimal number. Apply i to find the corresponding segment code in the SegCode[] array, and employ hc595_shift() to pass the SegCode into 74HC595’s shift register.

Note

The hexadecimal format of number 0~15 are (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

Phenomenon Picture

[image: _images/image74.jpeg]

1.1.5 4-Digit 7-Segment Display

Introduction

Next, follow me to try to control the 4-digit 7-segment display.

Components

[image: _images/list_4_digit.png]

	GPIO Extension Board

	Breadboard

	Resistor

	4-Digit 7-Segment Display

	74HC595

Note

In this projiect, for the 4-Digit 7-Segment Display we should use BS model,if you use AS model it may not light up.

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	SPIMOSI

	Pin 19

	12

	10

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

[image: _images/schmatic_4_digit.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image80.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/1.1.5/

Step 3: Compile the code.

gcc 1.1.5_4-Digit.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, the program takes a count, increasing by 1 per second, and the 4-digit 7-segment display displays the count.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>
#include <signal.h>
#include <unistd.h>

#define SDI 5
#define RCLK 4
#define SRCLK 1

const int placePin[] = {12, 3, 2, 0};
unsigned char number[] = {0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90};

int counter = 0;

void pickDigit(int digit)
{
 for (int i = 0; i < 4; i++)
 {
 digitalWrite(placePin[i], 0);
 }
 digitalWrite(placePin[digit], 1);
}

void hc595_shift(int8_t data)
{
 int i;
 for (i = 0; i < 8; i++)
 {
 digitalWrite(SDI, 0x80 & (data << i));
 digitalWrite(SRCLK, 1);
 delayMicroseconds(1);
 digitalWrite(SRCLK, 0);
 }
 digitalWrite(RCLK, 1);
 delayMicroseconds(1);
 digitalWrite(RCLK, 0);
}

void clearDisplay()
{
 int i;
 for (i = 0; i < 8; i++)
 {
 digitalWrite(SDI, 1);
 digitalWrite(SRCLK, 1);
 delayMicroseconds(1);
 digitalWrite(SRCLK, 0);
 }
 digitalWrite(RCLK, 1);
 delayMicroseconds(1);
 digitalWrite(RCLK, 0);
}

void loop()
{
 while(1){
 clearDisplay();
 pickDigit(0);
 hc595_shift(number[counter % 10]);

 clearDisplay();
 pickDigit(1);
 hc595_shift(number[counter % 100 / 10]);

 clearDisplay();
 pickDigit(2);
 hc595_shift(number[counter % 1000 / 100]);

 clearDisplay();
 pickDigit(3);
 hc595_shift(number[counter % 10000 / 1000]);
 }
}

void timer(int timer1)
{
 if (timer1 == SIGALRM)
 {
 counter++;
 alarm(1);
 printf("%d\n", counter);
 }
}

void main(void)
{
 if (wiringPiSetup() == -1)
 {
 printf("setup wiringPi failed !");
 return;
 }
 pinMode(SDI, OUTPUT);
 pinMode(RCLK, OUTPUT);
 pinMode(SRCLK, OUTPUT);

 for (int i = 0; i < 4; i++)
 {
 pinMode(placePin[i], OUTPUT);
 digitalWrite(placePin[i], HIGH);
 }
 signal(SIGALRM, timer);
 alarm(1);
 loop();
}

Code Explanation

const int placePin[] = {12, 3, 2, 0};

These four pins control the common anode pins of the four-digit 7-segment display.

unsigned char number[] = {0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90};

A segment code array from 0 to 9 in Hexadecimal (Common anode).

void pickDigit(int digit)
{
 for (int i = 0; i < 4; i++)
 {
 digitalWrite(placePin[i], 0);
 }
 digitalWrite(placePin[digit], 1);
}

Select the place of the value. there is only one place that should be enable each time. The enabled place will be written high.

void loop()
{
 while(1){
 clearDisplay();
 pickDigit(0);
 hc595_shift(number[counter % 10]);

 clearDisplay();
 pickDigit(1);
 hc595_shift(number[counter % 100 / 10]);

 clearDisplay();
 pickDigit(2);
 hc595_shift(number[counter % 1000 / 100]);

 clearDisplay();
 pickDigit(3);
 hc595_shift(number[counter % 10000 / 1000]);
 }
}

The functionis used to set the number displayed on the 4-digit 7-segment display.

	clearDisplay()：write in 11111111 to turn off these eight LEDs on 7-segment display so as to clear the displayed content.

	pickDigit(0)：pick the fourth 7-segment display.

	hc595_shift(number[counter%10])：the number in the single digit of counter will display on the forth segment.

signal(SIGALRM, timer);

This is a system-provided function, the prototype of code is:

sig_t signal(int signum,sig_t handler);

After executing the signal() , once the process receives the corresponding signum (in this case SIGALRM), it immediately pauses the existing task and processes the set function (in this case timer(sig)).

alarm(1);

This is also a system-provided function. The code prototype is:

unsigned int alarm (unsigned int seconds);

It generates a SIGALRM signal after a certain number of seconds.

void timer(int timer1)
{
 if (timer1 == SIGALRM)
 {
 counter++;
 alarm(1);
 printf("%d\n", counter);
 }
}

We use the functions above to implement the timer function.
After the alarm() generates the SIGALRM signal, the timer function is called. Add 1 to counter, and the function, alarm(1) will be repeatedly called after 1 second.

Phenomenon Picture

[image: _images/image81.jpeg]

1.1.6 LED Dot Matrix Module

Introduction

In this project, you will learn about LED Matrix Module. LED Matrix Module uses the MAX7219 driver to drive the 8 x 8 LED Matrix.

Components

[image: _images/list_dot.png]

	GPIO Extension Board

	Breadboard

	LED Matrix Module

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	SPIMOSI

	Pin 19

	12

	MOSI

	SPICE0

	pin 24

	10

	CE0

	SPISCLK

	Pin 23

	14

	SCLK

[image: _images/schematic_dot.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/1.1.6fritzing.png]

Note

Turn on the SPI before starting the experiment, refer to SPI Configuration for details. And the BCM2835 library is also needed.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/1.1.6/

Step 3: Compile the code.

make

Step 4:: Run the executable file.

sudo ./1.1.6_LedMatrix

After running the code, the LED Dot Matrix displays from 0 to 9 and A to Z in sequence.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <bcm2835.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>

#define uchar unsigned char
#define uint unsigned int

#define Max7219_pinCS RPI_GPIO_P1_24

uchar disp1[36][8]={
{0x3C,0x42,0x42,0x42,0x42,0x42,0x42,0x3C},//0
{0x08,0x18,0x28,0x08,0x08,0x08,0x08,0x08},//1
{0x7E,0x2,0x2,0x7E,0x40,0x40,0x40,0x7E},//2
{0x3E,0x2,0x2,0x3E,0x2,0x2,0x3E,0x0},//3
{0x8,0x18,0x28,0x48,0xFE,0x8,0x8,0x8},//4
{0x3C,0x20,0x20,0x3C,0x4,0x4,0x3C,0x0},//5
{0x3C,0x20,0x20,0x3C,0x24,0x24,0x3C,0x0},//6
{0x3E,0x22,0x4,0x8,0x8,0x8,0x8,0x8},//7
{0x0,0x3E,0x22,0x22,0x3E,0x22,0x22,0x3E},//8
{0x3E,0x22,0x22,0x3E,0x2,0x2,0x2,0x3E},//9
{0x8,0x14,0x22,0x3E,0x22,0x22,0x22,0x22},//A
{0x3C,0x22,0x22,0x3E,0x22,0x22,0x3C,0x0},//B
{0x3C,0x40,0x40,0x40,0x40,0x40,0x3C,0x0},//C
{0x7C,0x42,0x42,0x42,0x42,0x42,0x7C,0x0},//D
{0x7C,0x40,0x40,0x7C,0x40,0x40,0x40,0x7C},//E
{0x7C,0x40,0x40,0x7C,0x40,0x40,0x40,0x40},//F
{0x3C,0x40,0x40,0x40,0x40,0x44,0x44,0x3C},//G
{0x44,0x44,0x44,0x7C,0x44,0x44,0x44,0x44},//H
{0x7C,0x10,0x10,0x10,0x10,0x10,0x10,0x7C},//I
{0x3C,0x8,0x8,0x8,0x8,0x8,0x48,0x30},//J
{0x0,0x24,0x28,0x30,0x20,0x30,0x28,0x24},//K
{0x40,0x40,0x40,0x40,0x40,0x40,0x40,0x7C},//L
{0x81,0xC3,0xA5,0x99,0x81,0x81,0x81,0x81},//M
{0x0,0x42,0x62,0x52,0x4A,0x46,0x42,0x0},//N
{0x3C,0x42,0x42,0x42,0x42,0x42,0x42,0x3C},//O
{0x3C,0x22,0x22,0x22,0x3C,0x20,0x20,0x20},//P
{0x1C,0x22,0x22,0x22,0x22,0x26,0x22,0x1D},//Q
{0x3C,0x22,0x22,0x22,0x3C,0x24,0x22,0x21},//R
{0x0,0x1E,0x20,0x20,0x3E,0x2,0x2,0x3C},//S
{0x0,0x3E,0x8,0x8,0x8,0x8,0x8,0x8},//T
{0x42,0x42,0x42,0x42,0x42,0x42,0x22,0x1C},//U
{0x42,0x42,0x42,0x42,0x42,0x42,0x24,0x18},//V
{0x0,0x49,0x49,0x49,0x49,0x2A,0x1C,0x0},//W
{0x0,0x41,0x22,0x14,0x8,0x14,0x22,0x41},//X
{0x41,0x22,0x14,0x8,0x8,0x8,0x8,0x8},//Y
{0x0,0x7F,0x2,0x4,0x8,0x10,0x20,0x7F},//Z
};

void Delay_xms(uint x)
{
 bcm2835_delay(x);
}
//------------------------

void Write_Max7219_byte(uchar DATA)
{
 bcm2835_gpio_write(Max7219_pinCS,LOW);
 bcm2835_spi_transfer(DATA);
}

void Write_Max7219(uchar address1,uchar dat1)
{
 bcm2835_gpio_write(Max7219_pinCS,LOW);
 Write_Max7219_byte(address1);
 Write_Max7219_byte(dat1);
 bcm2835_gpio_write(Max7219_pinCS,HIGH);
}

void Init_MAX7219()
{
 Write_Max7219(0x09,0x00);
 Write_Max7219(0x0a,0x03);
 Write_Max7219(0x0b,0x07);
 Write_Max7219(0x0c,0x01);
 Write_Max7219(0x0f,0x00);
}

void Init_BCM2835()
{
 bcm2835_spi_begin();
 bcm2835_spi_setBitOrder(BCM2835_SPI_BIT_ORDER_MSBFIRST);
 bcm2835_spi_setDataMode(BCM2835_SPI_MODE0);
 bcm2835_spi_setClockDivider(BCM2835_SPI_CLOCK_DIVIDER_256);
 bcm2835_gpio_fsel(Max7219_pinCS, BCM2835_GPIO_FSEL_OUTP);
 bcm2835_gpio_write(disp1[0][0],HIGH);
}

int main(void)
{
 uchar i,j;

 if (!bcm2835_init())
 {
 printf("Unable to init bcm2835.\n");
 return 1;
 }
 Init_BCM2835();
 Delay_xms(50);
 Init_MAX7219();
 while(1)
 {
 for(j=0;j<36;j++)
 {
 for(i=1;i<9;i++)
 {
 Write_Max7219(i,disp1[j][i-1]);
 }
 Delay_xms(1000);
 }
 }
 // bcm2835_spi_end();
 // bcm2835_close();
 return 0;
}

Code Explanation

#define Max7219_pinCS 24

The cs pin of the LED Dot Matrix is connected to pin24.

Note

When you have multiple devices that need spi communication, just connect the cs pins on different pins.

if (!bcm2835_init())
 {
 printf("Unable to init bcm2835.\n");
 return 1;
 }

Check if the bcm2835 library is successfully installed, if not, print the message “Unable to init bcm2835”.

Init_BCM2835();
 Delay_xms(50);
 Init_MAX7219();

Initialize libraries and module.

while(1)
{
 for(j=0;j<36;j++)
 {
 for(i=1;i<9;i++)
 {
 Write_Max7219(i,disp1[j][i-1]);
 }
 Delay_xms(1000);
 }
}

The Write_Max7219() function allows you to display the specified character on the LED Dot Matrix, where the first parameter inputs the row in which it is displayed, and the second parameter inputs an 8-bit binary number or a hexadecimal number that indicates the light on or off in that row (0 means off, 1 means lit).

The variable j represents the rows in the array disp1[] (35 rows) and the variable i represents the column (8 columns).

For example, when j=1 and i=2, the value disp1[1][1] (0x18) is displayed on the dot matrix. i loops 8 times to display the full 1 on the dot matrix. After 35 cycles of j, 0-9 and A-Z are displayed on the dot matrix.

[image: _images/led_not.png]

Phenomenon Picture

[image: _images/1.1.6led_dot_matrix.JPG]

1.1.7 I2C LCD1602

Introduction

LCD1602 is a character type liquid crystal display, which can display 32
(16*2) characters at the same time.

Components

[image: _images/list_i2c_lcd.png]

	GPIO Extension Board

	Breadboard

	I2C LCD1602

Schematic Diagram

	T-Board Name

	physical

	SDA1

	Pin 3

	SCL1

	Pin 5

[image: _images/schematic_i2c_lcd.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image96.png]
Step 2: Setup I2C (see I2C Configuration. If you have set I2C, skip this step.)

Step 3: Change directory.

cd /home/pi/raphael-kit/c/1.1.7/

Step 4: Compile.

gcc 1.1.7_Lcd1602.c -lwiringPi

Step 5: Run.

sudo ./a.out

After the code runs, you can see Greetings!, From SunFounder displaying on the LCD.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

	1.1.7_Lcd1602.c [https://github.com/sunfounder/raphael-kit/blob/master/c/1.1.7/1.1.7_Lcd1602.c]

Code Explanation

void write_word(int data){……}
void send_command(int comm){……}
void send_data(int data){……}
void init(){……}
void clear(){……}
void write(int x, int y, char data[]){……}

These functions are used to control I2C LCD1602 open source code. They allow us to easily use I2C LCD1602.
Among these functions, init() is used for initialization, clear() is used to clear the screen, write() is used to write what is displayed, and other functions support the above functions.

fd = wiringPiI2CSetup(LCDAddr);

This function initializes the I2C system with the specified device symbol. The prototype of the function:

int wiringPiI2CSetup(int devId);

Parameters devId is the address of the I2C device, it can be found through the i2cdetect command(see Appendix) and the devId of I2C LCD1602 is generally 0x27.

void write(int x, int y, char data[]){}

In this function, data[] is the character to be printed on the LCD, and the parameters x and y determine the printing position (line y+1, column x+1 is the starting position of the character to be printed).

Phenomenon Picture

[image: _images/image97.jpeg]

1.2.1 Active Buzzer

Introduction

In this project, we will learn how to drive an active buzzer to beep with
a PNP transistor.

Components

[image: _images/list_1.2.1.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Buzzer

	Transistor

Schematic Diagram

In this experiment, an active buzzer, a PNP transistor and a 1k resistor
are used between the base of the transistor and GPIO to protect the
transistor. When the GPIO17 of Raspberry Pi output is supplied with low
level (0V) by programming, the transistor will conduct because of
current saturation and the buzzer will make sounds. But when high level
is supplied to the IO of Raspberry Pi, the transistor will be cut off
and the buzzer will not make sounds.

[image: _images/image332.png]

Experimental Procedures

Step 1: Build the circuit. (The active buzzer has a white table sticker on the surface and a black back.)

[image: _images/image104.png]
Step 2: Open the code file.

cd /home/pi/raphael-kit/c/1.2.1/

Step 3: Compile the code.

gcc 1.2.1_ActiveBuzzer.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

The code run, the buzzer beeps.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define BeepPin 0
int main(void){
 if(wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(BeepPin, OUTPUT); //set GPIO0 output
 while(1){
 //beep on
 printf("Buzzer on\n");
 digitalWrite(BeepPin, LOW);
 delay(100);
 printf("Buzzer off\n");
 //beep off
 digitalWrite(BeepPin, HIGH);
 delay(100);
 }
 return 0;
}

Code Explanation

digitalWrite(BeepPin, LOW);

We use an active buzzer in this experiment, so it will make sound
automatically when connecting to the direct current. This sketch
is to set the I/O port as low level (0V), thus to manage the
transistor and make the buzzer beep.

digitalWrite(BeepPin, HIGH);

To set the I/O port as high level(3.3V), thus the transistor is
not energized and the buzzer doesn’t beep.

Phenomenon Picture

[image: _images/image105.jpeg]

1.2.2 Passive Buzzer

Introduction

In this project, we will learn how to make a passive buzzer play music.

Components

[image: _images/list_1.2.2.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Buzzer

	Transistor

Schematic Diagram

In this experiment, a passive buzzer, a PNP transistor and a 1k resistor
are used between the base of the transistor and GPIO to protect the
transistor.

When GPIO17 is given different frequencies, the passive buzzer will emit
different sounds; in this way, the buzzer plays music.

[image: _images/image333.png]

Experimental Procedures

Step 1: Build the circuit. (The Passive buzzer with green circuit board on the back.)

[image: _images/image106.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/c/1.2.2/

Step 3: Compile.

gcc 1.2.2_PassiveBuzzer.c -lwiringPi

Step 4: Run.

sudo ./a.out

The code run, the buzzer plays a piece of music.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softTone.h>
#include <stdio.h>

#define BuzPin 0

#define CL1 131
#define CL2 147
#define CL3 165
#define CL4 175
#define CL5 196
#define CL6 221
#define CL7 248

#define CM1 262
#define CM2 294
#define CM3 330
#define CM4 350
#define CM5 393
#define CM6 441
#define CM7 495

#define CH1 525
#define CH2 589
#define CH3 661
#define CH4 700
#define CH5 786
#define CH6 882
#define CH7 990

int song_1[] = {CM3,CM5,CM6,CM3,CM2,CM3,CM5,CM6,CH1,CM6,CM5,CM1,CM3,CM2,
 CM2,CM3,CM5,CM2,CM3,CM3,CL6,CL6,CL6,CM1,CM2,CM3,CM2,CL7,
 CL6,CM1,CL5};

int beat_1[] = {1,1,3,1,1,3,1,1,1,1,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,2,1,1,
 1,1,1,1,1,1,3};

int song_2[] = {CM1,CM1,CM1,CL5,CM3,CM3,CM3,CM1,CM1,CM3,CM5,CM5,CM4,CM3,CM2,
 CM2,CM3,CM4,CM4,CM3,CM2,CM3,CM1,CM1,CM3,CM2,CL5,CL7,CM2,CM1
 };

int beat_2[] = {1,1,1,3,1,1,1,3,1,1,1,1,1,1,3,1,1,1,2,1,1,1,3,1,1,1,3,3,2,3};

int main(void)
{
 int i, j;
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 if(softToneCreate(BuzPin) == -1){
 printf("setup softTone failed !");
 return 1;
 }

 while(1){
 printf("music is being played...\n");

 for(i=0;i<sizeof(song_1)/4;i++){
 softToneWrite(BuzPin, song_1[i]);
 delay(beat_1[i] * 500);
 }

 for(i=0;i<sizeof(song_2)/4;i++){
 softToneWrite(BuzPin, song_2[i]);
 delay(beat_2[i] * 500);
 }
 }

 return 0;
}

Code Explanation

#define CL1 131
#define CL2 147
#define CL3 165
#define CL4 175
#define CL5 196
#define CL6 221
#define CL7 248

#define CM1 262
#define CM2 294

These frequencies of each note are as shown. CL refers to low note,
CM middle note, CH high note, 1-7 correspond to the notes C, D, E, F, G, A, B.

int song_1[] = {CM3,CM5,CM6,CM3,CM2,CM3,CM5,CM6,CH1,CM6,CM5,CM1,CM3,CM2,
 CM2,CM3,CM5,CM2,CM3,CM3,CL6,CL6,CL6,CM1,CM2,CM3,CM2,CL7,
 CL6,CM1,CL5};
int beat_1[] = {1,1,3,1,1,3,1,1,1,1,1,1,1,1,3,1,1,3,1,1,1,1,1,1,1,2,1,1,
 1,1,1,1,1,1,3};

The array, song_1[] stores a musical score of a song in which beat_1[]
refers to the beat of each note in the song (0.5s for each beat).

if(softToneCreate(BuzPin) == -1){
 printf("setup softTone failed !");
 return 1;
}

This creates a software controlled tone pin. You can use any GPIO pin
and the pin numbering will be that of the wiringPiSetup() function
you used. The return value is 0 for success. Anything else and you
should check the global errnovariable to see what went wrong.

for(i=0;i<sizeof(song_1)/4;i++){
 softToneWrite(BuzPin, song_1[i]);
 delay(beat_1[i] * 500);
}

Employ a for statement to play song_1.

In the judgment condition, i<sizeof(song_1)/4，“devide by 4” is
used because the array song_1[] is an array of the data type of integer,
and each element takes up four bytes.

The number of elements in song_1 (the number of musical notes) is gotten
by deviding sizeof(song_1) by 4.

To enable each note to play for beat * 500ms, the function
delay(beat_1[i] * 500) is called.

The prototype of softToneWrite(BuzPin, song_1[i]) is：

void softToneWrite (int pin, int freq);

This updates the tone frequency value on the given pin. The tone
does not stop playing until you set the frequency to 0.

Phenomenon Picture

[image: _images/image107.jpeg]

1.3.1 Motor

Introduction

In this project, we will learn to how to use L293D to drive a DC motor
and make it rotate clockwise and counterclockwise. Since the DC Motor
needs a larger current, for safety purpose, here we use the Power Supply
Module to supply motors.

Components

[image: _images/list_1.3.1.png]

	GPIO Extension Board

	Breadboard

	Power Supply Module

	L293D

	DC Motor

Schematic Diagram

Plug the power supply module in breadboard, and insert the jumper cap to
pin of 5V, then it will output voltage of 5V. Connect pin 1 of L293D to
GPIO22, and set it as high level. Connect pin2 to GPIO27, and pin7 to
GPIO17, then set one pin high, while the other low. Thus you can change
the motor’s rotation direction.

[image: _images/image336.png]
Experimental Procedures

Step 1: Build the circuit.

[image: _images/image117.png]

Note

The power module can apply a 9V battery with the 9V Battery
Buckle in the kit. Insert the jumper cap of the power module into the 5V
bus strips of the breadboard.

[image: _images/image118.jpeg]
Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/c/1.3.1/

Step 3: Compile.

gcc 1.3.1_Motor.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

As the code runs, the motor first rotates clockwise for 5s then stops for 5s,
after that, it rotates anticlockwise for 5s; subsequently, the motor stops
for 5s. This series of actions will be executed repeatedly.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define MotorPin1 0
#define MotorPin2 2
#define MotorEnable 3

int main(void){
 int i;
 if(wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(MotorPin1, OUTPUT);
 pinMode(MotorPin2, OUTPUT);
 pinMode(MotorEnable, OUTPUT);
 while(1){
 printf("Clockwise\n");
 digitalWrite(MotorEnable, HIGH);
 digitalWrite(MotorPin1, HIGH);
 digitalWrite(MotorPin2, LOW);
 for(i=0;i<3;i++){
 delay(1000);
 }

 printf("Stop\n");
 digitalWrite(MotorEnable, LOW);
 for(i=0;i<3;i++){
 delay(1000);
 }

 printf("Anti-clockwise\n");
 digitalWrite(MotorEnable, HIGH);
 digitalWrite(MotorPin1, LOW);
 digitalWrite(MotorPin2, HIGH);
 for(i=0;i<3;i++){
 delay(1000);
 }

 printf("Stop\n");
 digitalWrite(MotorEnable, LOW);
 for(i=0;i<3;i++){
 delay(1000);
 }
 }
 return 0;
}

Code Explanation

digitalWrite(MotorEnable, HIGH);

Enable the L239D.

digitalWrite(MotorPin1, HIGH);
digitalWrite(MotorPin2, LOW);

Set a high level for 2A(pin 7); since 1,2EN(pin 1) is in
high level, 2Y will output high level.

Set a low level for 1A, then 1Y will output low level, and
the motor will rotate.

for(i=0;i<3;i++){
 delay(1000);
}

this loop is to delay for 3*1000ms.

digitalWrite(MotorEnable, LOW)

If 1,2EN (pin1) is in low level, L293D does not work. Motor stops rotating.

digitalWrite(MotorPin1, LOW)
digitalWrite(MotorPin2, HIGH)

Reverse the current flow of the motor, then the motor will rotate reversely.

Phenomenon Picture

[image: _images/image119.jpeg]

1.3.2 Servo

Introduction

In this project, we will learn how to make the servo rotate.

Components

[image: _images/list_1.3.2.png]

	GPIO Extension Board

	Breadboard

	Servo

Schematic Diagram

[image: _images/image337.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image125.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/1.3.2

Step 3: Compile the code.

gcc 1.3.2_Servo.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the program is executed, the servo will rotate from
0 degrees to 180 degrees, and then from 180 degrees to 0 degrees, circularly.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>

#define ServoPin 1 //define the servo to GPIO1
long Map(long value,long fromLow,long fromHigh,long toLow,long toHigh){
 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow;
}
void setAngle(int pin, int angle){ //Create a funtion to control the angle of the servo.
 if(angle < 0)
 angle = 0;
 if(angle > 180)
 angle = 180;
 softPwmWrite(pin,Map(angle, 0, 180, 5, 25));
}

int main(void)
{
 int i;
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }
 softPwmCreate(ServoPin, 0, 200); //initialize PMW pin of servo
 while(1){
 for(i=0;i<181;i++){ // Let servo rotate from 0 to 180. setAngle(ServoPin,i);
 delay(2);
 }
 delay(1000);
 for(i=181;i>-1;i--){ // Let servo rotate from 180 to 0. setAngle(ServoPin,i);
 delay(2);
 }
 delay(1000);
 }
 return 0;
}

Code Explanation

long Map(long value,long fromLow,long fromHigh,long toLow,long toHigh){
 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow;
}

Create a Map() function to map value in the following code.

void setAngle(int pin, int angle){ //Create a funtion to control the angle of the servo.
 if(angle < 0)
 angle = 0;
 if(angle > 180)
 angle = 180;
 softPwmWrite(pin,Map(angle, 0, 180, 5, 25));
}

Create a funtion, setAngle() to write angle to the servo.

softPwmWrite(pin,Map(angle,0,180,5,25));

This function can change the duty cycle of the PWM.

To make the servo rotate to 0 ~ 180 °, the pulse width should change
within the range of 0.5ms ~ 2.5ms when the period is 20ms; in the
function, softPwmCreate() , we have set that the period is
200x100us=20ms, thus we need to map 0 ~ 180 to 5x100us ~ 25x100us.

The prototype of this function is shown below.

int softPwmCreate（int pin，int initialValue，int pwmRange）;

	pin: Any GPIO pin of Raspberry Pi can be set as PWM pin.

	initialValue: The initial pulse width is that initialValue times 100us.

	pwmRange: the period of PWM is that pwmRange times 100us.

Phenomenon Picture

[image: _images/image126.jpeg]

1.3.3 Relay

Introduction

In this project, we will learn to use a relay. It is one of the commonly
used components in automatic control system. When the voltage, current,
temperature, pressure, etc., reaches, exceeds or is lower than the
predetermined value, the relay will connect or interrupt the circuit, to
control and protect the equipment.

Components

[image: _images/list_1.3.4.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Transistor

	Relay

	Diode

Schematic Diagram

[image: _images/image345.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image144.png]
Step 2: Open the code file.

cd /home/pi/raphael-kit/c/1.3.3

Step 3: Compile the code.

gcc 1.3.3_Relay.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, the LED will light up. In addition, you can
hear a ticktock caused by breaking normally close contact and
closing normally open contact.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#define RelayPin 0

int main(void){
 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }
 pinMode(RelayPin, OUTPUT); //set GPIO17(GPIO0) output
 while(1){
 // Tick
 printf("Relay Open......\n");
 digitalWrite(RelayPin, LOW);
 delay(1000);
 // Tock
 printf("......Relay Close\n");
 digitalWrite(RelayPin, HIGH);
 delay(1000);
 }

 return 0;
}

Code Explanation

digitalWrite(RelayPin, LOW);

Set the I/O port as low level (0V), thus the transistor is not energized
and the coil is not powered. There is no electromagnetic force, so the
relay opens, LED does not turn on.

digitalWrite(RelayPin, HIGH);

set the I/O port as high level (5V) to energize the transistor. The coil
of the relay is powered and generate electromagnetic force, and the
relay closes, LED lights up.

Phenomenon Picture

[image: _images/image145.jpeg]

Input

2.1 Controllers

	2.1.1 Button

	2.1.2 Micro Switch

	2.1.3 Touch Switch Module

	2.1.4 Slide Switch

	2.1.5 Tilt Switch

	2.1.6 Rotary Encoder Module

	2.1.7 Potentiometer

	2.1.8 Keypad

	2.1.9 Joystick

2.2 Sensors

	2.2.1 Photoresistor

	2.2.2 Thermistor

	2.2.3 DHT-11

	2.2.4 Reed Switch Module

	2.2.5 IR Obstacle Avoidance Module

	2.2.6 Speed Sensor Module

	2.2.7 PIR

	2.2.8 Ultrasonic Sensor Module

	2.2.9 MPU6050 Module

	2.2.10 MFRC522 RFID Module

2.1.1 Button

Introduction

In this project, we will learn how to turn on or off the LED by using a
button.

Components

[image: _images/list_2.1.1_Button.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Button

Schematic Diagram

Use a normally open button as the input of Raspberry Pi, the connection
is shown in the schematic diagram below. When the button is pressed, the
GPIO18 will turn into low level (0V). We can detect the state of the
GPIO18 through programming. That is, if the GPIO18 turns into low level,
it means the button is pressed. You can run the corresponding code when
the button is pressed, and then the LED will light up.

Note

The longer pin of the LED is the anode and the shorter one is
the cathode.

[image: _images/image302.png]
[image: _images/image303.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image152.png]
Step 2: Open the code file.

cd /home/pi/raphael-kit/c/2.1.1/

Note

Change directory to the path of the code in this experiment via cd.

Step 3: Compile the code.

gcc 2.1.1_Button.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, press the button, the LED lights up; otherwise,
turns off.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define LedPin 0
#define ButtonPin 1

int main(void){
 // When initialize wiring failed, print message to screen
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(LedPin, OUTPUT);
 pinMode(ButtonPin, INPUT);
 digitalWrite(LedPin, HIGH);

 while(1){
 // Indicate that button has pressed down
 if(digitalRead(ButtonPin) == 0){
 // Led on
 digitalWrite(LedPin, LOW);
 // printf("...LED on\n");
 }
 else{
 // Led off
 digitalWrite(LedPin, HIGH);
 // printf("LED off...\n");
 }
 }
 return 0;
}

Code Explanation

#define LedPin 0

Pin GPIO17 in the T_Extension Board is equal to the GPIO0 in the
wiringPi.

#define ButtonPin 1

ButtonPin is connected to GPIO1.

pinMode(LedPin, OUTPUT);

Set LedPin as output to assign value to it.

pinMode(ButtonPin, INPUT);

Set ButtonPin as input to read the value of ButtonPin.

while(1){
 // Indicate that button has pressed down
 if(digitalRead(ButtonPin) == 0){
 // Led on
 digitalWrite(LedPin, LOW);
 // printf("...LED on\n");
 }
 else{
 // Led off
 digitalWrite(LedPin, HIGH);
 // printf("LED off...\n");
 }
 }

if (digitalRead (ButtonPin) == 0) : check whether the button has been
pressed. Execute digitalWrite(LedPin, LOW) when button is pressed to
light up LED.

digitalRead() function is to read HIGH (high level) or LOW (low level) of
the input parameter word pin, it returns 1 when pin is HIGH and returns 0
when pin is LOW.

digitalWrite() function is to write HIGH (high level) or LOW (low level) to
the input parameter word pin.

Phenomenon Picture

[image: _images/image153.jpeg]

2.1.2 Micro Switch

Introduction

In this project, we will learn how to use Micro Switch. A Micro Switch is a small, very sensitive switch which requires minimum compression to activate. Because they are reliable and sensitive, micro switches are often used as a safety device.

They are used to prevent doors from closing if something or someone is in the way and other applications similar.

Components

[image: _images/2.1.2component.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Micro Switch

	Capacitor

Schematic Diagram

Connect the left pin of the Micro Switch to GPIO17, and two LEDs to
pin GPIO22 and GPIO27 respectively. Then when you press and release the
move arm of the Micro Switch, you can see the two LEDs light up alternately.

[image: _images/image305.png]
[image: _images/micro_Schematic.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/2.1.4fritzing.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.1.2

Step 3: Compile.

gcc 2.1.2_MicroSwitch.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

While the code is running, press the Micro Switch, then the yellow LED lights up; release the moving arm, the red LED turns on.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define microPin 0
#define led1 3
#define led2 2

int main(void)
{
 // When initialize wiring failed, print message to screen
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(microPin, INPUT);
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);

 while(1){
 // micro switch high, led1 on
 if(digitalRead(microPin) == 1){
 digitalWrite(led1, LOW);
 digitalWrite(led2, HIGH);
 printf("LED1 on\n");
 }
 // micro switch low, led2 on
 if(digitalRead(microPin) == 0){
 digitalWrite(led2, LOW);
 digitalWrite(led1, HIGH);
 printf(".....LED2 on\n");
 }
 delay(500);
 }

 return 0;
}

Code Explanation

if(digitalRead(slidePin) == 1){
 digitalWrite(led1, LOW);
 digitalWrite(led2, HIGH);
 printf("LED1 on\n");
 }

When the moving arm of the micro switch is released, the left pin is connected to the right pin; at this time, a high level will be read on GPIO17, and then LED1 will be on and LED2 will be off.

if(digitalRead(slidePin) == 0){
 digitalWrite(led2, LOW);
 digitalWrite(led1, HIGH);
 printf(".....LED2 on\n");
 }

When the move arm is pressed, the left pin and the middle pin are connected. At this point a low level will be read on GPIO17, then turns LED2 on and LED1 off.

Phenomenon Picture

[image: _images/2.1.2micro_switch.JPG]

2.1.3 Touch Switch Module

Introduction

In this project, you will learn about touch switch module. It can replace
the traditional kinds of switch with these advantages: convenient operation,
fine touch sense, precise control and least mechanical wear.

Components

[image: _images/2.1.3component.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Touch Switch Module

Schematic Diagram

[image: _images/2.1.3circuit.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/2.1.3fritzing.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/c/2.1.3/

Step 3: Compile.

gcc 2.1.3_TouchSwitch.c -lwiringPi

Step 4: Run.

sudo ./a.out

While the code is running, the red LED lights up; when you tap on the touch switch module, the yellow LED turns on.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define touchPin 0
#define led1 3
#define led2 2

int main(void)
{
 // When initialize wiring failed, print message to screen
 if(wiringPiSetup() == -1){
 printf(etup w"siringPi failed !");
 return 1;
 }

 pinMode(touchPin, INPUT);
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);

 while(1){
 // touch switch high, led1 on
 if(digitalRead(touchPin) == 1){
 digitalWrite(led1, LOW);
 digitalWrite(led2, HIGH);
 printf("You touch it! \r\n");
 }
 // touch switch low, led2 on
 if(digitalRead(touchPin) == 0){
 digitalWrite(led2, LOW);
 digitalWrite(led1, HIGH);
 }
 }

 return 0;
}

Code Explanation

#define touchPin 0
#define led1 3
#define led2 2

Pin GPIO17, GPIO22 and GPIO27 of the T_Extension Board is corresponding to
the GPIO0, GPIO3 and GPIO2 in wiringPi. Assign GPIO0, GPIO3 and GPIO2 to
touchPin, led1 and led2.

pinMode(touchPin, INPUT);
pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);

Set led1, led2 as output to write value to them and set touchPin as input to
read value from it.

while(1){
 // touch switch high, led1 on
 if(digitalRead(touchPin) == 1){
 digitalWrite(led1, LOW);
 digitalWrite(led2, HIGH);
 printf("You touch it! \r\n");
 }
 // touch switch low, led2 on
 if(digitalRead(touchPin) == 0){
 digitalWrite(led2, LOW);
 digitalWrite(led1, HIGH);
 }
}

Set an infinite loop, when you tap on the touch switch module, touchPin is high, led1 will light up and print “You touch it!” . When touchPin is low, led2 will light up.

Phenomenon Picture

[image: _images/2.1.3touch_switch_module.JPG]

2.1.4 Slide Switch

Introduction

In this project, we will learn how to use a slide switch. Usually,the
slide switch is soldered on PCB as a power switch, but here we need to
insert it into the breadboard, thus it may not be tightened. And we use
it on the breadboard to show its function.

Components

[image: _images/list_2.1.2_slide_switch.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Slide Switch

	Capacitor

Schematic Diagram

Connect the middle pin of the Slide Switch to GPIO17, and two LEDs to
pin GPIO22 and GPIO27 respectively. Then when you pull the slide, you
can see the two LEDs light up alternately.

[image: _images/image305.png]
[image: _images/image306.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image161.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.1.4

Step 3: Compile.

gcc 2.1.4_Slider.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

While the code is running, get the switch connected to the left, then
the yellow LED lights up; to the right, the red light turns on.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#define slidePin 0
#define led1 3
#define led2 2

int main(void)
{
 // When initialize wiring failed, print message to screen
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }
 pinMode(slidePin, INPUT);
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);
 while(1){
 // slide switch high, led1 on
 if(digitalRead(slidePin) == 1){
 digitalWrite(led1, LOW);
 digitalWrite(led2, HIGH);
 printf("LED1 on\n");
 }
 // slide switch low, led2 on
 if(digitalRead(slidePin) == 0){
 digitalWrite(led2, LOW);
 digitalWrite(led1, HIGH);
 printf(".....LED2 on\n");
 }
 }
 return 0;
}

Code Explanation

if(digitalRead(slidePin) == 1){
 digitalWrite(led1, LOW);
 digitalWrite(led2, HIGH);
 printf("LED1 on\n");
 }

When the slide is pulled to the right, the middle pin and right one are
connected; the Raspberry Pi reads a high level at the middle pin, so the
LED1 is on and LED2 off

if(digitalRead(slidePin) == 0){
 digitalWrite(led2, LOW);
 digitalWrite(led1, HIGH);
 printf(".....LED2 on\n");
 }

When the slide is pulled to the left, the middle pin and left one are
connected; the Raspberry Pi reads a low, so the LED2 is on and LED1 off

Phenomenon Picture

[image: _images/image162.jpeg]

2.1.5 Tilt Switch

Introduction

This is a ball tilt-switch with a metal ball inside. It is used to
detect inclinations of a small angle.

Components

[image: _images/list_2.1.3_tilt_switch.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Tilt Switch

Schematic Diagram

[image: _images/image307.png]
[image: _images/image308.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image169.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/c/2.1.5/

Step 3: Compile.

gcc 2.1.5_Tilt.c -lwiringPi

Step 4: Run.

sudo ./a.out

Place the tilt vertically, and the green LED will turns on. If you
tilt it, “Tilt!” will be printed on the screen and the red LED will
lights on. Place it vertically again, and the green LED will turns on
again.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define TiltPin 0
#define Gpin 2
#define Rpin 3

void LED(char* color)
{
 pinMode(Gpin, OUTPUT);
 pinMode(Rpin, OUTPUT);
 if (color == "RED")
 {
 digitalWrite(Rpin, HIGH);
 digitalWrite(Gpin, LOW);
 }
 else if (color == "GREEN")
 {
 digitalWrite(Rpin, LOW);
 digitalWrite(Gpin, HIGH);
 }
 else
 printf("LED Error");
}

int main(void)
{
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(TiltPin, INPUT);
 LED("GREEN");

 while(1){
 if(0 == digitalRead(TiltPin)){
 delay(10);
 if(0 == digitalRead(TiltPin)){
 LED("RED");
 printf("Tilt!\n");
 }
 }
 else if(1 == digitalRead(TiltPin)){
 delay(10);
 if(1 == digitalRead(TiltPin)){
 LED("GREEN");
 }
 }
 }
 return 0;
}

Code Explanation

void LED(char* color)
{
 pinMode(Gpin, OUTPUT);
 pinMode(Rpin, OUTPUT);
 if (color == "RED")
 {
 digitalWrite(Rpin, HIGH);
 digitalWrite(Gpin, LOW);
 }
 else if (color == "GREEN")
 {
 digitalWrite(Rpin, LOW);
 digitalWrite(Gpin, HIGH);
 }
 else
 printf("LED Error");
}

Define a function LED() to turn the two LEDs on or off. If the parameter
color is RED, the red LED lights up; similarly, if the parameter color
is GREEN, the green LED will turns on.

while(1){
 if(0 == digitalRead(TiltPin)){
 delay(10);
 if(0 == digitalRead(TiltPin)){
 LED("RED");
 printf("Tilt!\n");
 }
 }
 else if(1 == digitalRead(TiltPin)){
 delay(10);
 if(1 == digitalRead(TiltPin)){
 LED("GREEN");
 }
 }
 }

If the read value of tilt switch is 0, it means that the tilt switch is
tilted then you write the parameter ”RED” into function LED to get the
red LED lighten up; otherwise, the green LED will lit.

Phenomenon Picture

[image: _images/image170.jpeg]

2.1.6 Rotary Encoder Module

Introduction

In this project, you will learn about Rotary Encoder. A rotary encoder is
an electronic switch with a set of regular pulses in strictly timing
sequence. When used with IC, it can achieve increment, decrement, page
turning and other operations such as mouse scrolling, menu selection,
and so on.

Components

[image: _images/Part_two_25.png]

	GPIO Extension Board

	Breadboard

	Rotary Encoder Module

Schematic Diagram

[image: _images/image349.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/2.1.6_fritzing.png]
Step 2: Open the code file.

cd /home/pi/raphael-kit/c/2.1.6/

Step 3: Compile the code.

gcc 2.1.6_RotaryEncoder.c -lwiringPi

Step 4: Run.

sudo ./a.out

You will see the count on the shell. When you turn the rotary encoder clockwise, the count is increased; when turn it counterclockwise, the count is decreased. If you press the switch on the rotary encoder, the readings will return to zero.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <wiringPi.h>

#define clkPin 0
#define dtPin 1
#define swPin 2

static volatile int globalCounter = 0 ;

unsigned char flag;
unsigned char Last_dtPin_Status;
unsigned char Current_dtPin_Status;

void btnISR(void)
{
 globalCounter = 0;
}

void rotaryDeal(void)
{
 Last_dtPin_Status = digitalRead(dtPin);

 while(!digitalRead(clkPin)){
 Current_dtPin_Status = digitalRead(dtPin);
 flag = 1;
 }

 if(flag == 1){
 flag = 0;
 if((Last_dtPin_Status == 0)&&(Current_dtPin_Status == 1)){
 globalCounter --;
 }
 if((Last_dtPin_Status == 1)&&(Current_dtPin_Status == 0)){
 globalCounter ++;
 }
 }
}

int main(void)
{
 if(wiringPiSetup() < 0){
 fprintf(stderr, "Unable to setup wiringPi:%s\n",strerror(errno));
 return 1;
 }

 pinMode(swPin, INPUT);
 pinMode(clkPin, INPUT);
 pinMode(dtPin, INPUT);

 pullUpDnControl(swPin, PUD_UP);

 if(wiringPiISR(swPin, INT_EDGE_FALLING, &btnISR) < 0){
 fprintf(stderr, "Unable to init ISR\n",strerror(errno));
 return 1;
 }

 int tmp = 0;

 while(1){
 rotaryDeal();
 if (tmp != globalCounter){
 printf("%d\n", globalCounter);
 tmp = globalCounter;
 }
 }

 return 0;
}

Code Analysis

	Read dtPin value when clkPin is low.

	When clkPin is high, if dtPin goes from low to high, the count decreases, otherwise the count increases.

	swPin will output low when the shaft is pressed.

From this, the program flow is shown below:

[image: _images/2.1.6_flow.png]

Phenomenon Picture

[image: _images/2.1.6rotary_ecoder.JPG]

2.1.7 Potentiometer

Introduction

The ADC function can be used to convert analog signals to digital
signals, and in this experiment, ADC0834 is used to get the function
involving ADC. Here, we implement this process by using potentiometer.
Potentiometer changes the physical quantity – voltage, which is
converted by the ADC function.

Components

[image: _images/list_2.1.4_potentiometer.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Potentiometer

	ADC0834

Schematic Diagram

[image: _images/image311.png]
[image: _images/image312.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image180.png]

Note

Please place the chip by referring to the corresponding position
depicted in the picture. Note that the grooves on the chip should be on
the left when it is placed.

Step 2: Open the code file.

cd /home/pi/raphael-kit/c/2.1.7/

Step 3: Compile the code.

gcc 2.1.7_Potentiometer.c -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, rotate the knob on the potentiometer, the intensity
of LED will change accordingly.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>

typedef unsigned char uchar;
typedef unsigned int uint;

#define ADC_CS 0
#define ADC_CLK 1
#define ADC_DIO 2
#define LedPin 3

uchar get_ADC_Result(uint channel)
{
 uchar i;
 uchar dat1=0, dat2=0;
 int sel = channel > 1 & 1;
 int odd = channel & 1;

 pinMode(ADC_DIO, OUTPUT);
 digitalWrite(ADC_CS, 0);
 // Start bit
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Single End mode
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 // ODD
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 //Select
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1);

 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);

 for(i=0;i<8;i++)
 {
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);

 pinMode(ADC_DIO, INPUT);
 dat1=dat1<<1 | digitalRead(ADC_DIO);
 }

 for(i=0;i<8;i++)
 {
 dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);
 }

 digitalWrite(ADC_CS,1);
 pinMode(ADC_DIO, OUTPUT);
 return(dat1==dat2) ? dat1 : 0;
}

int main(void)
{
 uchar analogVal;
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }
 softPwmCreate(LedPin, 0, 100);
 pinMode(ADC_CS, OUTPUT);
 pinMode(ADC_CLK, OUTPUT);

 while(1){
 analogVal = get_ADC_Result(0);
 printf("Current analogVal : %d\n", analogVal);
 softPwmWrite(LedPin, analogVal);
 delay(100);
 }
 return 0;
}

Code Explanation

#define ADC_CS 0
#define ADC_CLK 1
#define ADC_DIO 2
#define LedPin 3

Define CS, CLK, DIO of ADC0834, and connect them to GPIO0, GPIO1 and
GPIO2 respectively. Then attach LED to GPIO3.

uchar get_ADC_Result(uint channel)
{
 uchar i;
 uchar dat1=0, dat2=0;
 int sel = channel > 1 & 1;
 int odd = channel & 1;

 pinMode(ADC_DIO, OUTPUT);
 digitalWrite(ADC_CS, 0);
 // Start bit
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Single End mode
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 // ODD
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 //Select
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1);

 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 for(i=0;i<8;i++)
 {
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);

 pinMode(ADC_DIO, INPUT);
 dat1=dat1<<1 | digitalRead(ADC_DIO);
 }

 for(i=0;i<8;i++)
 {
 dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);
 }

 digitalWrite(ADC_CS,1);
 pinMode(ADC_DIO, OUTPUT);
 return(dat1==dat2) ? dat1 : 0;
}

There is a function of ADC0834 to get Analog to Digital Conversion. The
specific workflow is as follows:

digitalWrite(ADC_CS, 0);

Set CS to low level and start enabling AD conversion.

// Start bit
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);

When the low-to-high transition of the clock input occurs at the first
time, set DIO to 1 as Start bit. In the following three steps, there are
3 assignment words.

//Single End mode
digitalWrite(ADC_CLK,0);
igitalWrite(ADC_DIO,1); delayMicroseconds(2);
gitalWrite(ADC_CLK,1); delayMicroseconds(2);

As soon as the low-to-high transition of the clock input occurs for the
second time, set DIO to 1 and choose SGL mode.

// ODD
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
digitalWrite(ADC_CLK,1); delayMicroseconds(2);

Once occurs for the third time, the value of DIO is controlled by the
variable odd.

//Select
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
digitalWrite(ADC_CLK,1);

The pulse of CLK converted from low level to high level for the forth
time, the value of DIO is controlled by the variable sel.

Under the condition that channel=0, sel=0, odd=0, the operational
formulas concerning sel and odd are as follows:

int sel = channel > 1 & 1;
int odd = channel & 1;

When the condition that channel=1, sel=0, odd=1 is met, please refer to
the following address control logic table. Here CH1 is chosen, and the
start bit is shifted into the start location of the multiplexer register
and conversion starts.

[image: _images/image313.png]
digitalWrite(ADC_DIO,1); delayMicroseconds(2);
digitalWrite(ADC_CLK,0);
digitalWrite(ADC_DIO,1); delayMicroseconds(2);

Here, set DIO to 1 twice, please ignore it.

for(i=0;i<8;i++)
 {
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);

 pinMode(ADC_DIO, INPUT);
 dat1=dat1<<1 | digitalRead(ADC_DIO);
 }

In the first for() statement, as soon as the fifth pulse of CLK is
converted from high level to low level, set DIO to input mode. Then the
conversion starts and the converted value is stored in the variable
dat1. After eight clock periods, the conversion is complete.

for(i=0;i<8;i++)
 {
 dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);
 }

In the second for() statement, output the converted values via DO after
other eight clock periods and store them in the variable dat2.

digitalWrite(ADC_CS,1);
pinMode(ADC_DIO, OUTPUT);
return(dat1==dat2) ? dat1 : 0;

return(dat1==dat2) ? dat1 : 0 is used to compare the value gotten during
the conversion and the output value. If they are equal to each other,
output the converting value dat1; otherwise, output 0. Here, the
workflow of ADC0834 is complete.

softPwmCreate(LedPin, 0, 100);

The function is to use software to create a PWM pin, LedPin, then the
initial pulse width is set to 0, and the period of PWM is 100 x 100us.

while(1){
 analogVal = get_ADC_Result(0);
 printf("Current analogVal : %d\n", analogVal);
 softPwmWrite(LedPin, analogVal);
 delay(100);
 }

In the main program, read the value of channel 0 that has been connected
with a potentiometer. And store the value in the variable analogVal then
write it in LedPin. Now you can see the brightness of LED changing with
the value of the potentiometer.

Phenomenon Picture

[image: _images/image181.jpeg]

2.1.8 Keypad

Introduction

A keypad is a rectangular array of buttons. In this project, We will use
it input characters.

Components

[image: _images/list_2.1.5_keypad.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Keypad

Schematic Diagram

[image: _images/image315.png]
[image: _images/image316.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image186.png]
Step 2: Open the code file.

cd /home/pi/raphael-kit/c/2.1.8/

Step 3: Compile the code.

gcc 2.1.8_Keypad.cpp -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, the values of pressed buttons on keypad (button
Value) will be printed on the screen.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define ROWS 4
#define COLS 4
#define BUTTON_NUM (ROWS * COLS)

unsigned char KEYS[BUTTON_NUM] {
'1','2','3','A',
'4','5','6','B',
'7','8','9','C',
'*','0','#','D'};

unsigned char rowPins[ROWS] = {1, 4, 5, 6};
unsigned char colPins[COLS] = {12, 3, 2, 0};

void keyRead(unsigned char* result);
bool keyCompare(unsigned char* a, unsigned char* b);
void keyCopy(unsigned char* a, unsigned char* b);
void keyPrint(unsigned char* a);
void keyClear(unsigned char* a);
int keyIndexOf(const char value);

void init(void) {
 for(int i=0 ; i<4 ; i++) {
 pinMode(rowPins[i], OUTPUT);
 pinMode(colPins[i], INPUT);
 }
}

int main(void){
 unsigned char pressed_keys[BUTTON_NUM];
 unsigned char last_key_pressed[BUTTON_NUM];

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }
 init();
 while(1){
 keyRead(pressed_keys);
 bool comp = keyCompare(pressed_keys, last_key_pressed);
 if (!comp){
 keyPrint(pressed_keys);
 keyCopy(last_key_pressed, pressed_keys);
 }
 delay(100);
 }
 return 0;
}

void keyRead(unsigned char* result){
 int index;
 int count = 0;
 keyClear(result);
 for(int i=0 ; i<ROWS ; i++){
 digitalWrite(rowPins[i], HIGH);
 for(int j =0 ; j < COLS ; j++){
 index = i * ROWS + j;
 if(digitalRead(colPins[j]) == 1){
 result[count]=KEYS[index];
 count += 1;
 }
 }
 delay(1);
 digitalWrite(rowPins[i], LOW);
 }
}

bool keyCompare(unsigned char* a, unsigned char* b){
 for (int i=0; i<BUTTON_NUM; i++){
 if (a[i] != b[i]){
 return false;
 }
 }
 return true;
}

void keyCopy(unsigned char* a, unsigned char* b){
 for (int i=0; i<BUTTON_NUM; i++){
 a[i] = b[i];
 }
}

void keyPrint(unsigned char* a){
 if (a[0] != 0){
 printf("%c",a[0]);
 }
 for (int i=1; i<BUTTON_NUM; i++){
 if (a[i] != 0){
 printf(", %c",a[i]);
 }
 }
 printf("\n");
}

void keyClear(unsigned char* a){
 for (int i=0; i<BUTTON_NUM; i++){
 a[i] = 0;
 }
}

int keyIndexOf(const char value){
 for (int i=0; i<BUTTON_NUM; i++){
 if ((const char)KEYS[i] == value){
 return i;
 }
 }
 return -1;
}

Code Explanation

unsigned char KEYS[BUTTON_NUM] {
'1','2','3','A',
'4','5','6','B',
'7','8','9','C',
'*','0','#','D'};

unsigned char rowPins[ROWS] = {1, 4, 5, 6};
unsigned char colPins[COLS] = {12, 3, 2, 0};

Declare each key of the matrix keyboard to the array keys[] and define
the pins on each row and column.

while(1){
 keyRead(pressed_keys);
 bool comp = keyCompare(pressed_keys, last_key_pressed);
 if (!comp){
 keyPrint(pressed_keys);
 keyCopy(last_key_pressed, pressed_keys);
 }
 delay(100);
 }

This is the part of the main function that reads and prints the button
value.

The function keyRead() will read the state of every button.

KeyCompare() and keyCopy() are used to judge whether the state of a
button has changed (that is, a button has been pressed or released).

keyPrint() will print the button value of the button whose current level
is high level (the button is pressed).

void keyRead(unsigned char* result){
 int index;
 int count = 0;
 keyClear(result);
 for(int i=0 ; i<ROWS ; i++){
 digitalWrite(rowPins[i], HIGH);
 for(int j =0 ; j < COLS ; j++){
 index = i * ROWS + j;
 if(digitalRead(colPins[j]) == 1){
 result[count]=KEYS[index];
 count += 1;
 }
 }
 delay(1);
 digitalWrite(rowPins[i], LOW);
 }
}

This function assigns a high level to each row in turn, and when the key
in the column is pressed, the column in which the key is located gets a
high level. After the two-layer loop judgment, the key state compilation
will generate an array (reasult[]).

When pressing button 3:

[image: _images/image187.png]
RowPin [0] writes in the high level, and colPin[2] gets the high level.
ColPin [0], colPin[1], colPin[3] get the low level.

This gives us 0,0,1,0. When rowPin[1], rowPin[2] and rowPin[3] are
written in high level, colPin[0]~colPin[4] will get low level.

After the loop judgment is completed, an array will be generated:

result[BUTTON_NUM] {
0, 0, 1, 0,
0, 0, 0, 0,
0, 0, 0, 0,
0, 0, 0, 0};

bool keyCompare(unsigned char* a, unsigned char* b){
 for (int i=0; i<BUTTON_NUM; i++){
 if (a[i] != b[i]){
 return false;
 }
 }
 return true;
}

void keyCopy(unsigned char* a, unsigned char* b){
 for (int i=0; i<BUTTON_NUM; i++){
 a[i] = b[i];
 }
}

These two functions are used to judge whether the key state has changed,
for example when you release your hand when pressing ‘3’ or pressing
‘2’, keyCompare() returns false.

KeyCopy() is used to re-write the current button value for the a array
(last_key_pressed[BUTTON_NUM]) after each comparison. So we can compare
them next time.

void keyPrint(unsigned char* a){
//printf("{");
 if (a[0] != 0){
 printf("%c",a[0]);
 }
 for (int i=1; i<BUTTON_NUM; i++){
 if (a[i] != 0){
 printf(", %c",a[i]);
 }
 }
 printf("\n");
}

This function is used to print the value of the button currently
pressed. If the button ‘1’ is pressed, the ‘1’ will be printed. If the
button ‘1’ is pressed and the button ‘3’ is pressed, the ‘1, 3’ will be
printed.

Phenomenon Picture

[image: _images/image188.jpeg]

2.1.9 Joystick

Introduction

In this project, We’re going to learn how joystick works. We manipulate
the Joystick and display the results on the screen.

Components

[image: _images/image317.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Joystick Module

	ADC0834

Schematic Diagram

When the data of joystick is read, there are some differents between
axis: data of X and Y axis is analog, which need to use ADC0834 to
convert the analog value to digital value. Data of Z axis is digital, so
you can directly use the GPIO to read, or you can also use ADC to read.

[image: _images/image319.png]
[image: _images/image320.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image193.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.1.9/

Step 3: Compile the code.

gcc 2.1.9_Joystick.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, turn the Joystick, then the corresponding values of
x, y, Btn are displayed on screen.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>

typedef unsigned char uchar;
typedef unsigned int uint;

#define ADC_CS 0
#define ADC_CLK 1
#define ADC_DIO 2
#define BtnPin 3

uchar get_ADC_Result(uint channel)
{
 uchar i;
 uchar dat1=0, dat2=0;
 int sel = channel > 1 & 1;
int odd = channel & 1;
 pinMode(ADC_DIO, OUTPUT);
 digitalWrite(ADC_CS, 0);
 // Start bit
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Single End mode
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 // ODD
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 //Select
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
digitalWrite(ADC_CLK,1);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 for(i=0;i<8;i++)
 {
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);
 pinMode(ADC_DIO, INPUT);
 dat1=dat1<<1 | digitalRead(ADC_DIO);
 }
 for(i=0;i<8;i++)
 {
 dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);
 }
 digitalWrite(ADC_CS,1);
 pinMode(ADC_DIO, OUTPUT);
 return(dat1==dat2) ? dat1 : 0;
}
int main(void)
{
 uchar x_val;
 uchar y_val;
 uchar btn_val;
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }
 pinMode(BtnPin, INPUT);
 pullUpDnControl(BtnPin, PUD_UP);
 pinMode(ADC_CS, OUTPUT);
 pinMode(ADC_CLK, OUTPUT);

 while(1){
 x_val = get_ADC_Result(0);
 y_val = get_ADC_Result(1);
 btn_val = digitalRead(BtnPin);
 printf("x = %d, y = %d, btn = %d\n", x_val, y_val, btn_val);
 delay(100);
 }
 return 0;
}

Code Explanation

uchar get_ADC_Result(uint channel)
{
 uchar i;
 uchar dat1=0, dat2=0;
 int sel = channel > 1 & 1;
 int odd = channel & 1;
 pinMode(ADC_DIO, OUTPUT);
 digitalWrite(ADC_CS, 0);
 // Start bit
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 //Single End mode
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);

The working process of the function is detailed in 2.1.4 Potentiometer.

while(1){
 x_val = get_ADC_Result(0);
 y_val = get_ADC_Result(1);
 btn_val = digitalRead(BtnPin);
 printf("x = %d, y = %d, btn = %d\n", x_val, y_val, btn_val);
 delay(100);
 }

VRX and VRY of Joystick are connected to CH0, CH1 of ADC0834
respectively. So the function getResult() is called to read the values
of CH0 and CH1. Then the read values should be stored in the variables
x_val and y_val. In addition, read the value of SW of joystick and store
it into the variable Btn_val. Finally, the values of x_val, y_val and
Btn_val shall be printed with print() function.

Phenomenon Picture

[image: _images/image194.jpeg]

2.2.1 Photoresistor

Introduction

Photoresistor is a commonly used component of ambient light intensity in
life. It helps the controller to recognize day and night and realize
light control functions such as night lamp. This project is very similar
to potentiometer, and you might think it changing the voltage to sensing
light.

Components

[image: _images/list_2.2.1_photoresistor.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	ADC0834

	Photoresistor

Schematic Diagram

[image: _images/image321.png]
[image: _images/image322.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image198.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.1/

Step 3: Compile the code.

gcc 2.2.1_Photoresistor.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

When the code is running, the brightness of the LED will change according to the light intensity sensed by the photoresistor.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>

typedef unsigned char uchar;
typedef unsigned int uint;

#define ADC_CS 0
#define ADC_CLK 1
#define ADC_DIO 2
#define LedPin 3

uchar get_ADC_Result(uint channel)
{
 uchar i;
 uchar dat1=0, dat2=0;
 int sel = channel > 1 & 1;
 int odd = channel & 1;

 pinMode(ADC_DIO, OUTPUT);
 digitalWrite(ADC_CS, 0);
 // Start bit
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 //Single End mode
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 // ODD
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 //Select
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1);

 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);

 for(i=0;i<8;i++)
 {
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);

 pinMode(ADC_DIO, INPUT);
 dat1=dat1<<1 | digitalRead(ADC_DIO);
 }

 for(i=0;i<8;i++)
 {
 dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);
 }

 digitalWrite(ADC_CS,1);
 pinMode(ADC_DIO, OUTPUT);
 return(dat1==dat2) ? dat1 : 0;
}

int main(void)
{
 uchar analogVal;
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }
 softPwmCreate(LedPin, 0, 100);
 pinMode(ADC_CS, OUTPUT);
 pinMode(ADC_CLK, OUTPUT);

 while(1){
 analogVal = get_ADC_Result(0);
 printf("Current analogVal : %d\n", analogVal);
 softPwmWrite(LedPin, analogVal);
 delay(100);
 }
 return 0;
}

Code Explanation

The codes here are the same as that in 2.1.4 Potentiometer. If you have
any other questions, please check the code explanation of 2.1.7 Potentiometer for details.

Phenomenon Picture

[image: _images/image199.jpeg]

2.2.2 Thermistor

Introduction

Just like photoresistor can sense light, thermistor is a temperature
sensitive electronic device that can be used for realizing functions of
temperature control, such as making a heat alarm.

Components

[image: _images/list_2.2.2_thermistor.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Thermistor

	ADC0834

Schematic Diagram

[image: _images/image323.png]
[image: _images/image324.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image202.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.2/

Step 3: Compile the code.

gcc 2.2.2_Thermistor.c -lwiringPi -lm

Note

-lm is to load the library math. Do not omit, or you will make
an error.

Step 4: Run the executable file.

sudo ./a.out

With the code run, the thermistor detects ambient temperature which will
be printed on the screen once it finishes the program calculation.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <math.h>

typedef unsigned char uchar;
typedef unsigned int uint;

#define ADC_CS 0
#define ADC_CLK 1
#define ADC_DIO 2

uchar get_ADC_Result(uint channel)
{
 uchar i;
 uchar dat1=0, dat2=0;
 int sel = channel > 1 & 1;
 int odd = channel & 1;

 pinMode(ADC_DIO, OUTPUT);
 digitalWrite(ADC_CS, 0);
 // Start bit
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 //Single End mode
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 // ODD
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 //Select
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1);

 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);

 for(i=0;i<8;i++)
 {
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);

 pinMode(ADC_DIO, INPUT);
 dat1=dat1<<1 | digitalRead(ADC_DIO);
 }

 for(i=0;i<8;i++)
 {
 dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);
 }

 digitalWrite(ADC_CS,1);
 pinMode(ADC_DIO, OUTPUT);
 return(dat1==dat2) ? dat1 : 0;
}

int main(void)
{
 unsigned char analogVal;
double Vr, Rt, temp, cel, Fah;
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }
 pinMode(ADC_CS, OUTPUT);
 pinMode(ADC_CLK, OUTPUT);

 while(1){
 analogVal = get_ADC_Result(0);
 Vr = 5 * (double)(analogVal) / 255;
 Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));
 temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));
 cel = temp - 273.15;
 Fah = cel * 1.8 +32;
 printf("Celsius: %.2f C Fahrenheit: %.2f F\n", cel, Fah);
 delay(100);
 }
 return 0;
}

Code Explanation

#include <math.h>

There is a C numerics library which declares a set of functions to
compute common mathematical operations and transformations.

analogVal = get_ADC_Result(0);

This function is used to read the value of the thermistor.

Vr = 5 * (double)(analogVal) / 255;
Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));
temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));
cel = temp - 273.15;
Fah = cel * 1.8 +32;
printf("Celsius: %.2f C Fahrenheit: %.2f F\n", cel, Fah);

These calculations convert the thermistor values into Celsius values.

Vr = 5 * (double)(analogVal) / 255;
Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));

These two lines of codes are calculating the voltage distribution with
the read value analog so as to get Rt (resistance of thermistor).

temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));

This code refers to plugging Rt into the formula
TK=1/(ln(RT/RN)/B+1/TN) to get Kelvin temperature.

temp = temp - 273.15;

Convert Kelvin temperature into degree Celsius.

Fah = cel * 1.8 +32;

Convert degree Celsius into Fahrenheit.

printf("Celsius: %.2f C Fahrenheit: %.2f F\n", cel, Fah);

Print centigrade degree, Fahrenheit degree and their units on the
display.

Phenomenon Picture

[image: _images/image203.jpeg]

2.2.3 DHT-11

Introduction

The digital temperature and humidity sensor DHT11 is a composite sensor
that contains a calibrated digital signal output of temperature and
humidity. The technology of a dedicated digital modules collection and
the technology of the temperature and humidity sensing are applied to
ensure that the product has high reliability and excellent stability.

The sensors include a wet element resistive sensor and a NTC temperature
sensor and they are connected to a high performance 8-bit
microcontroller.

Components

[image: _images/list_2.2.3_dht-11.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Humiture Sensor Module

Schematic Diagram

[image: _images/image326.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image207.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.3/

Step 3: Compile the code.

gcc 2.2.3_DHT.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, the program will print the temperature and humidity
detected by DHT11 on the computer screen.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>

#define maxTim 85
#define dhtPin 0

int dht11_dat[5] = {0,0,0,0,0};

void readDht11() {
 uint8_t laststate = HIGH;
 uint8_t counter = 0;
 uint8_t j = 0, i;
 float Fah; // fahrenheit
 dht11_dat[0] = dht11_dat[1] = dht11_dat[2] = dht11_dat[3] = dht11_dat[4] = 0;
 // pull pin down for 18 milliseconds
 pinMode(dhtPin, OUTPUT);
 digitalWrite(dhtPin, LOW);
 delay(18);
 // then pull it up for 40 microseconds
 digitalWrite(dhtPin, HIGH);
 delayMicroseconds(40);
 // prepare to read the pin
 pinMode(dhtPin, INPUT);

 // detect change and read data
 for (i=0; i< maxTim; i++) {
 counter = 0;
 while (digitalRead(dhtPin) == laststate) {
 counter++;
 delayMicroseconds(1);
 if (counter == 255) {
 break;
 }
 }
 laststate = digitalRead(dhtPin);

 if (counter == 255) break;
 // ignore first 3 transitions
 if ((i >= 4) && (i%2 == 0)) {
 // shove each bit into the storage bytes
 dht11_dat[j/8] <<= 1;
 if (counter > 50)
 dht11_dat[j/8] |= 1;
 j++;
 }
 }
 // check we read 40 bits (8bit x 5) + verify checksum in the last byte
 // print it out if data is good
 if ((j >= 40) &&
 (dht11_dat[4] == ((dht11_dat[0] + dht11_dat[1] + dht11_dat[2] + dht11_dat[3]) & 0xFF))) {
 Fah = dht11_dat[2] * 9. / 5. + 32;
 printf("Humidity = %d.%d %% Temperature = %d.%d *C (%.1f *F)\n",
 dht11_dat[0], dht11_dat[1], dht11_dat[2], dht11_dat[3], Fah);
 }
}

int main (void) {
 if(wiringPiSetup() == -1){ //when initialize wiring failed, print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }
 while (1) {
 readDht11();
 delay(500); // wait 1sec to refresh
 }
 return 0 ;
}

Code Explanation

void readDht11() {
 uint8_t laststate = HIGH;
 uint8_t counter = 0;
 uint8_t j = 0, i;
 float Fah; // fahrenheit
 dht11_dat[0] = dht11_dat[1] = dht11_dat[2] = dht11_dat[3] = dht11_dat[4] = 0;
 // ...
}

This function is used to realize the function of DHT11.

It generally can be divided into 3 parts:

	prepare to read the pin:

// pull pin down for 18 milliseconds
pinMode(dhtPin, OUTPUT);
digitalWrite(dhtPin, LOW);
delay(18);
// then pull it up for 40 microseconds
digitalWrite(dhtPin, HIGH);
delayMicroseconds(40);
// prepare to read the pin
pinMode(dhtPin, INPUT);

Its communication flow is determined by work timing.

[image: _images/image208.png]
When DHT11 starts up, MCU will send a low level signal and then keep the
signal at high level for 40us. After that, the detection of the
condition of external environment will start.

	read data:

// detect change and read data
for (i=0; i< maxTim; i++) {
 counter = 0;
 while (digitalRead(dhtPin) == laststate) {
 counter++;
 delayMicroseconds(1);
 if (counter == 255) {
 break;
 }
 }
 laststate = digitalRead(dhtPin);
 if (counter == 255) break;
 // ignore first 3 transitions
 if ((i >= 4) && (i%2 == 0)) {
 // shove each bit into the storage bytes
 dht11_dat[j/8] <<= 1;
 if (counter > 50)
 dht11_dat[j/8] |= 1;
 j++;
 }
 }

The loop stores the detected data in the dht11_dat[] array. DHT11
transmits data of 40 bits at a time. The first 16 bits are related to
humidity, the middle 16 bits are related to temperature, and the last
eight bits are used for verification. The data format is:

8bit humidity integer data + 8bit humidity decimal data + 8bit
temperature integer data + 8bit temperature decimal data + 8bit
check bit.

	Print Humidity & Temperature.

// check we read 40 bits (8bit x 5) + verify checksum in the last byte
// print it out if data is good
if ((j >= 40) &&
 (dht11_dat[4] == ((dht11_dat[0] + dht11_dat[1] + dht11_dat[2] + dht11_dat[3]) & 0xFF))) {
 Fah = dht11_dat[2] * 9. / 5. + 32;
 printf("Humidity = %d.%d %% Temperature = %d.%d *C (%.1f *F)\n",
 dht11_dat[0], dht11_dat[1], dht11_dat[2], dht11_dat[3], Fah);
}

When the data storage is up to 40 bits, check the validity of the data
through the check bit (dht11_dat[4]), and then print the temperature
and humidity.

For example, if the received data is 00101011(8-bit value of humidity
integer) 00000000 (8-bit value of humidity decimal) 00111100 (8-bit
value of temperature integer) 00000000 (8-bit value of temperature
decimal) 01100111 (check bit)

Calculation:

00101011+00000000+00111100+00000000=01100111.

The final result is equal to the check bit data, then the received data
is correct:

Humidity =43%，Temperature =60*C.

If it is not equal to the check bit data, the data transmission is not
normal and the data is received again.

Phenomenon Picture

[image: _images/image209.jpeg]

2.2.4 Reed Switch Module

Introduction

In this project, we will learn about the reed switch, which is an electrical switch that operates by means of an applied magnetic field.

[image: _images/2.2.4reed_switch.png]

Components

[image: _images/2.2.4component.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Reed Switch Module

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

[image: _images/reed_schematic.png]
[image: _images/reed_schematic2.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/2.2.4fritzing.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/c/2.2.4/

Step 3: Compile.

gcc 2.2.4_ReedSwitch.c -lwiringPi

Step 4: Run.

sudo ./a.out

The green LED will light up when the code is run. If a magnet is placed close to the reed switch module, the red LED lights up; take away the magnet and the green LED lights up again.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define ReedPin 0
#define Gpin 2
#define Rpin 3

void LED(char* color)
{
 pinMode(Gpin, OUTPUT);
 pinMode(Rpin, OUTPUT);
 if (color == "RED")
 {
 digitalWrite(Rpin, HIGH);
 digitalWrite(Gpin, LOW);
 }
 else if (color == "GREEN")
 {
 digitalWrite(Rpin, LOW);
 digitalWrite(Gpin, HIGH);
 }
 else
 printf("LED Error");
}

int main(void)
{
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(ReedPin, INPUT);
 LED("GREEN");

 while(1){
 if(0 == digitalRead(ReedPin)){
 delay(10);
 if(0 == digitalRead(ReedPin)){
 LED("RED");
 printf("Detected Magnetic Material!\n");
 }
 }
 else if(1 == digitalRead(ReedPin)){
 delay(10);
 if(1 == digitalRead(ReedPin)){
 while(!digitalRead(ReedPin));
 LED("GREEN");
 }
 }
 }
 return 0;
}

Code Explanation

#define ReedPin 0
#define Gpin 2
#define Rpin 3

Pin GPIO17, GPIO27 and GPIO22 of the T_Extension Board is corresponding to
the GPIO0, GPIO2 and GPIO3 in wiringPi. Assign GPIO0, GPIO2 and GPIO3 to
ReedPin, Gpin and Rpin.

void LED(char* color)
{
 pinMode(Gpin, OUTPUT);
 pinMode(Rpin, OUTPUT);
 if (color == "RED")
 {
 digitalWrite(Rpin, HIGH);
 digitalWrite(Gpin, LOW);
 }
 else if (color == "GREEN")
 {
 digitalWrite(Rpin, LOW);
 digitalWrite(Gpin, HIGH);
 }
 else
 printf("LED Error");
}

Set a LED() function to control the 2 LEDs, the parameter of this function is color.

When color is "RED", set Rpin to HIGH (light up the red LED) and Gpin to LOW (turn off the green LED); when color is "GREEN", then light up the green LED and turn off the red LED.

while(1){
 if(0 == digitalRead(ReedPin)){
 delay(10);
 if(0 == digitalRead(ReedPin)){
 LED("RED");
 printf("Detected Magnetic Material!\n");
 }
 }
 else if(1 == digitalRead(ReedPin)){
 delay(10);
 if(1 == digitalRead(ReedPin)){
 while(!digitalRead(ReedPin));
 LED("GREEN");
 }
 }
 }

Read the value of the reed switch module, if the value read 2 times is 0, call LED("RED") to light up the red LED and print "Magnetic material detected!".

If the value is 1, the green LED is lit.

Phenomenon Picture

[image: _images/2.2.4reed_switch.JPG]

2.2.5 IR Obstacle Avoidance Module

Introduction

In this project, we will learn IR obstacle avoidance module, which is a sensor module that can be used to detect obstacles at short distances, with small interference, easy to assemble, easy to use, etc. It can be widely used in robot obstacle avoidance, obstacle avoidance trolley, assembly line counting, etc.

Components

[image: _images/2.2.5component.png]

	GPIO Extension Board

	Breadboard

	Obstacle Avoidance Module

Schematic Diagram

[image: _images/IR_schematic.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/2.2.5fritzing.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/c/2.2.5/

Step 3: Compile.

gcc 2.2.5_IrObstacle.c -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, when you put your hand in front of the module’s probe, the output indicator on the module lights up and the “Detected Barrier!” will be
repeatedly printed on the screen.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define ObstaclePin 0

void myISR(void)
{
 printf("Detected Barrier !\n");
}

int main(void)
{
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !\n");
 return 1;
 }

 if(wiringPiISR(ObstaclePin, INT_EDGE_FALLING, &myISR) < 0){
 printf("Unable to setup ISR !!!\n");
 return 1;
 }

 while(1){
 ;
 }

 return 0;
}

Code Explanation

void myISR(void)
{
 printf("Detected Barrier !\n");
}

Define a function myISR() to print obstacle detected , indicating that an obstacle is detected.

if(wiringPiISR(ObstaclePin, INT_EDGE_FALLING, &myISR) < 0){
 printf("Unable to setup ISR !!!\n");
 return 1;
}

This wiringPiISR() function registers a myISR() function to received interrupts on the specified ObstaclePin.

When ObstaclePin changes from high to low, it means that an obstacle is detected. At this time, call the myISR() function to print “Detected Barrier !”

The prototype of this wiringPiISR() function is shown below.

int wiringPiISR (int pin, int edgeType, void (*function)(void)) ;

The edgeType parameter is either INT_EDGE_FALLING , INT_EDGE_RISING , INT_EDGE_BOTH or INT_EDGE_SETUP . If it is INT_EDGE_SETUP then no initialisation of the pin will happen – it’s assumed that you have already setup the pin elsewhere (e.g. with the gpio program), but if you specify one of the other types, then the pin will be exported and initialised as specified.

For more information, please refer to: wiringPi-Functions (API) [https://projects.drogon.net/raspberry-pi/wiringpi/functions/].

Phenomenon Picture

[image: _images/2.2.5IR.JPG]

2.2.6 Speed Sensor Module

Introduction

In this project, we will learn the use of the speed sensor module. A Speed Sensor Module is a type of tachometer that is used to measure the speed of a rotating object like a motor.

Components

[image: _images/2.2.6component.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Speed Sensor Module

Schematic Diagram

[image: _images/2.2.6circuit.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/2.2.6fritzing.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/c/2.2.6/

Step 3: Compile.

gcc 2.2.6_speed_sensor_module.c -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, the green LED will light up. If you place an obstacle in the gap of the speed sensor module, the “light blocked” will be printed on the screen and the red LED will be lit.
Remove the obstacle and the green LED will light up again.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define speedPin 0
#define Gpin 2
#define Rpin 3

void LED(int color)
{
 pinMode(Gpin, OUTPUT);
 pinMode(Rpin, OUTPUT);
 if (color == 0){
 digitalWrite(Rpin, HIGH);
 digitalWrite(Gpin, LOW);
 }
 else if (color == 1){
 digitalWrite(Rpin, LOW);
 digitalWrite(Gpin, HIGH);
 }
}

void Print(int x){
 if (x == 0){
 printf("Light was blocked\n");
 }
}

int main(void){

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(speedPin, INPUT);
 int temp;
 while(1){
 //Reverse the input of speedPin
 if (digitalRead(speedPin) == 0){
 temp = 1;
 }
 if (digitalRead(speedPin) == 1){
 temp = 0;
 }

 LED(temp);
 Print(temp);
 }
 return 0;
}

Code Explanation

void LED(int color)
{
 pinMode(Gpin, OUTPUT);
 pinMode(Rpin, OUTPUT);
 if (color == 0){
 digitalWrite(Rpin, HIGH);
 digitalWrite(Gpin, LOW);
 }
 else if (color == 1){
 digitalWrite(Rpin, LOW);
 digitalWrite(Gpin, HIGH);
 }
}

Set a LED() function to control the 2 LEDs, the parameter of this function is color.

When color is 0, set Rpin to HIGH (light up the red LED) and Gpin to LOW (turn off the green LED); when color is 1, then light up the green LED and turn off the red LED.

while(1){
 //Reverse the input of speedPin
 if (digitalRead(speedPin) == 0){
 temp = 1;
 }
 if (digitalRead(speedPin) == 1){
 temp = 0;
 }

 LED(temp);
 Print(temp);
}

When you place an obstacle in the gap of the speed sensor module, speedPin is low level (0), then call LED(1) function to light up the green LED and “Light was blocked!” is printed.

Phenomenon Picture

[image: _images/2.2.6photo_interrrupter.JPG]

2.2.7 PIR

Introduction

In this project, we will make a device by using the human body infrared
pyroelectric sensors. When someone gets closer to the LED, the LED will
turn on automatically. If not, the light will turn off. This infrared
motion sensor is a kind of sensor that can detect the infrared emitted
by human and animals.

Components

[image: _images/list_2.2.4_pir.png]

	GPIO Extension Board

	Breadboard

	Resistor

	RGB LED

	PIR Motion Sensor Module

Schematic Diagram

[image: _images/image327.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image214.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.7/

Step 3: Compile the code.

gcc 2.2.7_PIR.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, PIR detects surroundings and let RGB LED glow
yellow if it senses someone walking by. There are two potentiometers on
the PIR module: one is to adjust sensitivity and the other is to adjust
the detection distance. In order to make the PIR module work better, you
need to try to adjust these two potentiometers.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>
#define uchar unsigned char

#define pirPin 0 //the pir connect to GPIO0
#define redPin 1
#define greenPin 2
#define bluePin 3

void ledInit(void){
 softPwmCreate(redPin, 0, 100);
 softPwmCreate(greenPin,0, 100);
 softPwmCreate(bluePin, 0, 100);
}
void ledColorSet(uchar r_val, uchar g_val, uchar b_val){
 softPwmWrite(redPin, r_val);
 softPwmWrite(greenPin, g_val);
 softPwmWrite(bluePin, b_val);
}
int main(void)
{
 int pir_val;
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }
 ledInit();
 pinMode(pirPin, INPUT);
 while(1){
 pir_val = digitalRead(pirPin);
 if(pir_val== 1){ //if read pir is HIGH level
 ledColorSet(0xff,0xff,0x00);
 }
 else {
 ledColorSet(0x00,0x00,0xff);
 }
 }
 return 0;
}

Code Explanation

void ledInit(void);
void ledColorSet(uchar r_val, uchar g_val, uchar b_val);

These codes are used to set the color of the RGB LED, and please refer
to 1.1.2 RGB LED for more details.

int main(void)
{
 int pir_val;
 //……
 pinMode(pirPin, INPUT);
 while(1){
 pir_val = digitalRead(pirPin);
 if(pir_val== 1){ //if read pir is HIGH level
 ledColorSet(0xff,0xff,0x00);
 }
 else {
 ledColorSet(0x00,0x00,0xff);
 }
 }
 return 0;
}

When PIR detects the human infrared spectrum, RGB LED emits the yellow
light; if not, emits the blue light.

Phenomenon Picture

[image: _images/image215.jpeg]

2.2.8 Ultrasonic Sensor Module

Introduction

The ultrasonic sensor uses ultrasonic to accurately detect objects and
measure distances. It sends out ultrasonic waves and converts them into
electronic signals.

Components

[image: _images/list_2.2.5.png]

	GPIO Extension Board

	Breadboard

	Ultrasonic Module

Schematic Diagram

[image: _images/image329.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image220.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.8/

Step 3: Compile the code.

gcc 2.2.8_Ultrasonic.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

With the code run, the ultrasonic sensor module detects the distance
between the obstacle ahead and the module itself, then the distance
value will be printed on the screen.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <sys/time.h>

#define Trig 4
#define Echo 5

void ultraInit(void)
{
 pinMode(Echo, INPUT);
 pinMode(Trig, OUTPUT);
}

float disMeasure(void)
{
 struct timeval tv1;
 struct timeval tv2;
 long time1, time2;
float dis;

 digitalWrite(Trig, LOW);
 delayMicroseconds(2);

 digitalWrite(Trig, HIGH);
 delayMicroseconds(10);
 digitalWrite(Trig, LOW);

 while(!(digitalRead(Echo) == 1));
 gettimeofday(&tv1, NULL);

 while(!(digitalRead(Echo) == 0));
 gettimeofday(&tv2, NULL);

 time1 = tv1.tv_sec * 1000000 + tv1.tv_usec;
 time2 = tv2.tv_sec * 1000000 + tv2.tv_usec;

 dis = (float)(time2 - time1) / 1000000 * 34000 / 2;

 return dis;
}

int main(void)
{
 float dis;
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 ultraInit();

 while(1){
 dis = disMeasure();
 printf("%0.2f cm\n\n",dis);
 delay(300);
 }

 return 0;
}

Code Explanation

void ultraInit(void)
{
 pinMode(Echo, INPUT);
 pinMode(Trig, OUTPUT);
}

Initialize the ultrasonic pin; meanwhile, set Echo to input, Trig to
output.

float disMeasure(void){};

This function is used to realize the function of ultrasonic sensor by
calculating the return detection distance.

struct timeval tv1;
struct timeval tv2;

Struct timeval is a structure used to store the current time. The
complete structure is as follows:

struct timeval
{
__time_t tv_sec; /* Seconds. */
__suseconds_t tv_usec; /* Microseconds. */
};

Here, tv_sec represents the seconds that Epoch spent when creating
struct timeval. Tv_usec stands for microseconds or a fraction of
seconds.

digitalWrite(Trig, HIGH);
delayMicroseconds(10);
digitalWrite(Trig, LOW);

A 10us ultrasonic pulse is being sent out.

while(!(digitalRead(Echo) == 1));
gettimeofday(&tv1, NULL);

This empty loop is used to ensure that when the trigger signal is sent,
there is no interfering echo signal and then get the current time.

while(!(digitalRead(Echo) == 0));
gettimeofday(&tv2, NULL);

This empty loop is used to ensure that the next step is not performed
until the echo signal is received and then get the current time.

time1 = tv1.tv_sec * 1000000 + tv1.tv_usec;
time2 = tv2.tv_sec * 1000000 + tv2.tv_usec;

Convert the time stored by struct timeval into a full microsecond time.

dis = (float)(time2 - time1) / 1000000 * 34000 / 2;

The distance is calculated by the time interval and the speed of sound
propagation. The speed of sound in the air: 34000cm/s.

Phenomenon Picture

[image: _images/image221.jpeg]

2.2.9 MPU6050 Module

Introduction

The MPU-6050 is the world’s first and only 6-axis motion tracking
devices (3-axis Gyroscope and 3-axis Accelerometer) designed for
smartphones, tablets and wearable sensors that have these features,
including the low power, low cost, and high performance requirements.

In this experiment, use I2C to obtain the values of the three-axis
acceleration sensor and three-axis gyroscope for MPU6050 and display
them on the screen.

Components

[image: _images/list_2.2.6.png]

	GPIO Extension Board

	Breadboard

	MPU6050 Module

Schematic Diagram

MPU6050 communicates with the microcontroller through the I2C bus
interface. The SDA1 and SCL1 need to be connected to the corresponding
pin.

[image: _images/image330.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image227.png]
Step 2: Setup I2C (see Appendix I2C Configuration. If you have set I2C, skip this
step.)

Step 3: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.9/

Step 4: Compile the code.

gcc 2.2.9_mpu6050.c -lwiringPi -lm

Step 5: Run the executable file.

sudo ./a.out

With the code run, deflection angle of x axis, y axis and the
acceleration, angular velocity on each axis read by MPU6050 will be
printed on the screen after being calculating.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPiI2C.h>
#include <wiringPi.h>
#include <stdio.h>
#include <math.h>
int fd;
int acclX, acclY, acclZ;
int gyroX, gyroY, gyroZ;
double acclX_scaled, acclY_scaled, acclZ_scaled;
double gyroX_scaled, gyroY_scaled, gyroZ_scaled;

int read_word_2c(int addr)
{
int val;
val = wiringPiI2CReadReg8(fd, addr);
val = val << 8;
val += wiringPiI2CReadReg8(fd, addr+1);
if (val >= 0x8000)
 val = -(65536 - val);
return val;
}

double dist(double a, double b)
{
return sqrt((a*a) + (b*b));
}

double get_y_rotation(double x, double y, double z)
{
double radians;
radians = atan2(x, dist(y, z));
return -(radians * (180.0 / M_PI));
}

double get_x_rotation(double x, double y, double z)
{
double radians;
radians = atan2(y, dist(x, z));
return (radians * (180.0 / M_PI));
}

int main()
{
fd = wiringPiI2CSetup (0x68);
wiringPiI2CWriteReg8 (fd,0x6B,0x00);//disable sleep mode
printf("set 0x6B=%X\n",wiringPiI2CReadReg8 (fd,0x6B));

while(1) {

 gyroX = read_word_2c(0x43);
 gyroY = read_word_2c(0x45);
 gyroZ = read_word_2c(0x47);

 gyroX_scaled = gyroX / 131.0;
 gyroY_scaled = gyroY / 131.0;
 gyroZ_scaled = gyroZ / 131.0;

 //Print values for the X, Y, and Z axes of the gyroscope sensor.
 printf("My gyroX_scaled: %f\n", gyroY X_scaled);
 printf("My gyroY_scaled: %f\n", gyroY Y_scaled);
 printf("My gyroZ_scaled: %f\n", gyroY Z_scaled);

 acclX = read_word_2c(0x3B);
 acclY = read_word_2c(0x3D);
 acclZ = read_word_2c(0x3F);

 acclX_scaled = acclX / 16384.0;
 acclY_scaled = acclY / 16384.0;
 acclZ_scaled = acclZ / 16384.0;

 //Print the X, Y, and Z values of the acceleration sensor.
 printf("My acclX_scaled: %f\n", acclX_scaled);
 printf("My acclY_scaled: %f\n", acclY_scaled);
 printf("My acclZ_scaled: %f\n", acclZ_scaled);

 printf("My X rotation: %f\n", get_x_rotation(acclX_scaled, acclY_scaled, acclZ_scaled));
 printf("My Y rotation: %f\n", get_y_rotation(acclX_scaled, acclY_scaled, acclZ_scaled));

 delay(100);
}
return 0;
}

Code Explanation

int read_word_2c(int addr)
{
int val;
val = wiringPiI2CReadReg8(fd, addr);
val = val << 8;
val += wiringPiI2CReadReg8(fd, addr+1);
if (val >= 0x8000)
 val = -(65536 - val);
return val;
}

Read sensor data sent from MPU6050.

double get_y_rotation(double x, double y, double z)
{
double radians;
radians = atan2(x, dist(y, z));
return -(radians * (180.0 / M_PI));
}

We get the deflection angle on the Y-axis.

double get_x_rotation(double x, double y, double z)
{
double radians;
radians = atan2(y, dist(x, z));
return (radians * (180.0 / M_PI));
}

Calculate the deflection angle of the X-axis.

gyroX = read_word_2c(0x43);
gyroY = read_word_2c(0x45);
gyroZ = read_word_2c(0x47);

gyroX_scaled = gyroX / 131.0;
gyroY_scaled = gyroY / 131.0;
gyroZ_scaled = gyroZ / 131.0;

//Print values for the X, Y, and Z axes of the gyroscope sensor.
printf("My gyroX_scaled: %f\n", gyroY X_scaled);
printf("My gyroY_scaled: %f\n", gyroY Y_scaled);
printf("My gyroZ_scaled: %f\n", gyroY Z_scaled);

Read the values of the x axis, y axis and z axis on the gyroscope sensor,
convert the metadata to angular velocity values, and then print them.

acclX = read_word_2c(0x3B);
acclY = read_word_2c(0x3D);
acclZ = read_word_2c(0x3F);

acclX_scaled = acclX / 16384.0;
acclY_scaled = acclY / 16384.0;
acclZ_scaled = acclZ / 16384.0;

//Print the X, Y, and Z values of the acceleration sensor.
printf("My acclX_scaled: %f\n", acclX_scaled);
printf("My acclY_scaled: %f\n", acclY_scaled);
printf("My acclZ_scaled: %f\n", acclZ_scaled);

Read the values of the x axis, y axis and z axis on the acceleration sensor,
convert the metadata to accelerated speed values (gravity unit), and then
print them.

printf("My X rotation: %f\n", get_x_rotation(acclX_scaled, acclY_scaled, acclZ_scaled));
printf("My Y rotation: %f\n", get_y_rotation(acclX_scaled, acclY_scaled, acclZ_scaled));

Print the deflection angles of the x-axis and y-axis.

Phenomenon Picture

[image: _images/image228.jpeg]

2.2.10 MFRC522 RFID Module

Introduction

Radio Frequency Identification (RFID) refers to technologies that use
wireless communication between an object (or tag) and interrogating
device (or reader) to automatically track and identify such objects.

Some of the most common applications for this technology include retail
supply chains, military supply chains, automated payment methods,
baggage tracking and management, document tracking and pharmaceutical
management, to name a few.

In this project, we will use RFID for reading and writing.

Components

[image: _images/list_2.2.7.png]

	GPIO Extension Board

	Breadboard

	MFRC522 Module

Schematic Diagram

[image: _images/image331.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image232.png]
Step 2: Set up SPI (refer to SPI Configuration for more details. If you have
set SPI, skip this step.)

Step 3: Go to the folder of the code.

cd /home/pi/raphael-kit/c/2.2.10/

Step 4: Compile the code.

make read
make write

Step 5: After running ./write, enter the information, such as the name of the person, and then put the tag or card on the MRC522 module and wait for the writing to be completed.

sudo ./write

Step 6: Now run ./read to read the information of the tag or card you have written.

sudo ./read

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code Explanation

InitRc522();

This function is used to initialize the RFID RC522 module.

uint8_t read_card_data();

This function is used to read the data of the card, and if
the read is successful, it will return “1”.

uint8_t write_card_data(uint8_t *data);

This function is used to write the data of card and returns “1” if
the write is successful. *data is the information that will be written
to the card.

Phenomenon Picture

[image: _images/image233.jpeg]

Extension

	3.1.1 Counting Device

	3.1.2 Welcome

	3.1.3 Reversing Alarm

	3.1.4 Smart Fan

	3.1.5 Battery Indicator

	3.1.6 Traffic Light

	3.1.7 Overheat Monitor

	3.1.8 Password Lock

	3.1.9 Alarm Bell

	3.1.10 Morse Code Generator

	3.1.11 GAME– Guess Number

	3.1.12 GAME - 10 Second

	3.1.13 GAME– NotNot

3.1.1 Counting Device

Introduction

Here we will make a number-displaying counter system, consisting of a
PIR sensor and a 4-digit segment display. When the PIR detects that
someone is passing by, the number on the 4-digit segment display will
add 1. You can use this counter to count the number of people walking
through the passageway.

Components

[image: _images/list_Counting_Device1.png]
[image: _images/list_Counting_Device2.png]

	GPIO Extension Board

	Breadboard

	Resistor

	4-Digit 7-Segment Display

	74HC595

	PIR Motion Sensor Module

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	SPIMOSI

	Pin 19

	12

	10

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO26

	Pin 37

	25

	26

[image: _images/Schematic_three_one1.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image235.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/3.1.1/

Step 3: Compile the code.

gcc 3.1.1_CountingDevice.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the code runs, when the PIR detects that someone is passing by,
the number on the 4-digit segment display will add 1.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code Explanation

void display()
{
 clearDisplay();
 pickDigit(0);
 hc595_shift(number[counter % 10]);

 clearDisplay();
 pickDigit(1);
 hc595_shift(number[counter % 100 / 10]);

 clearDisplay();
 pickDigit(2);
 hc595_shift(number[counter % 1000 / 100]);

 clearDisplay();
 pickDigit(3);
 hc595_shift(number[counter % 10000 / 1000]);
}

First, start the fourth segment display, write the single-digit number.
Then start the third segment display, and type in the tens digit; after
that, start the second and the first segment display respectively, and
write the hundreds and thousands digits respectively. Because the
refreshing speed is very fast, we see a complete four-digit display.

void loop(){
 int currentState =0;
 int lastState=0;
 while(1){
 display();
 currentState=digitalRead(sensorPin);
 if((currentState==0)&&(lastState==1)){
 counter +=1;
 }
 lastState=currentState;
 }
}

This is the main function: display the number on the 4-digit segment
display and read the PIR value. When the PIR detects that someone is
passing by, the number on the 4-digit segment display will add 1.

Phenomenon Picture

[image: _MG_3354]

3.1.2 Welcome

Introduction

In this project, we will use PIR to sense the movement of pedestrians,
and use servos, LED, buzzer to simulate the work of the sensor door of
the convenience store. When the pedestrian appears within the sensing
range of the PIR, the indicator light will be on, the door will be
opened, and the buzzer will play the opening bell.

Components

[image: _images/list_Welcome.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	PIR Motion Sensor Module

	Servo

	Buzzer

	Transistor

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO18

	Pin 12

	1

	18

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

[image: _images/Schematic_three_one2.png]

Experimental Procedures

Step 1: Build the circuit.

[image: C:\Users\sunfounder\Desktop\3.1.4_Welcome_bb.png3.1.4_Welcome_bb]
Step 2: Change directory.

cd /home/pi/raphael-kit/c/3.1.2/

Step 3: Compile.

gcc 3.1.2_Welcome.c -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, if the PIR sensor detects someone passing by, the
door will automatically open (simulated by the servo), turn on the
indicator and play the doorbell music. After the doorbell music plays,
the system will automatically close the door and turn off the indicator
light, waiting for the next time someone passes by.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code Explanation

void setAngle(int pin, int angle){ //Create a funtion to control the angle of the servo.
 if(angle < 0)
 angle = 0;
 if(angle > 180)
 angle = 180;
 softPwmWrite(pin,Map(angle, 0, 180, 5, 25));
}

Create a function, setAngle to write the angle in the servo that is
0-180.

void doorbell(){
for(int i=0;i<sizeof(song)/4;i++){
 softToneWrite(BuzPin, song[i]);
 delay(beat[i] * 250);
 }

Create a function, doorbell to enable the buzzer to play music.

void closedoor(){
digitalWrite(ledPin, LOW); //led off
for(int i=180;i>-1;i--){ //make servo rotate from maximum angle to minimum angle
 setAngle(servoPin,i);
 delay(1);
 }
}

Create a closedoor function to simulate closing the door, turn off the
LED and let the servo turn from 180 degrees to 0 degree.

void opendoor(){
 digitalWrite(ledPin, HIGH); //led on
 for(int i=0;i<181;i++){ //make servo rotate from minimum angle to maximum angle
 setAngle(servoPin,i);
 delay(1);
 }
 doorbell();
 closedoor();
}

The function opendoor() includes several parts: turn on the indicator
light, turn the servo (simulate the action of opening the door), play
the doorbell music of the convenience store, and call the function
closedoor() after playing music.

 int main(void)
{
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }
 if(softToneCreate(BuzPin) == -1){
 printf("setup softTone failed !");
 return 1;
......

In the function main(), initialize library wiringPi and setup softTone,
then set ledPin to output state and pirPin to input state. If the PIR
sensor detects someone passing by, the function opendoor will be called
to simulate opening the door.

Phenomenon Picture

[image: _images/image240.jpeg]

3.1.3 Reversing Alarm

Introduction

In this project, we will use LCD, buzzer and ultrasonic sensors to make
a reverse assist system. We can put it on the remote control vehicle to
simulate the actual process of reversing the car into the garage.

Components

[image: _images/list_Reversing_Alarm.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Buzzer

	Transistor

	Ultrasonic Module

	I2C LCD1602

Schematic Diagram

Ultrasonic sensor detects the distance between itself and the obstacle
that will be displayed on the LCD in the form of code. At the same time,
the ultrasonic sensor let the buzzer issue prompt sound of different
frequency according to different distance value.

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO17

	Pin 11

	0

	17

	SDA1

	Pin 3

	
	

	SCL1

	Pin 5

	
	

[image: _images/Schematic_three_one3.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image242.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/c/3.1.3/

Step 3: Compile.

gcc 3.1.3_ReversingAlarm.c -lwiringPi

Step 4: Run.

sudo ./a.out

As the code runs, ultrasonic sensor module detects the distance to the
obstacle and then displays the information about the distance on
LCD1602; besides, buzzer emits warning tone whose frequency changes with
the distance.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

Note

The following codes are incomplete. If you want to check the complete codes,
you are suggested to use command nano 3.1.1_ReversingAlarm.c.

#include <wiringPi.h>
#include <stdio.h>
#include <sys/time.h>
#include <wiringPi.h>
#include <wiringPiI2C.h>
#include <string.h>

#define Trig 4
#define Echo 5
#define Buzzer 0

int LCDAddr = 0x27;
int BLEN = 1;
int fd;

//here is the function of LCD
void write_word(int data){...}

void send_command(int comm){...}

void send_data(int data){...}

void lcdInit(){...}

void clear(){...}

void write(int x, int y, char data[]){...}

//here is the function of Ultrasonic
void ultraInit(void){...}

float disMeasure(void){...}

//here is the main function
int main(void)
{
 float dis;
 char result[10];
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(Buzzer,OUTPUT);
 fd = wiringPiI2CSetup(LCDAddr);
 lcdInit();
 ultraInit();

 clear();
 write(0, 0, "Ultrasonic Starting");
 write(1, 1, "By Sunfounder");

 while(1){
 dis = disMeasure();
 printf("%.2f cm \n",dis);
 digitalWrite(Buzzer,LOW);
 if (dis > 400){
 clear();
 write(0, 0, "Error");
 write(3, 1, "Out of range");
 delay(500);
 }
 else
 {
 clear();
 write(0, 0, "Distance is");
 sprintf(result,"%.2f cm",dis);
 write(5, 1, result);

 if(dis>=50)
 {delay(500);}
 else if(dis<50 & dis>20) {
 for(int i=0;i<2;i++){
 digitalWrite(Buzzer,HIGH);
 delay(50);
 digitalWrite(Buzzer,LOW);
 delay(200);
 }
 }
 else if(dis<=20){
 for(int i=0;i<5;i++){
 digitalWrite(Buzzer,HIGH);
 delay(50);
 digitalWrite(Buzzer,LOW);
 delay(50);
 }
 }
 }
 }

 return 0;
}

Code Explanation

pinMode(Buzzer,OUTPUT);
fd = wiringPiI2CSetup(LCDAddr);
lcdInit();
ultraInit();

In this program, we apply previous components synthetically. Here we use
buzzers, LCD and ultrasonic. We can initialize them the same way as we
did before.

dis = disMeasure();
 printf("%.2f cm \n",dis);
digitalWrite(Buzzer,LOW);
if (dis > 400){
 write(0, 0, "Error");
 write(3, 1, "Out of range");
}
else
{
 write(0, 0, "Distance is");
 sprintf(result,"%.2f cm",dis);
 write(5, 1, result);
 }

Here we get the value of the ultrasonic sensor and get the distance
through calculation.

If the value of distance is greater than the range value to be detected,
an error message is printed on the LCD. And if the distance value is
within the range, the corresponding results will be output.

sprintf(result,"%.2f cm",dis);

Since the output mode of LCD only supports character type, and the
variable dis stores the value of float type, we need to use sprintf().
The function converts the float type value to a character and stores it
on the string variable result[]. %.2f means to keep two decimal places.

if(dis>=50)
{delay(500);}
else if(dis<50 & dis>20) {
 for(int i=0;i<2;i++){
 digitalWrite(Buzzer,HIGH);
 delay(50);
 digitalWrite(Buzzer,LOW);
 delay(200);
 }
}
else if(dis<=20){
 for(int i=0;i<5;i++){
 digitalWrite(Buzzer,HIGH);
 delay(50);
 digitalWrite(Buzzer,LOW);
 delay(50);
 }
}

This judgment condition is used to control the sound of the buzzer.
According to the difference in distance, it can be divided into three
cases, in which there will be different sound frequencies. Since the
total value of delay is 500, all of the cases can provide a 500ms
interval for the ultrasonic sensor.

Phenomenon Picture

[image: _images/image243.jpeg]

3.1.4 Smart Fan

Introduction

In this project, we will use motors, buttons and thermistors to make a
manual + automatic smart fan whose wind speed is adjustable.

Components

[image: _images/list_Smart_Fan.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Power Supply Module

	Thermistor

	L293D

	ADC0834

	Button

	DC Motor

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	GPIO5

	Pin 29

	21

	5

	GPIO6

	Pin 31

	22

	6

	GPIO13

	Pin 33

	23

	13

[image: _images/Schematic_three_one4.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image245.png]

Note

The power module can apply a 9V battery with the 9V Battery
Buckle in the kit. Insert the jumper cap of the power module into the 5V
bus strips of the breadboard.

[image: _images/image118.jpeg]
Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/c/3.1.4/

Step 3: Compile.

gcc 3.1.4_SmartFan.c -lwiringPi -lm

Step 4: Run the executable file above.

sudo ./a.out

As the code runs, start the fan by pressing the button. Every time you
press, 1 speed grade is adjusted up or down. There are 5 kinds of
speed grades: 0~4. When set to the 4th speed grade and you
press the button, the fan stops working with a 0 wind speed.

Once the temperature goes up or down for more than 2℃, the speed
automatically gets 1-grade faster or slower.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <softPwm.h>
#include <math.h>

typedef unsigned char uchar;
typedef unsigned int uint;

#define ADC_CS 0
#define ADC_CLK 1
#define ADC_DIO 2
#define MotorPin1 21
#define MotorPin2 22
#define MotorEnable 23
#define BtnPin 3

uchar get_ADC_Result(uint channel)
{
 uchar i;
 uchar dat1=0, dat2=0;
 int sel = channel > 1 & 1;
 int odd = channel & 1;

 pinMode(ADC_DIO, OUTPUT);
 digitalWrite(ADC_CS, 0);
 // Start bit
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
//Single End mode
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 // ODD
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,odd); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 //Select
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,sel); delayMicroseconds(2);
 digitalWrite(ADC_CLK,1);

 digitalWrite(ADC_DIO,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0);
 digitalWrite(ADC_DIO,1); delayMicroseconds(2);

 for(i=0;i<8;i++)
 {
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);

 pinMode(ADC_DIO, INPUT);
 dat1=dat1<<1 | digitalRead(ADC_DIO);
 }

 for(i=0;i<8;i++)
 {
 dat2 = dat2 | ((uchar)(digitalRead(ADC_DIO))<<i);
 digitalWrite(ADC_CLK,1); delayMicroseconds(2);
 digitalWrite(ADC_CLK,0); delayMicroseconds(2);
 }

 digitalWrite(ADC_CS,1);
 pinMode(ADC_DIO, OUTPUT);
 return(dat1==dat2) ? dat1 : 0;
}

int temperture(){
 unsigned char analogVal;
 double Vr, Rt, temp, cel, Fah;
 analogVal = get_ADC_Result(0);
 Vr = 5 * (double)(analogVal) / 255;
 Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));
 temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));
 cel = temp - 273.15;
 Fah = cel * 1.8 +32;
 int t=cel;
 return t;
}

int motor(int level){
 if(level==0){
 digitalWrite(MotorEnable,LOW);
 return 0;
 }
 if (level>=4){
 level =4;
 }
 digitalWrite(MotorEnable,HIGH);
 softPwmWrite(MotorPin1, level*25);
 return level;
}
void setup(){
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return;
 }
 softPwmCreate(MotorPin1, 0, 100);
 softPwmCreate(MotorPin2, 0, 100);
 pinMode(MotorEnable,OUTPUT);
 pinMode(BtnPin,INPUT);
 pinMode(ADC_CS, OUTPUT);
 pinMode(ADC_CLK, OUTPUT);
}

int main(void)
{
 setup();
 int currentState,lastState=0;
 int level = 0;
 int currentTemp,markTemp=0;
 while(1){
 currentState=digitalRead(BtnPin);
 currentTemp=temperture();
 if (currentTemp<=0){continue;}
 if (currentState==1&&lastState==0){
 level=(level+1)%5;
 markTemp=currentTemp;
 delay(500);
 }
 lastState=currentState;
 if (level!=0){
 if (currentTemp-markTemp<=-2){
 level=level-1;
 markTemp=currentTemp;
 }
 if (currentTemp-markTemp>=2){
 level=level+1;
 markTemp=currentTemp;
 }
 }
 level=motor(level);
 }
 return 0;
}

Code Explanation

int temperture(){
 unsigned char analogVal;
 double Vr, Rt, temp, cel, Fah;
 analogVal = get_ADC_Result(0);
 Vr = 5 * (double)(analogVal) / 255;
 Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));
 temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));
 cel = temp - 273.15;
 Fah = cel * 1.8 +32;
 int t=cel;
 return t;
}

Temperture() works by converting thermistor values read by ADC0834 into
temperature values. Refer to 2.2.2 Thermistor for more details.

int motor(int level){
 if(level==0){
 digitalWrite(MotorEnable,LOW);
 return 0;
 }
 if (level>=4){
 level =4;
 }
 digitalWrite(MotorEnable,HIGH);
 softPwmWrite(MotorPin1, level*25);
 return level;
}

This function controls the rotating speed of the motor. The range of the
Level: 0-4 (level 0 stops the working motor). One level
adjustment stands for a 25% change of the wind speed.

int main(void)
{
 setup();
 int currentState,lastState=0;
 int level = 0;
 int currentTemp,markTemp=0;
 while(1){
 currentState=digitalRead(BtnPin);
 currentTemp=temperture();
 if (currentTemp<=0){continue;}
 if (currentState==1&&lastState==0){
 level=(level+1)%5;
 markTemp=currentTemp;
 delay(500);
 }
 lastState=currentState;
 if (level!=0){
 if (currentTemp-markTemp<=-2){
 level=level-1;
 markTemp=currentTemp;
 }
 if (currentTemp-markTemp>=2){
 level=level+1;
 markTemp=currentTemp;
 }
 }
 level=motor(level);
 }
 return 0;
}

The function main() contains the whole program process as shown:

	Constantly read the button state and the current temperature.

	Every press makes level+1 and at the same time, the temperature
is updated. The Level ranges 1~4.

	As the fan works (the level is not 0), the temperature is under
detection. A 2℃+ change causes the up and down of the level.

	The motor changes the rotating speed with the Level.

3.1.5 Battery Indicator

Introduction

In this project, we will make a battery indicator device that can
visually display the battery level on the LED Bargraph.

Components

[image: _images/list_Battery_Indicator.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED Bar Graph

	ADC0834

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

	GPIO25

	Pin 22

	6

	25

	GPIO12

	Pin 32

	26

	12

	GPIO16

	Pin 36

	27

	16

	GPIO20

	Pin 38

	28

	20

	GPIO21

	Pin 40

	29

	21

	GPIO5

	Pin 29

	21

	5

	GPIO6

	Pin 31

	22

	6

	GPIO13

	Pin 33

	23

	13

	GPIO19

	Pin 35

	24

	19

	GPIO26

	Pin 37

	25

	26

[image: _images/Schematic_three_one5.png]

Experimental Procedures

Step 1: Build the circuit.

[image: 电量计_bb]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/3.1.5/

Step 3: Compile the code.

gcc 3.1.5_BatteryIndicator.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

After the program runs, give the 3rd pin of ADC0834 and the GND a
lead-out wire separately and then lead them to the two poles of a
battery separately. You can see the corresponding LED on the LED
Bargraph is lit up to display the power level (measuring range: 0-5V).

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code Explanation

void LedBarGraph(int value){
 for(int i=0;i<10;i++){
 digitalWrite(pins[i],HIGH);
 }
 for(int i=0;i<value;i++){
 digitalWrite(pins[i],LOW);
 }
}

This function works for controlling the turning on or off of the 10 LEDs
on the LED Bargraph. We give these 10 LEDs high levels to let they are
off at first, then decide how many LEDs are lit up by changing the
received analog value.

int main(void)
{
 uchar analogVal;
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }
 pinMode(ADC_CS, OUTPUT);
 pinMode(ADC_CLK, OUTPUT);
 for(int i=0;i<10;i++){ //make led pins' mode is output
 pinMode(pins[i], OUTPUT);
 digitalWrite(pins[i],HIGH);
 }
 while(1){
 analogVal = get_ADC_Result(0);
 LedBarGraph(analogVal/25);
 delay(100);
 }
 return 0;
}

analogVal produces values (0-255) with varying voltage values
(0-5V), ex., if a 3V is detected on a battery, the corresponding
value 152 is displayed on the voltmeter.

The 10 LEDs on the LED Bargraph are used to display the
analogVal readings. 255/10=25, so every 25 the analog value
increases, one more LED turns on, ex., if “analogVal=150 (about 3V),
there are 6 LEDs turning on.”

Phenomenon Picture

[image: _images/image249.jpeg]

3.1.6 Traffic Light

Introduction

In this project, we will use LED lights of three colors to realize the
change of traffic lights and a four-digit 7-segment display will be used
to display the timing of each traffic state.

Components

[image: _images/list_Traffic_Light.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	4-Digit 7-Segment Display

	74HC595

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	SPIMOSI

	Pin 19

	12

	10

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO25

	Pin 22

	6

	25

	SPICE0

	Pin 24

	10

	8

	SPICE1

	Pin 26

	11

	7

[image: _images/Schematic_three_one7.png]

Experimental Procedures

Step 1: Build the circuit.

[image: 3.1.7_TrafficLight_bb]
Step 2: Change directory.

cd /home/pi/raphael-kit/c/3.1.6/

Step 3: Compile.

gcc 3.1.6_TrafficLight.c -lwiringPi

Step 4: Run.

sudo ./a.out

As the code runs, LEDs will simulate the color changing of traffic
lights. Firstly, the red LED lights up for 60s, then the green LED
lights up for 30s; next, the yellow LED lights up for 5s. After that,
the red LED lights up for 60s once again. In this way, this series of
actions will be executed repeatedly.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>
#include <signal.h>
#include <unistd.h>
#define SDI 5
#define RCLK 4
#define SRCLK 1

const int ledPin[]={6,10,11};
const int placePin[] = {12, 3, 2, 0};
unsigned char number[] = {0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90};

int greenLight = 30;
int yellowLight = 5;
int redLight = 60;
int colorState = 0;
char *lightColor[]={"Red","Green","Yellow"};
int counter = 60;

void lightup()
{
 for(int i=0;i<3;i++){
 digitalWrite(ledPin[i],HIGH);
 }
 digitalWrite(ledPin[colorState],LOW);
}

void pickDigit(int digit)
{
 for (int i = 0; i < 4; i++)
 {
 digitalWrite(placePin[i], 1);
 }
 digitalWrite(placePin[digit], 0);
}

void hc595_shift(int8_t data)
{
 int i;
 for (i = 0; i < 8; i++)
 {
 digitalWrite(SDI, 0x80 & (data << i));
 digitalWrite(SRCLK, 1);
 delayMicroseconds(1);
 digitalWrite(SRCLK, 0);
 }
 digitalWrite(RCLK, 1);
 delayMicroseconds(1);
 digitalWrite(RCLK, 0);
}

void clearDisplay()
{
 int i;
 for (i = 0; i < 8; i++)
 {
 digitalWrite(SDI, 1);
 digitalWrite(SRCLK, 1);
 delayMicroseconds(1);
 digitalWrite(SRCLK, 0);
 }
 digitalWrite(RCLK, 1);
 delayMicroseconds(1);
 digitalWrite(RCLK, 0);
}

void display()
{
 clearDisplay();
 pickDigit(0);
 hc595_shift(number[counter % 10]);

 clearDisplay();
 pickDigit(1);
 hc595_shift(number[counter % 100 / 10]);

 clearDisplay();
 pickDigit(2);
 hc595_shift(number[counter % 1000 / 100]);

 clearDisplay();
 pickDigit(3);
 hc595_shift(number[counter % 10000 / 1000]);
}

void loop()
{
 while(1){
 display();
 lightup();
 }
}

void timer(int timer1){ //Timer function
 if(timer1 == SIGALRM){
 counter --;
 alarm(1);
 if(counter == 0){
 if(colorState == 0) counter = greenLight;
 if(colorState == 1) counter = yellowLight;
 if(colorState == 2) counter = redLight;
 colorState = (colorState+1)%3;
 }
 printf("counter : %d \t light color: %s \n",counter,lightColor[colorState]);
 }
}

int main(void)
{
 int i;
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }
 pinMode(SDI,OUTPUT);
 pinMode(RCLK,OUTPUT);
 pinMode(SRCLK,OUTPUT);
 for(i=0;i<4;i++){
 pinMode(placePin[i],OUTPUT);
 digitalWrite(placePin[i],HIGH);
 }
 for(i=0;i<3;i++){
 pinMode(ledPin[i],OUTPUT);
 digitalWrite(ledPin[i],HIGH);
 }
 signal(SIGALRM,timer);
 alarm(1);
 loop();
 return 0;
}

Code Explanation

#define SDI 5
#define RCLK 4
#define SRCLK 1

const int placePin[] = {12, 3, 2, 0};
unsigned char number[] = {0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90};

void pickDigit(int digit);
void hc595_shift(int8_t data);
void clearDisplay();
void display();

These codes are used to realize the function of number display of 4-Digit 7-Segment
Displays. Refer to chapter 1.1.5 of the document for more details. Here, we use the
codes to display countdown of traffic light time.

const int ledPin[]={6,10,11};

int colorState = 0;

void lightup()
{
 for(int i=0;i<3;i++){
 digitalWrite(ledPin[i],HIGH);
 }
 digitalWrite(ledPin[colorState],LOW);
}

The codes are used to switch the LED on and off.

int greenLight = 30;
int yellowLight = 5;
int redLight = 60;
int colorState = 0;
char *lightColor[]={"Red","Green","Yellow"};
int counter = 60;

void timer(int timer1){ //Timer function
 if(timer1 == SIGALRM){
 counter --;
 alarm(1);
 if(counter == 0){
 if(colorState == 0) counter = greenLight;
 if(colorState == 1) counter = yellowLight;
 if(colorState == 2) counter = redLight;
 colorState = (colorState+1)%3;
 }
 printf("counter : %d \t light color: %s \n",counter,lightColor[colorState]);
 }
}

The codes are used to switch the timer on and off. Refer to chapter
1.1.5 for more details. Here, when the timer returns to zero, colorState
will be switched so as to switch LED, and the timer will be assigned to
a new value.

void loop()
{
 while(1){
 display();
 lightup();
 }
}

int main(void)
{
 //…
 signal(SIGALRM,timer);
 alarm(1);
 loop();
 return 0;
}

The timer is started in the main() function. In loop() function, use
while(1) loop and call the functions of 4-Digit 7-Segment and LED.

Phenomenon Picture

[image: _images/image255.jpeg]

3.1.7 Overheat Monitor

Introduction

You may want to make an overheat monitoring device that applies to
various situations, ex., in the factory, if we want to have an alarm and
the timely automatic turning off of the machine when there is a circuit
overheating. In this project, we will use thermistor, joystick, buzzer,
LED and LCD to make an smart temperature monitoring device whose
threshold is adjustable.

Components

[image: _images/list_Overheat_Monitor.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Joystick Module

	Thermistor

	ADC0834

	Transistor

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin15

	3

	22

	GPIO23

	Pin16

	4

	23

	GPIO24

	Pin18

	5

	24

	SDA1

	Pin 3

	
	

	SCL1

	Pin 5

	
	

[image: _images/Schematic_three_one8.png]

Experimental Procedures

Step 1: Build the circuit.

[image: Overheat Monitor_bb]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/3.1.7/

Step 3: Compile the code.

gcc 3.1.7_OverheatMonitor.c -lm -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

As the code runs, the current temperature and the high-temperature
threshold 40 are displayed on I2C LCD1602. If the current
temperature is larger than the threshold, the buzzer and LED are started
to alarm you.

Joystick here is for your pressing to adjust the high-temperature
threshold. Toggling the Joystick in the direction of X-axis and
Y-axis can adjust (turn up or down) the current high-temperature
threshold. Press the Joystick once again to reset the threshold to
initial value.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code Explanation

int get_joystick_value(){
 uchar x_val;
 uchar y_val;
 x_val = get_ADC_Result(1);
 y_val = get_ADC_Result(2);
 if (x_val > 200){
 return 1;
 }
 else if(x_val < 50){
 return -1;
 }
 else if(y_val > 200){
 return -10;
 }
 else if(y_val < 50){
 return 10;
 }
 else{
 return 0;
 }
}

This function reads values of X and Y. If X>200, there will return
1; X<50, return -1; y>200, return
-10, and y<50, return 10.

void upper_tem_setting(){
 write(0, 0, "Upper Adjust:");
 int change = get_joystick_value();
 upperTem = upperTem + change;
 char str[6];
 snprintf(str,3,"%d",upperTem);
write(0,1,str);
int len;
 len = strlen(str);
 write(len,1," ");
 delay(100);
}

This function is for adjusting the threshold and displaying it on the
I2C LCD1602.

double temperature(){
 unsigned char temp_value;
 double Vr, Rt, temp, cel, Fah;
 temp_value = get_ADC_Result(0);
 Vr = 5 * (double)(temp_value) / 255;
 Rt = 10000 * (double)(Vr) / (5 - (double)(Vr));
 temp = 1 / (((log(Rt/10000)) / 3950)+(1 / (273.15 + 25)));
 cel = temp - 273.15;
 Fah = cel * 1.8 +32;
 return cel;
}

Read the analog value of the CH0 (thermistor) of ADC0834 and
then convert it to temperature value.

void monitoring_temp(){
 char str[6];
 double cel = temperature();
 snprintf(str,6,"%.2f",cel);
 write(0, 0, "Temp: ");
 write(6, 0, str);
 snprintf(str,3,"%d",upperTem);
 write(0, 1, "Upper: ");
 write(7, 1, str);
 delay(100);
 if(cel >= upperTem){
 digitalWrite(buzzPin, HIGH);
 digitalWrite(LedPin, HIGH);
 }
 else if(cel < upperTem){
 digitalWrite(buzzPin, LOW);
 digitalWrite(LedPin, LOW);
 }
}

As the code runs, the current temperature and the high-temperature
threshold 40 are displayed on I2C LCD1602. If the current
temperature is larger than the threshold, the buzzer and LED are started
to alarm you.

int main(void)
{
 setup();
 int lastState =1;
 int stage=0;
 while (1)
 {
 int currentState = digitalRead(Joy_BtnPin);
 if(currentState==1 && lastState == 0){
 stage=(stage+1)%2;
 delay(100);
 lcd_clear();
 }
 lastState=currentState;
 if (stage==1){
 upper_tem_setting();
 }
 else{
 monitoring_temp();
 }
 }
 return 0;
}

The function main() contains the whole program process as shown:

	When the program starts, the initial value of stage is 0, and
the current temperature and the high-temperature threshold 40 are
displayed on I2C LCD1602. If the current temperature is larger
than the threshold, the buzzer and the LED are started to alarm you.

	Press the Joystick, and stage will be 1 and you can adjust
the high-temperature threshold. Toggling the Joystick in the
direction of X-axis and Y-axis can adjust (turn up or down) the
current threshold. Press the Joystick once again to reset the
threshold to initial value.

Phenomenon Picture

[image: _images/image259.jpeg]

3.1.8 Password Lock

Introduction

In this project, we will use a keypad and a LCD to make a combination
lock. The LCD will display a corresponding prompt for you to type your
password on the Keypad. If the password is input correctly, “Correct”
will be displayed.

On the basis of this project, we can add additional electronic
components, such as buzzer, LED and so on, to add different experimental
phenomena for password input.

Components

[image: _images/list_Password_Lock.png]

	GPIO Extension Board

	Breadboard

	Resistor

	I2C LCD1602

	Keypad

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO25

	Pin 22

	6

	25

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	SPIMOSI

	Pin 19

	12

	10

	SDA1

	Pin 3

	
	

	SCL1

	Pin 5

	
	

[image: _images/Schematic_three_one9.png]

Experimental Procedures

Step 1: Build the circuit.

[image: 3.1.3_PasswordLock_bb_看图王]
Step 2: Change directory.

cd /home/pi/raphael-kit/c/3.1.8/

Step 3: Compile.

gcc 3.1.8_PasswordLock.cpp -lwiringPi

Step 4: Run.

sudo ./a.out

After the code runs, use the keypad to enter the correct password: 1984. If the “CORRECT”
appears on LCD1602, there is no wrong with the password; otherwise,
“WRONG KEY” will appear.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code Explanation

#define ROWS 4
#define COLS 4
#define BUTTON_NUM (ROWS * COLS)
#define LENS 4

unsigned char KEYS[BUTTON_NUM] {
'1','2','3','A',
'4','5','6','B',
'7','8','9','C',
'*','0','#','D'};

char password[LENS]={'1','9','8','4'};

Here, we define the length of the password LENS, storage matrix keyboard
key value array KEYS and the array that stores the correct password.

void keyRead(unsigned char* result);
bool keyCompare(unsigned char* a, unsigned char* b);
void keyCopy(unsigned char* a, unsigned char* b);
void keyPrint(unsigned char* a);
void keyClear(unsigned char* a);
int keyIndexOf(const char value);

There is a declaration of the subfunctions of the matrix keyboard code,
refer to 2.1.8 Keypad of this document for more details.

void write_word(int data);
void send_command(int comm);
void send_data(int data);
void lcdInit();
void clear();
void write(int x, int y, char const data[]);

There is a declaration of the subfunctions of LCD1062 code, refer to 1.1.7 I2C LCD1602 of this document for more details.

while(1){
 keyRead(pressed_keys);
 bool comp = keyCompare(pressed_keys, last_key_pressed);
 ...
 testword[keyIndex]=pressed_keys[0];
 keyIndex++;
 if(keyIndex==LENS){
 if(check()==0){
 clear();
 write(3, 0, "WRONG KEY!");
 write(0, 1, "please try again");
 }
 ...

Read the key value and store it in the test array testword. If the
number of stored key values is more than 4, the correctness of the
password is automatically verified, and the verification results are
displayed on the LCD interface.

int check(){
 for(int i=0;i<LENS;i++){
 if(password[i]!=testword[i])
 {return 0;}
 }
 return 1;
}

Verify the correctness of the password. Return 1 if the password is
entered correctly, and 0 if not.

Phenomenon Picture

[image: _images/image263.jpeg]

3.1.9 Alarm Bell

Introduction

In this project, we will make a manual alarm device. You can replace the
toggle switch with a thermistor or a photosensitive sensor to make a
temperature alarm or a light alarm.

Components

[image: _images/list_Alarm_Bell.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Buzzer

	Slide Switch

	Transistor

	Capacitor

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

[image: _images/Schematic_three_one10.png]

Experimental Procedures

Step 1: Build the circuit.

[image: Alarm Bell_bb]
Step 2: Change directory.

cd /home/pi/raphael-kit/c/3.1.9/

Step 3: Compile.

gcc 3.1.9_AlarmBell.c -lwiringPi -lpthread

Step 4: Run.

sudo ./a.out

After the program starts, put the slide switch to the right, and the buzzer will give out alarm sounds. At the same time, the red and green LEDs will flash at a certain frequency.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code Explanation

#include <pthread.h>

In this code, you’ll use a new library, pthread.h, which is a set of common thread libraries and can realize multithreading. We add the -lpthread parameter at compile time for the independent working of the LED and the buzzer.

void *ledWork(void *arg){
 while(1)
 {
 if(flag==0){
 pthread_exit(NULL);
 }
 digitalWrite(ALedPin,HIGH);
 delay(500);
 digitalWrite(ALedPin,LOW);
 digitalWrite(BLedPin,HIGH);
 delay(500);
 digitalWrite(BLedPin,LOW);
 }
}

The function ledWork() helps to set the working state of these 2 LEDs:
it keeps the green LED lighting up for 0.5s and then turns off;
similarly, keeps the red LED lighting up for 0.5s and then turns off.

void *buzzWork(void *arg){
 while(1)
 {
 if(flag==0){
 pthread_exit(NULL);
 }
 if((note>=800)||(note<=130)){
 pitch = -pitch;
 }
 note=note+pitch;
 softToneWrite(BeepPin,note);
 delay(10);
 }
}

The function buzzWork() is used to set the working state of the buzzer.
Here we set the frequency as between 130 and 800, to accumulate or decay
at an interval of 20.

void on(){
 flag = 1;
 if(softToneCreate(BeepPin) == -1){
 printf("setup softTone failed !");
 return;
 }
 pthread_t tLed;
 pthread_create(&tLed,NULL,ledWork,NULL);
 pthread_t tBuzz;
 pthread_create(&tBuzz,NULL,buzzWork,NULL);
}

In the function on():

	Define the mark flag=1, indicating the ending of the control
thread.

	Create a software-controlled tone pin BeepPin.

	Create two separate threads so that the LED and the buzzer can work
at the same time.

	pthread_t tLed: Declare a thread tLed.

	pthread_create(&tLed,NULL,ledWork,NULL): Create the thread and its prototype is as follows:

int pthread_create(pthread_t *restrict tidp,const pthread_attr_t*restrict_attr,void*（*start_rtn)(void*),void *restrict arg);

If successful, return 0 ；otherwise, return the fall number -1.

	The first parameter is a pointer to the thread identifier.

	The second one is used to set the thread attribute.

	The third one is the starting address of the thread running function.

	The last one is the one that runs the function.

void off(){
 flag = 0;
 softToneStop(BeepPin);
 digitalWrite(ALedPin,LOW);
 digitalWrite(BLedPin,LOW);
}

The function Off() defines “flag=0” so as to exit the threads
ledWork and BuzzWork and then turn off the buzzer and the LED.

int main(){
 setup();
 int lastState = 0;
 while(1){
 int currentState = digitalRead(switchPin);
 if ((currentState == 1)&&(lastState==0)){
 on();
 }
 else if((currentState == 0)&&(lastState==1)){
 off();
 }
 lastState=currentState;
 }
 return 0;
}

Main() contains the whole process of the program: firstly read the value
of the slide switch; if the toggle switch is toggled to the right (the
reading is 1), the function on() is called, the buzzer is driven to emit
sounds and the the red and the green LEDs blink. Otherwise, the buzzer
and the LED don’t work.

Phenomenon Picture

[image: _images/image267.jpeg]

3.1.10 Morse Code Generator

Introduction

In this project, we’ll make a Morse code generator, where you type in a
series of English letters in the Raspberry Pi to make it appear as Morse
code.

Components

[image: _images/list_Morse_Code_Generator.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Buzzer

	Transistor

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO22

	Pin 15

	3

	22

[image: _images/Schematic_three_one11.png]

Experimental Procedures

Step 1: Build the circuit. (Pay attention to poles of the buzzer:
The one with + label is the positive pole and the other is the
negative.)

[image: Morse_bb]
Step 2: Open the code file.

cd /home/pi/raphael-kit/c/3.1.10/

Step 3: Compile the code.

gcc 3.1.10_MorseCodeGenerator.c -lwiringPi

Step 4: Run the executable file above.

sudo ./a.out

After the program runs, type a series of characters, and the buzzer and
the LED will send the corresponding Morse code signals.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code Explanation

struct MORSE{
 char word;
 unsigned char *code;
};

struct MORSE morseDict[]=
{
 {'A',"01"}, {'B',"1000"}, {'C',"1010"}, {'D',"100"}, {'E',"0"},
 {'F',"0010"}, {'G',"110"}, {'H',"0000"}, {'I',"00"}, {'J',"0111"},
 {'K',"101"}, {'L',"0100"}, {'M',"11"}, {'N',"10"}, {'O',"111"},
 {'P',"0110"}, {'Q',"1101"}, {'R',"010"}, {'S',"000"}, {'T',"1"},
 {'U',"001"}, {'V',"0001"}, {'W',"011"}, {'X',"1001"}, {'Y',"1011"},
 {'Z',"1100"},{'1',"01111"}, {'2',"00111"}, {'3',"00011"}, {'4',"00001"},
 {'5',"00000"},{'6',"10000"}, {'7',"11000"}, {'8',"11100"}, {'9',"11110"},
 {'0',"11111"},{'?',"001100"}, {'/',"10010"}, {',',"110011"}, {'.',"010101"},
 {';',"101010"},{'!',"101011"}, {'@',"011010"}, {':',"111000"}
};

This structure MORSE is the dictionary of the Morse code, containing
characters A-Z, numbers 0-9 and marks “?” “/” “:” “,” “.” “;” “!” “@” .

char *lookup(char key,struct MORSE *dict,int length)
{
 for (int i=0;i<length;i++)
 {
 if(dict[i].word==key){
 return dict[i].code;
 }
 }
}

The function lookup() works by “checking the dictionary”. Define a
key search the same words as key in the structure morseDict
and return the corresponding information— code of the certain
word.

void on(){
 digitalWrite(ALedPin,HIGH);
 digitalWrite(BeepPin,HIGH);
}

Create a function on() to start the buzzer and the LED.

void off(){
 digitalWrite(ALedPin,LOW);
 digitalWrite(BeepPin,LOW);
}

The function off() turns off the buzzer and the LED.

void beep(int dt){
 on();
 delay(dt);
 off();
 delay(dt);
}

Define a function beep() to make the buzzer and the LED emit sounds and
blink in a certain interval of dt.

void morsecode(char *code){
 int pause = 250;
 char *point = NULL;
 int length = sizeof(morseDict)/sizeof(morseDict[0]);
 for (int i=0;i<strlen(code);i++)
 {
 point=lookup(code[i],morseDict,length);
 for (int j=0;j<strlen(point);j++){
 if (point[j]=='0')
 {
 beep(pause/2);
 }else if(point[j]=='1')
 {
 beep(pause);
 }
 delay(pause);
 }
 }
}

The function morsecode() is used to process the Morse code of input
characters by making the “1” of the code keep emitting sounds or lights
and the “0”shortly emit sounds or lights, ex., input “SOS”, and there
will be a signal containing three short three long and then three short
segments “ · · · - - - · · · ”.

int toupper(int c)
{
 if ((c >= 'a') && (c <= 'z'))
 return c + ('A' - 'a');
 return c;
}
char *strupr(char *str)
{
 char *orign=str;
 for (; *str!='\0'; str++)
 *str = toupper(*str);
return orign;
}

Before coding, you need to unify the letters into capital letters.

void main(){
 setup();
 char *code;
 int length=8;
 code = (char*)malloc(sizeof(char)*length);
 while (1){
 printf("Please input the messenger:");
 scanf("%s",code);
 code=strupr(code);
 printf("%s\n",code);
 morsecode(code);
 }
}

When you type the relevant characters with the keyboard,
code=strupr(code) will convert the input letters to their capital form.

Printf() then prints the clear text on the computer screen, and the
morsecod() function causes the buzzer and the LED to emit Morse code.

Note that the length of the input character mustn’t exceed the
length (can be revised).

Phenomenon Picture

[image: _images/image270.jpeg]

3.1.11 GAME– Guess Number

Introduction

Guessing Numbers is a fun party game where you and your friends take
turns inputting a number (0~99). The range will be smaller with the
inputting of the number till a player answers the riddle correctly. Then
the player is defeated and punished. For example, if the lucky number is
51 which the players cannot see, and the player ① inputs 50, the prompt
of number range changes to 50~99; if the player ② inputs 70, the range
of number can be 50~70; if the player ③ inputs 51, this player is the
unlucky one. Here, we use keypad to input numbers and use LCD to output
outcomes.

Components

[image: _images/list_GAME_Guess_Number.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Keypad

	I2C LCD1602

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO25

	Pin 22

	6

	25

	SPIMOSI

	Pin 19

	12

	10

	GPIO22

	Pin 15

	3

	22

	GPIO27

	Pin 13

	2

	27

	GPIO17

	Pin 11

	0

	17

	SDA1

	Pin 3

	SDA1(8)

	SDA1(2)

	SCL1

	Pin 5

	SCL1(9)

	SDA1(3)

[image: _images/Schematic_three_one12.png]

Experimental Procedures

Step 1: Build the circuit.

[image: Guess Number_bb]
Step 2: Setup I2C (see Appendix I2C Configuration. If you have set I2C, skip this
step.)

Step 3: Change directory.

cd /home/pi/raphael-kit/c/3.1.11/

Step 4: Compile.

gcc 3.1.11_GAME_GuessNumber.c -lwiringPi

Step 5: Run.

sudo ./a.out

After the program runs, there displays the initial page on the LCD:

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Welcome!
Press A to go!

Press ‘A’, and the game will start and the game page will appear on the
LCD.

Enter number:
0 ‹point‹ 99

A random number ‘point’ is produced but not displayed on the LCD
when the game starts, and what you need to do is to guess it. The number
you have typed appears at the end of the first line till the final
calculation is finished. (Press ‘D’ to start the comparation, and if the
input number is larger than 10, the automatic comparation will
start.)

The number range of ‘point’ is displayed on the second line. And you
must type the number within the range. When you type a number, the range
narrows; if you got the lucky number luckily or unluckily, there will
appear “You’ve got it!”

Code Explanation

At the beginning part of the code are the functional functions of
keypad and I2C LCD1602. You can learning more details about them
in 1.1.7 I2C LCD1602 and 2.1.8 Keypad.

Here, what we need to know is as follows:

/**/
//Start from here
/**/
void init(void){
 fd = wiringPiI2CSetup(LCDAddr);
 lcd_init();
 lcd_clear();
 for(int i=0 ; i<4 ; i++) {
 pinMode(rowPins[i], OUTPUT);
 pinMode(colPins[i], INPUT);
 }
 lcd_clear();
 write(0, 0, "Welcome!");
 write(0, 1, "Press A to go!");
}

This function is used to initially define I2C LCD1602 and Keypad
and to display “Welcome!” and “Press A to go!”.

void init_new_value(void){
 srand(time(0));
 pointValue = rand()%100;
 upper = 99;
 lower = 0;
 count = 0;
 printf("point is %d\n",pointValue);
}

The function produces the random number ‘point’ and resets the
range hint of the point.

bool detect_point(void){
 if(count > pointValue){
 if(count < upper){
 upper = count;
 }
 }
 else if(count < pointValue){
 if(count > lower){
 lower = count;
 }
 }
 else if(count = pointValue){
 count = 0;
 return 1;
 }
 count = 0;
 return 0;
}

detect_point() compares the input number with the produced “point”. If
the comparing outcome is that they are not same, count will assign
values to upper and lower and return ‘0’; otherwise, if
the outcome indicates they are same, there returns ‘1’.

void lcd_show_input(bool result){
 char *str=NULL;
 str =(char*)malloc(sizeof(char)*3);
 lcd_clear();
 if (result == 1){
 write(0,1,"You've got it!");
 delay(5000);
 init_new_value();
 lcd_show_input(0);
 return;
 }
 write(0,0,"Enter number:");
 Int2Str(str,count);
 write(13,0,str);
 Int2Str(str,lower);
 write(0,1,str);
 write(3,1,"<Point<");
 Int2Str(str,upper);
 write(12,1,str);
}

This function works for displaying the game page. Pay attention to the
function Int2Str(str,count), it converts these variables count,
lower, and upper from integer to character string for
the correct display of lcd.

int main(){
 unsigned char pressed_keys[BUTTON_NUM];
 unsigned char last_key_pressed[BUTTON_NUM];
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
 printf("setup wiringPi failed !");
 return 1;
 }
 init();
 init_new_value();
 while(1){
 keyRead(pressed_keys);
 bool comp = keyCompare(pressed_keys, last_key_pressed);
 if (!comp){
 if(pressed_keys[0] != 0){
 bool result = 0;
 if(pressed_keys[0] == 'A'){
 init_new_value();
 lcd_show_input(0);
 }
 else if(pressed_keys[0] == 'D'){
 result = detect_point();
 lcd_show_input(result);
 }
 else if(pressed_keys[0] >='0' && pressed_keys[0] <= '9'){
 count = count * 10;
 count = count + (pressed_keys[0] - 48);
 if (count>=10){
 result = detect_point();
 }
 lcd_show_input(result);
 }
 }
 keyCopy(last_key_pressed, pressed_keys);
 }
 delay(100);
 }
 return 0;
}

Main() contains the whole process of the program, as show below:

	Initialize I2C LCD1602 and Keypad.

	Use init_new_value() to create a random number 0-99.

	Judge whether the button is pressed and get the button reading.

	If the button ‘A’ is pressed, a random number 0-99 will
appear then the game starts.

	If the button ‘D’ is detected to have been pressed, the
program will enter into the outcome judgement and will display the
outcome on the LCD. This step helps that you can also judge the
outcome when you press only one number and then the button
‘D’.

	If the button 0-9 is pressed, the value of count will be
changed; if the count is larger than 10, then the judgement
starts.

	The changes of the game and its values are displayed on LCD1602.

Phenomenon Picture

[image: _images/image274.jpeg]

3.1.12 GAME - 10 Second

Introduction

Next, follow me to make a game device to challenge your concentration.
Tie the tilt switch to a stick to make a magic wand. Shake the wand, the
4-digit segment display will start counting, shake again will let it
stop counting. If you succeed in keeping the displayed count at
10.00, then you win. You can play the game with your friends to see
who is the time wizard.

Components

[image: _images/list_GAME_10_Second.png]

	GPIO Extension Board

	Breadboard

	Resistor

	4-Digit 7-Segment Display

	74HC595

	Tilt Switch

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	SPIMOSI

	Pin 19

	12

	10

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO26

	Pin 37

	25

	26

[image: _images/Schematic_three_one13.png]

Experimental Procedures

Step 1: Build the circuit.

[image: 10 second_bb]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/3.1.12/

Step 3: Compile the code.

gcc 3.1.12_GAME_10Second.c -lwiringPi

Step 4: Run the executable file.

sudo ./a.out

Shake the wand, the 4-digit segment display will start counting, shake
again will let it stop counting. If you succeed in keeping the displayed
count at 10.00, then you win. Shake it one more time to start the
next round of the game.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code Explanation

void stateChange(){
 if (gameState == 0){
 counter = 0;
 delay(1000);
 ualarm(10000,10000);
 }else{
 alarm(0);
 delay(1000);
 }
 gameState = (gameState + 1)%2;
}

The game is divided into two modes:

gameState=0 is the “start” mode, in which the time is timed and
displayed on the segment display, and the tilting switch is shaken to
enter the “show” mode.

GameState =1 is the “show” mode, which stops the timing and displays the
time on the segment display. Shaking the tilt switch again will reset
the timer and restart the game.

void loop(){
 int currentState =0;
 int lastState=0;
 while(1){
 display();
 currentState=digitalRead(sensorPin);
 if((currentState==0)&&(lastState==1)){
 stateChange();
 }
 lastState=currentState;
 }
}

Loop() is the main function. First, the time is displayed on the 4-bit
segment display and the value of the tilt switch is read. If the state
of the tilt switch has changed, stateChange() is called.

Phenomenon Picture

[image: _images/image278.jpeg]

3.1.13 GAME– NotNot

Introduction

In this project, we will make an interesting game device, and we call it “Not Not”.

During the game, the dot matrix will refresh an arrow randomly. What you need to do is to press the button in the opposite direction of the arrow within a limited time. If the time is up, or if the button in the same direction as the arrow is pressed, you are out.

This game can really practice your reverse thinking, and now shall we have a try?

Components

[image: _images/list_GAME_14_NotNot.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED Matrix Module

	Button

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO22

	Pin 15

	3

	22

	GPIO23

	Pin 16

	4

	23

	SPIMOSI

	Pin 19

	12

	MOSI

	SPICE0

	pin 24

	10

	CE0

	SPISCLK

	Pin 23

	14

	SCLK

[image: _images/Schematic_notnot.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/3.1.14game_notnot.png]

Note

Turn on the SPI before starting the experiment, refer to SPI Configuration for details.
And the BCM2835 library is also needed.

Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/c/3.1.13/

Step 3: Compile the code.

make

Step 4: Run the executable file.

sudo ./3.1.13_GAME_NotNot

After the program starts, a left or right arrow will be refreshed at
random on the dot matrix. What you need to do is to press the button
in the opposite direction of the arrow, then “√” appears on the dot matrix. If the button in the
same direction as the arrow is pressed, you are out and the dot matrix
displays “x”. You can also add 2 new buttons or replace them with
Joystick keys for up, down, left and right— 4 directions to increase
the difficulty of the game.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code Explanation

Based on 1.1.6 LED Dot Matrix Module, this project adds 2 buttons to make an amusing game device.

The whole program process is as below:

	Use system time to generate a random 0 or 1.

	Display a random left or right arrow pattern.

	Press the key and determine the result.

	Display the right or wrong pattern.

[image: _images/3.1.14_notnot1.png]
int get_index()
{
 srand((unsigned)time(NULL));
 return rand()%2;
}

The seed of the system is changed by the system time, i.e. srand((unsigned)time(NULL)), so that each time the rand function is called the value obtained is completely random, and finally the result obtained is divided by 2, so that the values obtained are 0 and 1.

int get_key(uint num)
{
 while (1)
 {
 if (1 == bcm2835_gpio_lev(AButtonPin) && num == 0){
 return 1;
 }
 else if (1 == bcm2835_gpio_lev(BButtonPin) && num == 1){
 return 1;
 }
 else if (1 == bcm2835_gpio_lev(AButtonPin) && num == 1){
 return 0;
 }
 else if (1 == bcm2835_gpio_lev(BButtonPin) && num == 0){
 return 0;
 }
 }
}

Determines which button was pressed and compares it to the direction of the arrow on the dot matrix and gives the final result of 0 or 1.

[image: _images/3.1.14_getkey.png]
void display(uint index){
 uchar i;
 if (stage == 0){
 for(i=1;i<9;i++)
 {
 Write_Max7219(i,arrow[index][i-1]);
 }
 }
 else if(stage == 1){
 for(i=1;i<9;i++)
 {
 Write_Max7219(i,check[index][i-1]);
 }
 }
}

Depending on the value of the stage and index to display the left or right arrow or the right or wrong pattern.

[image: _images/3.1.14_display.png]

Play with Python

	Check the RPi.GPIO

	Output
	1.1 Displays
	1.1.1 Blinking LED

	1.1.2 RGB LED

	1.1.3 LED Bar Graph

	1.1.4 7-segment Display

	1.1.5 4-Digit 7-Segment Display

	1.1.6 LED Dot Matrix

	1.1.7 I2C LCD1602

	1.2 Sound
	1.2.1 Active Buzzer

	1.2.2 Passive Buzzer

	1.3 Drivers
	1.3.1 Motor

	1.3.2 Servo

	1.3.3 Relay

	Input
	2.1 Controllers
	2.1.1 Button

	2.1.2 Micro Switch

	2.1.3 Touch Switch Module

	2.1.4 Slide Switch

	2.1.5 Tilt Switch

	2.1.6 Rotary Encoder Module

	2.1.7 Potentiometer

	2.1.8 Keypad

	2.1.9 Joystick

	2.2 Sensors
	2.2.1 Photoresistor

	2.2.2 Thermistor

	2.2.3 DHT-11

	2.2.4 Reed Switch Module

	2.2.5 IR Obstacle Avoidance Sensor

	2.2.6 Speed Sensor Module

	2.2.7 PIR

	2.2.8 Ultrasonic Sensor Module

	2.2.9 MPU6050 Module

	2.2.10 MFRC522 RFID Module

	Audiovisual
	3.1.1 Photograph Module

	3.1.2 Video Module

	3.1.3 Audio Module

	3.1.4 Text-to-speech

	IOT
	Quick Guide on Cloud4RPi
	Install Cloud4RPi in Your Raspberry Pi

	Login to Cloud4RPi on Your Computer

	Connect Your Raspberry Pi to Cloud4RPi

	Using the Cloud4RPi Control Panels

	Learn More about control.py

	Projects
	Temperature and Humidity Acquisition

	Remote Switch

	Smart Light

	Smart Curtain

	Attendance system

	Extension
	4.1.1 Camera

	4.1.2 Music Player

	4.1.3 Speech Clock

	4.1.4 Automatic Capture Camera

	4.1.5 Intelligent Visual Doorbell

	4.1.6 Magnetic Induction Alarm System

	4.1.7 Counting Device

	4.1.8 Welcome

	4.1.9 Reversing Alarm

	4.1.10 Smart Fan

	4.1.11 Battery Indicator

	4.1.12 Traffic Light

	4.1.13 Overheat Monitor

	4.1.14 Password Lock

	4.1.15 Alarm Bell

	4.1.16 Morse Code Generator

	4.1.17 GAME– Guess Number

	4.1.18 GAME - 10 Second

	4.1.19 AttendanceSystem

Check the RPi.GPIO

If you are a Python user, you can program GPIOs with API provided by
RPi.GPIO.

RPi.GPIO is a module to control Raspberry Pi GPIO channels. This package
provides a class to control the GPIO on a Raspberry Pi. For examples and
documents, visit: http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/.

Test whether RPi.GPIO is installed or not, type in python:

python

[image: _images/image27.png]
In Python CLI, input import RPi.GPIO, If no error prompts, it means
RPi.GPIO is installed.

import RPi.GPIO

[image: _images/image28.png]
If you want to quit python CLI, type in:

exit()

[image: _images/image29.png]

Output

1.1 Displays

	1.1.1 Blinking LED

	1.1.2 RGB LED

	1.1.3 LED Bar Graph

	1.1.4 7-segment Display

	1.1.5 4-Digit 7-Segment Display

	1.1.6 LED Dot Matrix

	1.1.7 I2C LCD1602

1.2 Sound

	1.2.1 Active Buzzer

	1.2.2 Passive Buzzer

1.3 Drivers

	1.3.1 Motor

	1.3.2 Servo

	1.3.3 Relay

1.1.1 Blinking LED

Introduction

In this project, we will learn how to make a blinking LED by programming.
Through your settings, your LED can produce a series of interesting
phenomena. Now, go for it.

Components

[image: _images/blinking_led_list.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

Schematic Diagram

In this experiment, connect a 220Ω resistor to the anode (the long pin
of the LED), then the resistor to 3.3 V, and connect the cathode (the
short pin) of the LED to GPIO17 of Raspberry Pi. Therefore, to turn on
an LED, we need to make GPIO17 low (0V) level. We can get this
phenomenon by programming.

Note

Pin11 refers to the 11th pin of the Raspberry Pi from left to right, and its corresponding wiringPi and BCM pin numbers are shown in the following table.

In the C language related content, we make GPIO0 equivalent to 0 in the
wiringPi. Among the Python language related content, BCM 17 is 17 in the
BCM column of the following table. At the same time, they are the same
as the 11th pin on the Raspberry Pi, Pin 11.

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

[image: _images/image48.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image49.png]
Step 2: Go to the folder of the code and run it.

	If you use a screen, you’re recommended to take the following steps.

Find 1.1.1_BlinkingLed.py and double click it to open. Now you’re in the
file.

Click Run ->Run Module in the window and the following
contents will appear.

To stop it from running, just click the X button on the top right to
close it and then you’ll back to the code. If you modify the code,
before clicking Run Module (F5) you need to save it first. Then you
can see the results.

	If you log into the Raspberry Pi remotely, type in the command:

cd /home/pi/raphael-kit/python

Note

Change directory to the path of the code in this experiment via cd.

Step 3: Run the code

sudo python3 1.1.1_BlinkingLed.py

Note

Here sudo - superuser do, and python means to run the file by Python.

After the code runs, you will see the LED flashing.

Step 4: If you want to edit the code file 1.1.1_BlinkingLed.py,
press Ctrl + C to stop running the code. Then type the following
command to open 1.1.1_BlinkingLed.py:

nano 1.1.1_BlinkingLed.py

Note

nano is a text editor tool. The command is used to open the
code file 1.1.1_BlinkingLed.py by this tool.

Press Ctrl+X to exit. If you have modified the code, there will be a
prompt asking whether to save the changes or not. Type in Y (save)
or N (don’t save).

Then press Enter to exit. Type in nano 1.1.1_BlinkingLed.py again to
see the effect after the change.

Code

The following is the program code:

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time
LedPin = 17
def setup():
 # Set the GPIO modes to BCM Numbering
 GPIO.setmode(GPIO.BCM)
 # Set LedPin's mode to output,and initial level to High(3.3v)
 GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)
Define a main function for main process
def main():
 while True:
 print ('...LED ON')
 # Turn on LED
 GPIO.output(LedPin, GPIO.LOW)
 time.sleep(0.5)
 print ('LED OFF...')
 # Turn off LED
 GPIO.output(LedPin, GPIO.HIGH)
 time.sleep(0.5)
Define a destroy function for clean up everything after the script finished
def destroy():
 # Turn off LED
 GPIO.output(LedPin, GPIO.HIGH)
 # Release resource
 GPIO.cleanup()
If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

#!/usr/bin/env python3

When the system detects this, it will search the installation path of
python in the env setting, then call the corresponding interpreter to
complete the operation. It’s to prevent the user not installing the
python onto the /usr/bin default path.

import RPi.GPIO as GPIO

In this way, import the RPi.GPIO library, then define a variable, GPIO
to replace RPI.GPIO in the following code.

import time

Import time package, for time delay function in the following program.

LedPin = 17

LED connects to the GPIO17 of the T-shape extension board, namely, BCM
17.

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)

Set LedPin’s mode to output, and initial level to High (3.3v).

There are two ways of numbering the IO pins on a Raspberry Pi within
RPi.GPIO: BOARD numbers and BCM numbers. In our projects, what we use is
BCM numbers. You need to set up every channel you are using as an input
or an output.

GPIO.output(LedPin, GPIO.LOW)

Set GPIO17(BCM17) as 0V (low level). Since the cathode of LED is
connected to GPIO17, thus the LED will light up.

time.sleep(0.5)

Delay for 0.5 second. Here, the statement is delay function in C language, the unit is second.

def destroy():
 GPIO.cleanup()

Define a destroy function for clean up everything after the script
finished.

if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

This is the general running structure of the code. When the program
starts to run, it initializes the pin by running the setup(), and then
runs the code in the main() function to set the pin to high and low
levels. When Ctrl+C is pressed, the program,
destroy() will be executed.

Phenomenon Picture

[image: _images/image54.jpeg]

1.1.2 RGB LED

Introduction

In this project, we will control an RGB LED to flash various colors.

Components

[image: _images/list_rgb_led.png]

	GPIO Extension Board

	Breadboard

	Resistor

	RGB LED

Schematic Diagram

After connecting the pins of R, G, and B to a current limiting resistor,
connect them to the GPIO17, GPIO18, and GPIO27 respectively. The longest
pin (GND) of the LED connects to the GND of the Raspberry Pi. When the
three pins are given different PWM values, the RGB LED will display
different colors.

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

[image: _images/rgb_led_schematic.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image61.png]
Step 2: Open the code file.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 1.1.2_rgbLed.py

After the code runs, you will see that RGB displays red, green, blue,
yellow, pink, and cyan.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time
Set up a color table in Hexadecimal
COLOR = [0xFF0000, 0x00FF00, 0x0000FF, 0xFFFF00, 0xFF00FF, 0x00FFFF]
Set pins' channels with dictionary
pins = {'Red':17, 'Green':18, 'Blue':27}

def setup():
 global p_R, p_G, p_B
 GPIO.setmode(GPIO.BCM)
 # Set all LedPin's mode to output and initial level to High(3.3v)
 for i in pins:
 GPIO.setup(pins[i], GPIO.OUT, initial=GPIO.HIGH)

 p_R = GPIO.PWM(pins['Red'], 2000)
 p_G = GPIO.PWM(pins['Green'], 2000)
 p_B = GPIO.PWM(pins['Blue'], 2000)
 p_R.start(0)
 p_G.start(0)
 p_B.start(0)

Define a MAP function for mapping values. Like from 0~255 to 0~100
def MAP(x, in_min, in_max, out_min, out_max):
 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

Define a function to set up colors
def setColor(color):
configures the three LEDs' luminance with the inputted color value.
 R_val = (color & 0xFF0000) >> 16
 G_val = (color & 0x00FF00) >> 8
 B_val = (color & 0x0000FF) >> 0

 # Map color value from 0~255 to 0~100
 R_val = MAP(R_val, 0, 255, 0, 100)
 G_val = MAP(G_val, 0, 255, 0, 100)
 B_val = MAP(B_val, 0, 255, 0, 100)

 # Change the colors
 p_R.ChangeDutyCycle(R_val)
 p_G.ChangeDutyCycle(G_val)
 p_B.ChangeDutyCycle(B_val)

 print ("color_msg: R_val = %s, G_val = %s, B_val = %s"%(R_val, G_val, B_val))

def main():
 while True:
 for color in COLOR:
 setColor(color)# change the color of the RGB LED
 time.sleep(0.5)

def destroy():
 # Stop all pwm channel
 p_R.stop()
 p_G.stop()
 p_B.stop()
 # Release resource
 GPIO.cleanup()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

p_R = GPIO.PWM(pins['Red'], 2000)
p_G = GPIO.PWM(pins['Green'], 2000)
p_B = GPIO.PWM(pins['Blue'], 2000)

p_R.start(0)
p_G.start(0)
p_B.start(0)

Call the GPIO.PWM() function to define Red, Green and Blue as PWM pins
and set the frequency of PWM pins to 2000Hz, then Use the Start()
function to set the initial duty cycle to zero.

def MAP(x, in_min, in_max, out_min, out_max):
 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

Define a MAP function for mapping values. For instance, x=50, in_min=0,
in_max=255, out_min=0, out_max=100. After the map function mapping, it
returns (50-0) * (100-0)/(255-0) +0=19.6, meaning that 50 in 0-255
equals 19.6 in 0-100.

def setColor(color):
 R_val = (color & 0xFF0000) >> 16
 G_val = (color & 0x00FF00) >> 8
 B_val = (color & 0x0000FF) >> 0

Configures the three LEDs’ luminance with the inputted color value,
assign the first two values of the hexadecimal to R_val, the middle two
assigned to G_val, the last two values to B_val. For instance, if
color=0xFF00FF, R_val=（0xFF00FF & 0xFF0000）>> 16 = 0xFF, G_val = 0x00,
B_val=0xFF.

R_val = MAP(R_val, 0, 255, 0, 100)
G_val = MAP(G_val, 0, 255, 0, 100)
B_val = MAP(B_val, 0, 255, 0, 100)

Use map function to map the R,G,B value among 0~255 into PWM duty cycle
range 0-100.

p_R.ChangeDutyCycle(R_val)
p_G.ChangeDutyCycle(G_val)
p_B.ChangeDutyCycle(B_val)

Assign the mapped duty cycle value to the corresponding PWM channel to
change the luminance.

for color in COLOR:
 setColor(color)
 time.sleep(0.5)

Assign every item in the COLOR list to the color respectively and change
the color of the RGB LED via the setColor() function.

Phenomenon Picture

[image: _images/image62.jpeg]

1.1.3 LED Bar Graph

Introduction

In this project, we sequentially illuminate the lights on the LED Bar
Graph.

Components

[image: _images/list_led_bar.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED Bar Graph

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO25

	Pin 22

	6

	25

	SDA1

	Pin 3

	8

	2

	SCL1

	Pin 5

	9

	3

	SPICE0

	Pin 24

	10

	8

[image: _images/schematic_led_bar.png]

Experimental Procedures

Step 1: Build the circuit.

Note

Pay attention to the direction when connecting. If you connect it backwards, it will not light up.

[image: _images/image66.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 1.1.3_LedBarGraph.py

After the code runs, you will see the LEDs on the LED bar turn on and
off regularly.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

ledPins = [11, 12, 13, 15, 16, 18, 22, 3, 5, 24]

def oddLedBarGraph():
 for i in range(5):
 j = i*2
 GPIO.output(ledPins[j],GPIO.HIGH)
 time.sleep(0.3)
 GPIO.output(ledPins[j],GPIO.LOW)

def evenLedBarGraph():
 for i in range(5):
 j = i*2+1
 GPIO.output(ledPins[j],GPIO.HIGH)
 time.sleep(0.3)
 GPIO.output(ledPins[j],GPIO.LOW)

def allLedBarGraph():
 for i in ledPins:
 GPIO.output(i,GPIO.HIGH)
 time.sleep(0.3)
 GPIO.output(i,GPIO.LOW)

def setup():
 GPIO.setwarnings(False)
 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
 for i in ledPins:
 GPIO.setup(i, GPIO.OUT) # Set all ledPins' mode is output
 GPIO.output(i, GPIO.LOW) # Set all ledPins to high(+3.3V) to off led

def loop():
 while True:
 oddLedBarGraph()
 time.sleep(0.3)
 evenLedBarGraph()
 time.sleep(0.3)
 allLedBarGraph()
 time.sleep(0.3)

def destroy():
 for pin in ledPins:
 GPIO.output(pin, GPIO.LOW) # turn off all leds
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

ledPins = [11, 12, 13, 15, 16, 18, 22, 3, 5, 24]
Create an array and assign it to the pin number corresponding to the LED Bar Graph (11, 12, 13, 15, 16, 18, 22, 3, 5, 24) and the array will be used to control the LED.

def oddLedBarGraph():
 for i in range(5):
 j = i*2
 GPIO.output(ledPins[j],GPIO.HIGH)
 time.sleep(0.3)
 GPIO.output(ledPins[j],GPIO.LOW)

Let the LED on the odd digit of the LED Bar Graph light on in turn.

def evenLedBarGraph():
 for i in range(5):
 j = i*2+1
 GPIO.output(ledPins[j],GPIO.HIGH)
 time.sleep(0.3)
 GPIO.output(ledPins[j],GPIO.LOW)

Make the LED on the even digit of the LED Bar Graph light on in turn.

def allLedBarGraph():
 for i in ledPins:
 GPIO.output(i,GPIO.HIGH)
 time.sleep(0.3)
 GPIO.output(i,GPIO.LOW)

Let the LED on the LED Bar Graph light on one by one.

Phenomenon Picture

[image: _images/image67.jpeg]

1.1.4 7-segment Display

Introduction

Let’s try to drive a 7-segment display to show a figure from 0 to 9 and
A to F.

Components

[image: _images/list_7_segment.png]

	GPIO Extension Board

	Breadboard

	Resistor

	7-segment Display

	74HC595

Schematic Diagram

Connect pin ST_CP of 74HC595 to Raspberry Pi GPIO18, SH_CP to GPIO27, DS
to GPIO17, parallel output ports to 8 segments of the LED segment
display. Input data in DS pin to shift register when SH_CP (the clock
input of the shift register) is at the rising edge, and to the memory
register when ST_CP (the clock input of the memory) is at the rising
edge. Then you can control the states of SH_CP and ST_CP via the
Raspberry Pi GPIOs to transform serial data input into parallel data
output so as to save Raspberry Pi GPIOs and drive the display.

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

[image: _images/schematic_7_segment.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image73.png]
Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 1.1.4_7-Segment.py

After the code runs, you’ll see the 7-segment display display 0-9, A-F.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect. After confirming that there are no problems, you can use the Copy button to copy the modified code, then open the source code in Terminal via nano cammand and paste it.

import RPi.GPIO as GPIO
import time

Set up pins
SDI = 17
RCLK = 18
SRCLK = 27

Define a segment code from 0 to F in Hexadecimal
segCode = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71]

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(SDI, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(RCLK, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(SRCLK, GPIO.OUT, initial=GPIO.LOW)

Shift the data to 74HC595
def hc595_shift(dat):
 for bit in range(0, 8):
 GPIO.output(SDI, 0x80 & (dat << bit))
 GPIO.output(SRCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(RCLK, GPIO.LOW)

def main():
 while True:
 # Shift the code one by one from segCode list
 for code in segCode:
 hc595_shift(code)
 print ("segCode[%s]: 0x%02X"%(segCode.index(code), code)) # %02X means double digit HEX to print
 time.sleep(0.5)

def destroy():
 GPIO.cleanup()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

segCode = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71]

A segment code array from 0 to F in Hexadecimal (Common cathode).

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(SDI, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(RCLK, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(SRCLK, GPIO.OUT, initial=GPIO.LOW)

Set ds, st_cp, sh_cp three pins to output and the initial state as low level.

GPIO.output(SDI, 0x80 & (dat << bit))

Assign the dat data to SDI(DS) by bits. Here we assume dat=0x3f(0011 1111, when bit=2, 0x3f will shift right(<<) 2 bits. 1111 1100 (0x3f << 2) & 1000 0000 (0x80) = 1000 0000, is true.

GPIO.output(SRCLK, GPIO.HIGH)

SRCLK’s initial value was set to LOW, and here it’s set to HIGH, which is to generate a rising edge pulse, then shift the DS date to shift register.

GPIO.output(RCLK, GPIO.HIGH)

RCLK’s initial value was set to LOW, and here it’s set to HIGH, which is to generate a rising edge, then shift data from shift register to storage register.

Note

The hexadecimal format of number 0~15 are (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

Phenomenon Picture

[image: _images/image74.jpeg]

1.1.5 4-Digit 7-Segment Display

Introduction

Next, follow me to try to control the 4-digit 7-segment display.

Components

[image: _images/list_4_digit.png]

	GPIO Extension Board

	Breadboard

	Resistor

	4-Digit 7-Segment Display

	74HC595

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	SPIMOSI

	Pin 19

	12

	10

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

[image: _images/schmatic_4_digit.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image80.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 1.1.5_4-Digit.py

After the code runs, the program takes a count, increasing by 1 per second, and the 4 digit display displays the count.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time
import threading

SDI = 24
RCLK = 23
SRCLK = 18

placePin = (10, 22, 27, 17)
number = (0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)

counter = 0
timer1 = 0

def clearDisplay():
 for i in range(8):
 GPIO.output(SDI, 1)
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 GPIO.output(RCLK, GPIO.LOW)

def hc595_shift(data):
 for i in range(8):
 GPIO.output(SDI, 0x80 & (data << i))
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 GPIO.output(RCLK, GPIO.LOW)

def pickDigit(digit):
 for i in placePin:
 GPIO.output(i,GPIO.LOW)
 GPIO.output(placePin[digit], GPIO.HIGH)

def timer():
 global counter
 global timer1
 timer1 = threading.Timer(1.0, timer)
 timer1.start()
 counter += 1
 print("%d" % counter)

def loop():
 global counter
 while True:
 clearDisplay()
 pickDigit(0)
 hc595_shift(number[counter % 10])

 clearDisplay()
 pickDigit(1)
 hc595_shift(number[counter % 100//10])

 clearDisplay()
 pickDigit(2)
 hc595_shift(number[counter % 1000//100])

 clearDisplay()
 pickDigit(3)
 hc595_shift(number[counter % 10000//1000])

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(SDI, GPIO.OUT)
 GPIO.setup(RCLK, GPIO.OUT)
 GPIO.setup(SRCLK, GPIO.OUT)
 for i in placePin:
 GPIO.setup(i, GPIO.OUT)
 global timer1
 timer1 = threading.Timer(1.0, timer)
 timer1.start()

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
 global timer1
 GPIO.cleanup()
 timer1.cancel() # cancel the timer

if __name__ == '__main__':
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

Code Explanation

placePin = (10, 22, 27, 17)

These four pins control the common anode pins of the four-digit 7-segment displays.

number = (0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)

A segment code array from 0 to 9 in hexadecimal (common anode).

def clearDisplay():
 for i in range(8):
 GPIO.output(SDI, 1)
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
GPIO.output(RCLK, GPIO.HIGH)
GPIO.output(RCLK, GPIO.LOW)

Write “1” for eight times in SDI., so that the eight LEDs on the 7-segment Dispaly will turn off so as to clear the displayed content.

def pickDigit(digit):
 for i in placePin:
 GPIO.output(i,GPIO.LOW)
 GPIO.output(placePin[digit], GPIO.HIGH)

Select the place of the value. there is only one place that should be enable each time. The enabled place will be written high.

def loop():
 global counter
 while True:
 clearDisplay()
 pickDigit(0)
 hc595_shift(number[counter % 10])

 clearDisplay()
 pickDigit(1)
 hc595_shift(number[counter % 100//10])

 clearDisplay()
 pickDigit(2)
 hc595_shift(number[counter % 1000//100])

 clearDisplay()
 pickDigit(3)
 hc595_shift(number[counter % 10000//1000])

The function is used to set the number displayed on the 4-digit 7-segment Dispaly.

First, start the fourth segment display, write the single-digit number. Then start the third segment display, and type in the tens digit; after that, start the second and the first segment display respectively, and write the hundreds and thousands digits respectively. Because the refreshing speed is very fast, we see a complete four-digit display.

timer1 = threading.Timer(1.0, timer)
timer1.start()

The module, threading is the common threading module in Python，and Timer is the subclass of it.
The prototype of code is:

class threading.Timer(interval, function, args=[], kwargs={})

After the interval, the function will be run. Here, the interval is 1.0，and the function is timer().
start () means the Timer will start at this point.

def timer():
 global counter
 global timer1
 timer1 = threading.Timer(1.0, timer)
 timer1.start()
 counter += 1
 print("%d" % counter)

After Timer reaches 1.0s, the Timer function is called; add 1 to counter, and the Timer is used again to execute itself repeatedly every second.

Phenomenon Picture

[image: _images/image81.jpeg]

1.1.6 LED Dot Matrix

Introduction

As the name suggests, an LED dot matrix is a matrix composed of LEDs.
The lighting up and dimming of the LEDs formulate different characters
and patterns.

Components

[image: _images/list_dot.png]

	GPIO Extension Board

	Breadboard

	LED Matrix Module

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	SPIMOSI

	Pin 19

	12

	MOSI

	SPICE0

	pin 24

	10

	CE0

	SPISCLK

	Pin 23

	14

	SCLK

[image: _images/schematic_dot.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/1.1.6fritzing.png]

Note

Turn on the SPI before starting the experiment, refer to SPI Configuration for details. And the Luma.LED_Matrix module is also needed.

Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 1.1.6_LedMatrix.py

After running the code, the LED Matrix will display a rectangle for two seconds, then the text ‘A’ for two seconds, and finally scroll to display the text “Hello, Nice to meet you!

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.core.virtual import viewport
from luma.led_matrix.device import max7219
from luma.core.legacy import text
from luma.core.legacy.font import proportional, CP437_FONT, LCD_FONT
import time

serial = spi(port=0, device=0, gpio=noop())
device = max7219(serial, rotate=1)
virtual = viewport(device, width=200, height=400)

def displayRectangle():
 with canvas(device) as draw:
 draw.rectangle(device.bounding_box, outline="white", fill="black")

def displayLetter():
 with canvas(device) as draw:
 text(draw, (0, 0), "A", fill="white", font=proportional(CP437_FONT))

def scrollToDisplayText():
 with canvas(virtual) as draw:
 text(draw, (0, 0), "Hello, Nice to meet you!", fill="white", font=proportional(CP437_FONT))

 for offset in range(150):
 virtual.set_position((offset,0))
 time.sleep(0.1)

def main():
 while True:
 displayRectangle()
 time.sleep(2)
 displayLetter()
 time.sleep(2)
 scrollToDisplayText()

def destroy():
 pass

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.core.virtual import viewport
from luma.led_matrix.device import max7219
from luma.core.legacy import text
from luma.core.legacy.font import proportional, CP437_FONT, LCD_FONT
import time

Import the relevant libraries, of which luma.core is a component library that provides a Pillow-compatible canvas for Python 3, as well as other drawing primitives and text rendering features that support small displays on Raspberry Pi and other single-board computers.
You can visit https://luma-core.readthedocs.io/en/latest/intro.html to learn more.

serial = spi(port=0, device=0, gpio=noop())
device = max7219(serial, rotate=1)

Initialize the luma.led_matrix.device.max7219 class.

Note

If you want to modify the display direction of the LED Matrix, you can do so by modifying the value of rotate, where 0 means no rotation, 1 means 90° clockwise rotation, 2 means 180° rotation, and 3 means 270° clockwise rotation.

def displayRectangle():
 with canvas(device) as draw:
 draw.rectangle(device.bounding_box, outline="white", fill="black")

Display a hollow rectangle in the edge area of the LED Matrix and modify the value of fill to white to display a solid rectangle.

def displayLetter():
 with canvas(device) as draw:
 text(draw, (0, 0), "A", fill="white", font=proportional(CP437_FONT))

An “A” is displayed on the (0, 0) coordinate of the LED Matrix, where CP437_FONT is a font suitable for 8*8 dot matrix screens.

virtual = viewport(device, width=200, height=400)

There is no way to display a line of text in a single 8x8 LED matrix. We need to use the luma.core.virtual.viewport method so that the text can be scrolled through the virtual viewport.

def scrollToDisplayText():
 with canvas(virtual) as draw:
 text(draw, (0, 0), "Hello, Nice to meet you!", fill="white", font=proportional(CP437_FONT))

 for offset in range(150):
 virtual.set_position((offset,0))
 time.sleep(0.1)

scrollToDisplayText() implements “Hello, Nice to meet you!” as a scrolling text on the LED Matrix.

First, we pass virtual as an argument to the canvas() function, so that we can use the virtual window as the current display window. Then the text() function displays “Hello, Nice to meet you!” on the LED Matrix.

Using the for loop function, we move the virtual window in the X direction so that we can see the “Hello, Nice to meet you!” text scrolling.

Phenomenon Picture

[image: _images/1.1.6led_dot_matrix.JPG]

1.1.7 I2C LCD1602

Introduction

LCD1602 is a character type liquid crystal display, which can display 32
(16*2) characters at the same time.

Components

[image: _images/list_i2c_lcd.png]

	GPIO Extension Board

	Breadboard

	I2C LCD1602

Schematic Diagram

	T-Board Name

	physical

	SDA1

	Pin 3

	SCL1

	Pin 5

[image: _images/schematic_i2c_lcd.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image96.png]
Step 2: Setup I2C (see I2C Configuration. If you have set I2C, skip this step.)

Step 3: Change directory.

cd /home/pi/raphael-kit/python/

Step 4: Run.

sudo python3 1.1.7_Lcd1602.py

After the code runs, you can see Greetings!, From SunFounder displaying on the LCD.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import LCD1602
import time

def setup():
 LCD1602.init(0x27, 1) # init(slave address, background light)
 LCD1602.write(0, 0, 'Greetings!')
 LCD1602.write(1, 1, 'From SunFounder')
 time.sleep(2)

def destroy():
 LCD1602.clear()

if __name__ == "__main__":
 try:
 setup()
 except KeyboardInterrupt:
 destroy()

Code Explanation

import LCD1602

This file is an open source file for controlling I2C LCD1602. It allows us to easily use I2C LCD1602.

LCD1602.init(0x27, 1)

The function initializes the I2C system with the designated device symbol. The first parameter is the address of the I2C device, which can be detected through the i2cdetect command (see Appendix for details). The address of I2C LCD1602 is generally 0x27.

LCD1602.write(0, 0, 'Greetings!')

Within this function, ‘Greetings!! ‘ is the character to be printed on the Row 0+1, column 0+1 on LCD.
Now you can see “Greetings!! From SunFounder” displayed on the LCD.

Phenomenon Picture

[image: _images/image97.jpeg]

1.2.1 Active Buzzer

Introduction

In this project, we will learn how to drive an active buzzer to beep with
a PNP transistor.

Components

[image: _images/list_1.2.1.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Buzzer

	Transistor

Schematic Diagram

In this experiment, an active buzzer, a PNP transistor and a 1k resistor
are used between the base of the transistor and GPIO to protect the
transistor. When the GPIO17 of Raspberry Pi output is supplied with low
level (0V) by programming, the transistor will conduct because of
current saturation and the buzzer will make sounds. But when high level
is supplied to the IO of Raspberry Pi, the transistor will be cut off
and the buzzer will not make sounds.

[image: _images/image332.png]

Experimental Procedures

Step 1: Build the circuit. (The active buzzer has a white table sticker on the surface and a black back.)

[image: _images/image104.png]
Step 2: Open the code file.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 1.2.1_ActiveBuzzer.py

The code run, the buzzer beeps.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

Set GPIO17 as buzzer pin
BeepPin = 17

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(BeepPin, GPIO.OUT, initial=GPIO.HIGH)

def main():
 while True:
 # Buzzer on (Beep)
 print ('Buzzer On')
 GPIO.output(BeepPin, GPIO.LOW)
 time.sleep(0.1)
 # Buzzer off
 print ('Buzzer Off')
 GPIO.output(BeepPin, GPIO.HIGH)
 time.sleep(0.1)

def destroy():
 # Turn off buzzer
 GPIO.output(BeepPin, GPIO.HIGH)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

GPIO.output(BeepPin, GPIO.LOW)

Set the buzzer pin as low level to make the buzzer beep.

time.sleep(0.1)

Wait for 0.1 second. Change the switching frequency by
changing this parameter.

Note

Not the sound frequency. Active Buzzer cannot change sound frequency.

GPIO.output(BeepPin, GPIO.HIGH)

Close the buzzer.

Phenomenon Picture

[image: _images/image105.jpeg]

1.2.2 Passive Buzzer

Introduction

In this project, we will learn how to make a passive buzzer play music.

Components

[image: _images/list_1.2.2.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Buzzer

	Transistor

Schematic Diagram

In this experiment, a passive buzzer, a PNP transistor and a 1k resistor
are used between the base of the transistor and GPIO to protect the
transistor.

When GPIO17 is given different frequencies, the passive buzzer will emit
different sounds; in this way, the buzzer plays music.

[image: _images/image333.png]

Experimental Procedures

Step 1: Build the circuit. (The Passive buzzer with green circuit board on the back.)

[image: _images/image106.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 1.2.2_PassiveBuzzer.py

The code run, the buzzer plays a piece of music.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

Buzzer = 11

CL = [0, 131, 147, 165, 175, 196, 211, 248] # Frequency of Bass tone in C major
CM = [0, 262, 294, 330, 350, 393, 441, 495] # Frequency of Midrange tone in C major
CH = [0, 525, 589, 661, 700, 786, 882, 990] # Frequency of Treble tone in C major

song_1 = [CM[3], CM[5], CM[6], CM[3], CM[2], CM[3], CM[5], CM[6], # Notes of song1
 CH[1], CM[6], CM[5], CM[1], CM[3], CM[2], CM[2], CM[3],
 CM[5], CM[2], CM[3], CM[3], CL[6], CL[6], CL[6], CM[1],
 CM[2], CM[3], CM[2], CL[7], CL[6], CM[1], CL[5]]

beat_1 = [1, 1, 3, 1, 1, 3, 1, 1, # Beats of song 1, 1 means 1/8 beat
 1, 1, 1, 1, 1, 1, 3, 1,
 1, 3, 1, 1, 1, 1, 1, 1,
 1, 2, 1, 1, 1, 1, 1, 1,
 1, 1, 3]

song_2 = [CM[1], CM[1], CM[1], CL[5], CM[3], CM[3], CM[3], CM[1], # Notes of song2
 CM[1], CM[3], CM[5], CM[5], CM[4], CM[3], CM[2], CM[2],
 CM[3], CM[4], CM[4], CM[3], CM[2], CM[3], CM[1], CM[1],
 CM[3], CM[2], CL[5], CL[7], CM[2], CM[1]]

beat_2 = [1, 1, 2, 2, 1, 1, 2, 2, # Beats of song 2, 1 means 1/8 beat
 1, 1, 2, 2, 1, 1, 3, 1,
 1, 2, 2, 1, 1, 2, 2, 1,
 1, 2, 2, 1, 1, 3]

def setup():
 GPIO.setmode(GPIO.BOARD) # Numbers GPIOs by physical location
 GPIO.setup(Buzzer, GPIO.OUT) # Set pins' mode is output
 global Buzz # Assign a global variable to replace GPIO.PWM
 Buzz = GPIO.PWM(Buzzer, 440) # 440 is initial frequency.
 Buzz.start(50) # Start Buzzer pin with 50% duty cycle

def loop():
 while True:
 print ('\n Playing song 1...')
 for i in range(1, len(song_1)): # Play song 1
 Buzz.ChangeFrequency(song_1[i]) # Change the frequency along the song note
 time.sleep(beat_1[i] * 0.5) # delay a note for beat * 0.5s
 time.sleep(1) # Wait a second for next song.

 print ('\n\n Playing song 2...')
 for i in range(1, len(song_2)): # Play song 1
 Buzz.ChangeFrequency(song_2[i]) # Change the frequency along the song note
 time.sleep(beat_2[i] * 0.5) # delay a note for beat * 0.5s

def destory():
 Buzz.stop() # Stop the buzzer
 GPIO.output(Buzzer, 1) # Set Buzzer pin to High
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destory()

Code Explanation

CL = [0, 131, 147, 165, 175, 196, 211, 248] # Frequency of Bass tone in C major
CM = [0, 262, 294, 330, 350, 393, 441, 495] # Frequency of Midrange tone in C major
CH = [0, 525, 589, 661, 700, 786, 882, 990] # Frequency of Treble tone in C major

These are the frequencies of each note. The first 0 is to
skip CL[0] so that the number 1-7 corresponds to the CDEFGAB of the tone.

song_1 = [CM[3], CM[5], CM[6], CM[3], CM[2], CM[3], CM[5], CM[6],
 CH[1], CM[6], CM[5], CM[1], CM[3], CM[2], CM[2], CM[3],
 CM[5], CM[2], CM[3], CM[3], CL[6], CL[6], CL[6], CM[1],
 CM[2], CM[3], CM[2], CL[7], CL[6], CM[1], CL[5]]

These arrays are the notes of a song.

beat_1 = [1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1,
 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1,
 1, 1, 3]

Every sound beat (each number) represents the ⅛ beat, or 0.5s

Buzz = GPIO.PWM(Buzzer, 440)
Buzz.start(50)

Define pin Buzzer as PWM pin, then set its frequency to 440 and
Buzz.start(50) is used to run PWM. What’s more, set the duty cycle to 50%.

for i in range(1, len(song_1)):
 Buzz.ChangeFrequency(song_1[i])
 time.sleep(beat_1[i] * 0.5)

Run a for loop, then the buzzer will play the notes in the array song_1[]
with the beats in the beat_1[] array, .

Now you can hear the passive buzzer playing music.

Phenomenon Picture

[image: _images/image107.jpeg]

1.3.1 Motor

Introduction

In this project, we will learn to how to use L293D to drive a DC motor
and make it rotate clockwise and counterclockwise. Since the DC Motor
needs a larger current, for safety purpose, here we use the Power Supply
Module to supply motors.

Components

[image: _images/list_1.3.1.png]

	GPIO Extension Board

	Breadboard

	Power Supply Module

	L293D

	DC Motor

Schematic Diagram

Plug the power supply module in breadboard, and insert the jumper cap to
pin of 5V, then it will output voltage of 5V. Connect pin 1 of L293D to
GPIO22, and set it as high level. Connect pin2 to GPIO27, and pin7 to
GPIO17, then set one pin high, while the other low. Thus you can change
the motor’s rotation direction.

[image: _images/image336.png]
Experimental Procedures

Step 1: Build the circuit.

[image: _images/image117.png]

Note

The power module can apply a 9V battery with the 9V Battery
Buckle in the kit. Insert the jumper cap of the power module into the 5V
bus strips of the breadboard.

[image: _images/image118.jpeg]
Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 1.3.1_Motor.py

As the code runs, the motor first rotates clockwise for 5s then stops for 5s,
after that, it rotates anticlockwise for 5s; subsequently, the motor stops
for 5s. This series of actions will be executed repeatedly.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

Set up pins
MotorPin1 = 17
MotorPin2 = 27
MotorEnable = 22

def setup():
 # Set the GPIO modes to BCM Numbering
 GPIO.setmode(GPIO.BCM)
 # Set pins to output
 GPIO.setup(MotorPin1, GPIO.OUT)
 GPIO.setup(MotorPin2, GPIO.OUT)
 GPIO.setup(MotorEnable, GPIO.OUT, initial=GPIO.LOW)

Define a motor function to spin the motor
direction should be
1(clockwise), 0(stop), -1(counterclockwise)
def motor(direction):
 # Clockwise
 if direction == 1:
 # Set direction
 GPIO.output(MotorPin1, GPIO.HIGH)
 GPIO.output(MotorPin2, GPIO.LOW)
 # Enable the motor
 GPIO.output(MotorEnable, GPIO.HIGH)
 print ("Clockwise")
 # Counterclockwise
 if direction == -1:
 # Set direction
 GPIO.output(MotorPin1, GPIO.LOW)
 GPIO.output(MotorPin2, GPIO.HIGH)
 # Enable the motor
 GPIO.output(MotorEnable, GPIO.HIGH)
 print ("Counterclockwise")
 # Stop
 if direction == 0:
 # Disable the motor
 GPIO.output(MotorEnable, GPIO.LOW)
 print ("Stop")

def main():
 # Define a dictionary to make the script more readable
 # CW as clockwise, CCW as counterclockwise, STOP as stop
 directions = {'CW': 1, 'CCW': -1, 'STOP': 0}
 while True:
 # Clockwise
 motor(directions['CW'])
 time.sleep(5)
 # Stop
 motor(directions['STOP'])
 time.sleep(5)
 # Anticlockwise
 motor(directions['CCW'])
 time.sleep(5)
 # Stop
 motor(directions['STOP'])
 time.sleep(5)

def destroy():
 # Stop the motor
 GPIO.output(MotorEnable, GPIO.LOW)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

def motor(direction):
 # Clockwise
 if direction == 1:
 # Set direction
 GPIO.output(MotorPin1, GPIO.HIGH)
 GPIO.output(MotorPin2, GPIO.LOW)
 # Enable the motor
 GPIO.output(MotorEnable, GPIO.HIGH)
 print ("Clockwise")
...

Create a function, motor() whose variable is direction. As the
condition that direction=1 is met, the motor rotates clockwise; when
direction=-1, the motor rotates anticlockwise; and under the condition
that direction=0, it stops rotating.

def main():
 # Define a dictionary to make the script more readable
 # CW as clockwise, CCW as counterclockwise, STOP as stop
 directions = {'CW': 1, 'CCW': -1, 'STOP': 0}
 while True:
 # Clockwise
 motor(directions['CW'])
 time.sleep(5)
 # Stop
 motor(directions['STOP'])
 time.sleep(5)
 # Anticlockwise
 motor(directions['CCW'])
 time.sleep(5)
 # Stop
 motor(directions['STOP'])
 time.sleep(5)

In the main() function, create an array, directions[], in which CW is
equal to 1, the value of CCW is -1, and the number 0 refers to Stop.

As the code runs, the motor first rotates clockwise for 5s then stop for
5s, after that, it rotates anticlockwise for 5s; subsequently, the motor
stops for 5s. This series of actions will be executed repeatedly.

Now, you should see the motor blade rotating.

Phenomenon Picture

[image: _images/image119.jpeg]

1.3.2 Servo

Introduction

In this project, we will learn how to make the servo rotate.

Components

[image: _images/list_1.3.2.png]

	GPIO Extension Board

	Breadboard

	Servo

Schematic Diagram

[image: _images/image337.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image125.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 1.3.2_Servo.py

After the program is executed, the servo will rotate from 0 degrees
to 180 degrees, and then from 180 degrees to 0 degrees, circularly.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

SERVO_MIN_PULSE = 500
SERVO_MAX_PULSE = 2500
ServoPin = 18

def map(value, inMin, inMax, outMin, outMax):
 return (outMax - outMin) * (value - inMin) / (inMax - inMin) + outMin

def setup():
 global p
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
 GPIO.setup(ServoPin, GPIO.OUT) # Set ServoPin's mode is output
 GPIO.output(ServoPin, GPIO.LOW) # Set ServoPin to low
 p = GPIO.PWM(ServoPin, 50) # set Frequecy to 50Hz
 p.start(0) # Duty Cycle = 0

def setAngle(angle): # make the servo rotate to specific angle (0-180 degrees)
 angle = max(0, min(180, angle))
 pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
 pwm = map(pulse_width, 0, 20000, 0, 100)
 p.ChangeDutyCycle(pwm)#map the angle to duty cycle and output it
def loop():
 while True:
 for i in range(0, 181, 5): #make servo rotate from 0 to 180 deg
 setAngle(i) # Write to servo
 time.sleep(0.002)
 time.sleep(1)
 for i in range(180, -1, -5): #make servo rotate from 180 to 0 deg
 setAngle(i)
 time.sleep(0.001)
 time.sleep(1)
def destroy():
 p.stop()
 GPIO.cleanup()

if __name__ == '__main__': #Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

p = GPIO.PWM(ServoPin, 50) # set Frequecy to 50Hz
p.start(0) # Duty Cycle = 0

Set the servoPin to PWM pin, then the frequency to 50hz, and the period to 20ms.

p.start(0): Run the PWM function，and set the initial value to 0.

def setAngle(angle): # make the servo rotate to specific angle (0-180 degrees)
 angle = max(0, min(180, angle))
 pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
 pwm = map(pulse_width, 0, 20000, 0, 100)
 p.ChangeDutyCycle(pwm)#map the angle to duty cycle and output it

Create a function, setAngle() to write angle that ranges from 0 to 180 into the servo.

angle = max(0, min(180, angle))

This code is used to limit the angle within the range 0-180°.

The min() function returns the minimum of the input values.
If 180<angle, then return 180,if not, return angle.

The max() method returns the maximum element in an iterable or largest of
two or more parameters. If 0>angle, then return 0, if not, return angle.

pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
pwm = map(pulse_width, 0, 20000, 0, 100)
p.ChangeDutyCycle(pwm)

To render a range 0 ~ 180 ° to the servo, the pulse width of the servo
is set to 0.5ms(500us)-2.5ms(2500us).

The period of PWM is 20ms(20000us), thus the duty cycle of PWM is
(500/20000)%-(2500/20000)%, and the range 0 ~ 180 is mapped to 2.5 ~
12.5.

Phenomenon Picture

[image: _images/image126.jpeg]

1.3.3 Relay

Introduction

In this project, we will learn to use a relay. It is one of the commonly
used components in automatic control system. When the voltage, current,
temperature, pressure, etc., reaches, exceeds or is lower than the
predetermined value, the relay will connect or interrupt the circuit, to
control and protect the equipment.

Components

[image: _images/list_1.3.4.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Transistor

	Relay

	Diode

Schematic Diagram

[image: _images/image345.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image144.png]
Step 2: Open the code file.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 1.3.3_Relay.py

While the code is running, the LED lights up. In addition, you can hear
a ticktock caused by breaking normally close contact and closing
normally open contact.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time

Set GPIO17 as control pin
relayPin = 17

Define a setup function for some setup
def setup():
 # Set the GPIO modes to BCM Numbering
 GPIO.setmode(GPIO.BCM)
 # Set relayPin's mode to output,
 # and initial level to High(3.3v)
 GPIO.setup(relayPin, GPIO.OUT, initial=GPIO.HIGH)

Define a main function for main process
def main():
 while True:
 print ('Relay open...')
 # Tick
 GPIO.output(relayPin, GPIO.LOW)
 time.sleep(1)
 print ('...Relay close')
 # Tock
 GPIO.output(relayPin, GPIO.HIGH)
 time.sleep(1)

Define a destroy function for clean up everything after
the script finished
def destroy():
 # Turn off LED
 GPIO.output(relayPin, GPIO.HIGH)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

GPIO.output(relayPin, GPIO.LOW)

Set the pins of transistor as low level to let the relay open, LED does not turn on.

time.sleep(1)

wait for 1 second.

GPIO.output(relayPin, GPIO.HIGH)

Set the pins of the transistor as low level to actuate the relay, LED
lights up.

Phenomenon Picture

[image: _images/image145.jpeg]

Input

2.1 Controllers

	2.1.1 Button

	2.1.2 Micro Switch

	2.1.3 Touch Switch Module

	2.1.4 Slide Switch

	2.1.5 Tilt Switch

	2.1.6 Rotary Encoder Module

	2.1.7 Potentiometer

	2.1.8 Keypad

	2.1.9 Joystick

2.2 Sensors

	2.2.1 Photoresistor

	2.2.2 Thermistor

	2.2.3 DHT-11

	2.2.4 Reed Switch Module

	2.2.5 IR Obstacle Avoidance Sensor

	2.2.6 Speed Sensor Module

	2.2.7 PIR

	2.2.8 Ultrasonic Sensor Module

	2.2.9 MPU6050 Module

	2.2.10 MFRC522 RFID Module

2.1.1 Button

Introduction

In this project, we will learn how to turn on or off the LED by using a
button.

Components

[image: _images/list_2.1.1_Button.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Button

Schematic Diagram

Use a normally open button as the input of Raspberry Pi, the connection
is shown in the schematic diagram below. When the button is pressed, the
GPIO18 will turn into low level (0V). We can detect the state of the
GPIO18 through programming. That is, if the GPIO18 turns into low level,
it means the button is pressed. You can run the corresponding code when
the button is pressed, and then the LED will light up.

Note

The longer pin of the LED is the anode and the shorter one is
the cathode.

[image: _images/image302.png]
[image: _images/image303.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image152.png]
Step 2: Open the code file.

cd /home/pi/raphael-kit/python

Step 3: Run the code.

sudo python3 2.1.1_Button.py

Now, press the button, and the LED will light up; press the button
again, and the LED will go out. At the same time, the state of the LED
will be printed on the screen.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time
LedPin = 17 # Set GPIO17 as LED pin
BtnPin = 18 # Set GPIO18 as button pin

Set Led status to True(OFF)
Led_status = True

Define a setup function for some setup
def setup():
 # Set the GPIO modes to BCM Numbering
 GPIO.setmode(GPIO.BCM)
 # Set LedPin's mode to output,
 # and initial level to high (3.3v)
 GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)
 # Set BtnPin's mode to input,
 # and pull up to high (3.3V)
 GPIO.setup(BtnPin, GPIO.IN)

Define a callback function for button callback
def swLed(ev=None):
 global Led_status
 # Switch led status(on-->off; off-->on)
 Led_status = not Led_status
 GPIO.output(LedPin, Led_status)
 if Led_status:
 print ('LED OFF...')
 else:
 print ('...LED ON')

Define a main function for main process
def main():
Set up a falling detect on BtnPin,
 # and callback function to swLed
 GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=swLed)
 while True:
 # Don't do anything.
 time.sleep(1)

Define a destroy function for clean up everything after
the script finished
def destroy():
 # Turn off LED
 GPIO.output(LedPin, GPIO.HIGH)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

LedPin = 17

Set GPIO17 as LED pin

BtnPin = 18

Set GPIO18 as button pin

GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=swLed)

Set up a falling detect on BtnPin, and then when the value of BtnPin
changes from a high level to a low level, it means that the button is
pressed. The next step is calling the function, swled.

def swLed(ev=None):
global Led_status
Switch led status(on-->off; off-->on)
Led_status = not Led_status
GPIO.output(LedPin, Led_status)

Define a callback function as button callback. When the button is
pressed at the first time，and the condition, not Led_status is false,
GPIO.output() function is called to light up the LED. As the button is
pressed once again, the state of LED will be converted from false to
true, thus the LED will turn off.

Phenomenon Picture

[image: _images/image153.jpeg]

2.1.2 Micro Switch

Introduction

In this project, we will learn how to use Micro Switch. A Micro Switch is a small, very sensitive switch which requires minimum compression to activate. Because they are reliable and sensitive, micro switches are often used as a safety device.

They are used to prevent doors from closing if something or someone is in the way and other applications similar.

Components

[image: _images/2.1.2component.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Micro Switch

	Capacitor

Schematic Diagram

Connect the left pin of the Micro Switch to GPIO17, and two LEDs to
pin GPIO22 and GPIO27 respectively. Then when you press and release the
move arm of the Micro Switch, you can see the two LEDs light up alternately.

[image: _images/image305.png]
[image: _images/micro_Schematic.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/2.1.4fritzing.png]
Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 2.1.2_MicroSwitch.py

While the code is running, press the moving arm, then the yellow LED lights up; release the moving arm, the red LED turns on.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time

Set #17 as micro switch pin, #22 as led1 pin, #27 as led2 pin
microPin = 17
led1Pin = 22
led2Pin = 27

Define a setup function for some setup
def setup():
 # Set the GPIO modes to BCM Numbering
 GPIO.setmode(GPIO.BCM)
 # Set microPin input
 # Set ledPin output,
 # and initial level to High(3.3v)
 GPIO.setup(microPin, GPIO.IN)
 GPIO.setup(led1Pin, GPIO.OUT, initial=GPIO.HIGH)
 GPIO.setup(led2Pin, GPIO.OUT, initial=GPIO.HIGH)

Define a main function for main process
def main():
 while True:
 # micro switch high, led1 on
 if GPIO.input(microPin) == 1:
 print ('LED1 ON')
 GPIO.output(led1Pin, GPIO.LOW)
 GPIO.output(led2Pin, GPIO.HIGH)

 # micro switch low, led2 on
 if GPIO.input(microPin) == 0:
 print (' LED2 ON')
 GPIO.output(led2Pin, GPIO.LOW)
 GPIO.output(led1Pin, GPIO.HIGH)

 time.sleep(0.5)
Define a destroy function for clean up everything after
the script finished
def destroy():
 # Turn off LED
 GPIO.output(led1Pin, GPIO.HIGH)
 GPIO.output(led2Pin, GPIO.HIGH)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

if GPIO.input(slidePin) == 1:
 GPIO.output(led1Pin, GPIO.LOW)
 GPIO.output(led2Pin, GPIO.HIGH)

When the moving arm of the micro switch is released, the left pin is connected to the right pin; at this time, a high level will be read on GPIO17, and then LED1 will be on and LED2 will be off.

if GPIO.input(slidePin) == 0:
 GPIO.output(led2Pin, GPIO.LOW)
 GPIO.output(led1Pin, GPIO.HIGH)

When the move arm is pressed, the left pin and the middle pin are connected. At this point a low level will be read on GPIO17, then turns LED2 on and LED1 off.

Phenomenon Picture

[image: _images/2.1.2micro_switch.JPG]

2.1.3 Touch Switch Module

Introduction

In this project, you will learn about touch switch module. It can replace the traditional kinds of switch with these advantages: convenient operation, fine touch sense, precise control and least mechanical wear.

Components

[image: _images/2.1.3component.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Touch Switch Module

Schematic Diagram

[image: _images/2.1.3circuit.png]

Experimental Procedures

Step 1:: Build the circuit.

[image: _images/2.1.3fritzing.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.3_TouchSwitch.py

While the code is running, the red LED lights up; when you tap on the touch switch module, the yellow LED turns on.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time

Set #17 as touch switch pin, #22 as led1 pin, #27 as led2 pin
touchPin = 17
led1Pin = 22
led2Pin = 27

Define a setup function for some setup
def setup():
 # Set the GPIO modes to BCM Numbering
 GPIO.setmode(GPIO.BCM)
 # Set touchPin input
 # Set ledPin output,
 # and initial level to High(3.3v)
 GPIO.setup(touchPin, GPIO.IN)
 GPIO.setup(led1Pin, GPIO.OUT, initial=GPIO.HIGH)
 GPIO.setup(led2Pin, GPIO.OUT, initial=GPIO.HIGH)

Define a main function for main process
def main():
 while True:
 # touch switch high, led1 on
 if GPIO.input(touchPin) == 1:
 print ('You touch it!')
 GPIO.output(led1Pin, GPIO.LOW)
 GPIO.output(led2Pin, GPIO.HIGH)

 # touch switch low, led2 on
 if GPIO.input(touchPin) == 0:
 GPIO.output(led2Pin, GPIO.LOW)
 GPIO.output(led1Pin, GPIO.HIGH)

 time.sleep(0.5)
Define a destroy function for clean up everything after
the script finished
def destroy():
 # Turn off LED
 GPIO.output(led1Pin, GPIO.HIGH)
 GPIO.output(led2Pin, GPIO.HIGH)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

touchPin = 17
led1Pin = 22
led2Pin = 27

touchPin, led1Pin and led2Pin connects to the GPIO17, GPIO22 and GPIO27,
namely BCM17, BCM22 and BCM27.

GPIO.setmode(GPIO.BCM)
 GPIO.setup(touchPin, GPIO.IN)
 GPIO.setup(led1Pin, GPIO.OUT, initial=GPIO.HIGH)
 GPIO.setup(led2Pin, GPIO.OUT, initial=GPIO.HIGH)

Set the GPIO modes to BCM Numbering. Set led1Pin, led2Pin to output mode
and initial their level to High (3.3v).

touch switch high, led1 on
if GPIO.input(touchPin) == 1:
 print ('You touch it!')
 GPIO.output(led1Pin, GPIO.LOW)
 GPIO.output(led2Pin, GPIO.HIGH)

touch switch low, led2 on
if GPIO.input(touchPin) == 0:
 GPIO.output(led2Pin, GPIO.LOW)
 GPIO.output(led1Pin, GPIO.HIGH)

When you tap on the touch switch module, touchPin is high, led1 will light up and print “You touch it!”. When touchPin is low, led2 will light up.

Phenomenon Picture

[image: _images/2.1.3touch_switch_module.JPG]

2.1.4 Slide Switch

Introduction

In this project, we will learn how to use a slide switch. Usually,the
slide switch is soldered on PCB as a power switch, but here we need to
insert it into the breadboard, thus it may not be tightened. And we use
it on the breadboard to show its function.

Components

[image: _images/list_2.1.2_slide_switch.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Slide Switch

	Capacitor

Schematic Diagram

Connect the middle pin of the Slide Switch to GPIO17, and two LEDs to
pin GPIO22 and GPIO27 respectively. Then when you pull the slide, you
can see the two LEDs light up alternately.

[image: _images/image305.png]
[image: _images/image306.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image161.png]
Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 2.1.4_Slider.py

While the code is running, get the switch connected to the left, then
the yellow LED lights up; to the right, the red light turns on.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

Set GPIO17 as slide switch pin, GPIO22 as led1 pin, GPIO27 as led2 pin
slidePin = 17
led1Pin = 22
led2Pin = 27

Define a setup function for some setup
def setup():
 # Set the GPIO modes to BCM Numbering
 GPIO.setmode(GPIO.BCM)
 # Set slidePin input
 # Set ledPin output,
 # and initial level to High(3.3v)
 GPIO.setup(slidePin, GPIO.IN)
 GPIO.setup(led1Pin, GPIO.OUT, initial=GPIO.HIGH)
 GPIO.setup(led2Pin, GPIO.OUT, initial=GPIO.HIGH)

Define a main function for main process
def main():
 while True:
 # slide switch high, led1 on
 if GPIO.input(slidePin) == 1:
 print (' LED1 ON ')
 GPIO.output(led1Pin, GPIO.LOW)
 GPIO.output(led2Pin, GPIO.HIGH)

 # slide switch low, led2 on
 if GPIO.input(slidePin) == 0:
 print (' LED2 ON ')
 GPIO.output(led2Pin, GPIO.LOW)
 GPIO.output(led1Pin, GPIO.HIGH)

 time.sleep(0.5)
Define a destroy function for clean up everything after
the script finished
def destroy():
 # Turn off LED
 GPIO.output(led1Pin, GPIO.HIGH)
 GPIO.output(led2Pin, GPIO.HIGH)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

if GPIO.input(slidePin) == 1:
 GPIO.output(led1Pin, GPIO.LOW)
 GPIO.output(led2Pin, GPIO.HIGH)

When the slide is pulled to the right, the middle pin and right one are
connected; the Raspberry Pi reads a high level at the middle pin, so the
LED1 is on and LED2 off.

if GPIO.input(slidePin) == 0:
 GPIO.output(led2Pin, GPIO.LOW)
 GPIO.output(led1Pin, GPIO.HIGH)

When the slide is pulled to the left, the middle pin and left one are
connected; the Raspberry Pi reads a low, so the LED2 is on and LED1 off.

Phenomenon Picture

[image: _images/image162.jpeg]

2.1.5 Tilt Switch

Introduction

This is a ball tilt-switch with a metal ball inside. It is used to
detect inclinations of a small angle.

Components

[image: _images/list_2.1.3_tilt_switch.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Tilt Switch

Schematic Diagram

[image: _images/image307.png]
[image: _images/image308.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image169.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.5_Tilt.py

Place the tilt vertically, and the green LED will turns on. If you
tilt it, “Tilt!” will be printed on the screen and the red LED will
turns on. Place it vertically again, and the green LED will lights on.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO

TiltPin = 17
Gpin = 27
Rpin = 22

def setup():
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
 GPIO.setup(Gpin, GPIO.OUT) # Set Green Led Pin mode to output
 GPIO.setup(Rpin, GPIO.OUT) # Set Red Led Pin mode to output
 GPIO.setup(TiltPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set BtnPin's mode is input, and pull up to high level(3.3V)
 GPIO.add_event_detect(TiltPin, GPIO.BOTH, callback=detect, bouncetime=200)

def Led(x):
 if x == 0:
 GPIO.output(Rpin, 1)
 GPIO.output(Gpin, 0)
 if x == 1:
 GPIO.output(Rpin, 0)
 GPIO.output(Gpin, 1)

def Print(x):
 if x == 0:
 print (' *************')
 print (' * Tilt! *')
 print (' *************')

def detect(chn):
 Led(GPIO.input(TiltPin))
 Print(GPIO.input(TiltPin))

def loop():
 while True:
 pass

def destroy():
 GPIO.output(Gpin, GPIO.HIGH) # Green led off
 GPIO.output(Rpin, GPIO.HIGH) # Red led off
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

GPIO.add_event_detect(TiltPin, GPIO.BOTH, callback=detect, bouncetime=200)

Set up a detect on TiltPin, and callback function to detect.

def Led(x):
 if x == 0:
 GPIO.output(Rpin, 1)
 GPIO.output(Gpin, 0)
 if x == 1:
 GPIO.output(Rpin, 0)
 GPIO.output(Gpin, 1)

Define a function Led() to turn the two LEDs on or off. If x=0, the red
LED lights up; otherwise, the green LED will be lit.

def Print(x):
 if x == 0:
 print (' *************')
 print (' * Tilt! *')
 print (' *************')

Create a function, Print() to print the characters above on the screen.

def detect(chn):
 Led(GPIO.input(TiltPin))
 Print(GPIO.input(TiltPin))

Define a callback function for tilt callback. Get the read value of the
tilt switch then the function Led() controls the turning on or off of
the two LEDs that is depended on the read value of the tilt switch.

Phenomenon Picture

[image: _images/image170.jpeg]

2.1.6 Rotary Encoder Module

Introduction

In this project, you will learn about Rotary Encoder. A rotary encoder is
an electronic switch with a set of regular pulses in strictly timing
sequence. When used with IC, it can achieve increment, decrement, page
turning and other operations such as mouse scrolling, menu selection,
and so on.

Components

[image: _images/Part_two_25.png]

	GPIO Extension Board

	Breadboard

	Rotary Encoder Module

Schematic Diagram

[image: _images/image349.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/2.1.6_fritzing.png]
In this example, we can connect the Rotary Encoder pin directly to the
Raspberry Pi using a breadboard and 40-pin Cable, connect the GND of the Rotary
Encoder to GND, 「+」to 5V, SW to digital GPIO27, DT to digital GPIO18, and CLK to digital GPIO
17.

Step 2: Open the code file.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.6_RotaryEncoder.py

You will see the count on the shell. When you turn the rotary encoder clockwise, the count is increased; when turn it counterclockwise, the count is decreased. If you press the switch on the rotary encoder, the readings will return to zero.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

clkPin = 17 # CLK Pin
dtPin = 18 # DT Pin
swPin = 27 # Button Pin

globalCounter = 0

flag = 0
Last_dt_Status = 0
Current_dt_Status = 0

def setup():
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
 GPIO.setup(clkPin, GPIO.IN) # input mode
 GPIO.setup(dtPin, GPIO.IN)
 GPIO.setup(swPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def rotaryDeal():
 global flag
 global Last_dt_Status
 global Current_dt_Status
 global globalCounter
 Last_dt_Status = GPIO.input(dtPin)
 while(not GPIO.input(clkPin)):
 Current_dt_Status = GPIO.input(dtPin)
 flag = 1
 if flag == 1:
 flag = 0
 if (Last_dt_Status == 0) and (Current_dt_Status == 1):
 globalCounter = globalCounter - 1
 if (Last_dt_Status == 1) and (Current_dt_Status == 0):
 globalCounter = globalCounter + 1

def swISR(channel):
 global globalCounter
 globalCounter = 0

def loop():
 global globalCounter
 tmp = 0 # Rotary Temperary

 GPIO.add_event_detect(swPin, GPIO.FALLING, callback=swISR)
 while True:
 rotaryDeal()
 if tmp != globalCounter:
 print ('globalCounter = %d' % globalCounter)
 tmp = globalCounter

def destroy():
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

Code Analysis

	Read dtPin value when clkPin is low.

	When clkPin is high, if dtPin goes from low to high, the count decreases, otherwise the count increases.

	swPin will output low when the shaft is pressed.

From this, the program flow is shown below:

[image: _images/2.1.6_flow.png]

Phenomenon Picture

[image: _images/2.1.6rotary_ecoder.JPG]

2.1.7 Potentiometer

Introduction

The ADC function can be used to convert analog signals to digital
signals, and in this experiment, ADC0834 is used to get the function
involving ADC. Here, we implement this process by using potentiometer.
Potentiometer changes the physical quantity – voltage, which is
converted by the ADC function.

Components

[image: _images/list_2.1.4_potentiometer.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Potentiometer

	ADC0834

Schematic Diagram

[image: _images/image311.png]
[image: _images/image312.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image180.png]

Note

Please place the chip by referring to the corresponding position
depicted in the picture. Note that the grooves on the chip should be on
the left when it is placed.

Step 2: Open the code file

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.7_Potentiometer.py

After the code runs, rotate the knob on the potentiometer, the intensity
of LED will change accordingly.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import ADC0834
import time

LedPin = 22

def setup():
 global led_val
 # Set the GPIO modes to BCM Numbering
 GPIO.setmode(GPIO.BCM)
 # Set all LedPin's mode to output and initial level to High(3.3v)
 GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)
 ADC0834.setup()
 # Set led as pwm channel and frequece to 2KHz
 led_val = GPIO.PWM(LedPin, 2000)

 # Set all begin with value 0
 led_val.start(0)

Define a MAP function for mapping values. Like from 0~255 to 0~100
def MAP(x, in_min, in_max, out_min, out_max):
 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def destroy():
 # Stop all pwm channel
 led_val.stop()
 # Release resource
 GPIO.cleanup()

def loop():
 while True:
 res = ADC0834.getResult()
 print ('res = %d' % res)
 R_val = MAP(res, 0, 255, 0, 100)
 led_val.ChangeDutyCycle(R_val)
 time.sleep(0.2)

if __name__ == '__main__':
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

import ADC0834

import ADC0834 library. You can check the content of the library by
calling the command nano ADC0834.py.

def setup():
 global led_val
 # Set the GPIO modes to BCM Numbering
 GPIO.setmode(GPIO.BCM)
 # Set all LedPin's mode to output and initial level to High(3.3v)
 GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)
 ADC0834.setup()
 # Set led as pwm channel and frequece to 2KHz
 led_val = GPIO.PWM(LedPin, 2000)

 # Set all begin with value 0
 led_val.start(0)

In setup(), define the naming method as BCM, set LedPin as PWM channel
and render it a frequency of 2Khz.

ADC0834.setup(): Initialize ADC0834, and connect the defined CS,
CLK, DIO of ADC0834 to GPIO17, GPIO18 and GPIO27 respectively.

def loop():
 while True:
 res = ADC0834.getResult()
 print ('res = %d' % res)
 R_val = MAP(res, 0, 255, 0, 100)
 led_val.ChangeDutyCycle(R_val)
 time.sleep(0.2)

The function getResult() is used to read the analog values of the four
channels of ADC0834. By default, the function reads the value of CH0,
and if you want to read other channels, please input the channel number
in (), ex. getResult(1).

The function loop() first reads the value of CH0, then assign the value
to the variable res. After that, call the function MAP to map the read
value of potentiometer to 0~100. This step is used to control the duty
cycle of LedPin. Now, you may see that the brightness of LED is changing
with the value of potentiometer.

Phenomenon Picture

[image: _images/image181.jpeg]

2.1.8 Keypad

Introduction

A keypad is a rectangular array of buttons. In this project, We will use
it input characters.

Components

[image: _images/list_2.1.5_keypad.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Keypad

Schematic Diagram

[image: _images/image315.png]
[image: _images/image316.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image186.png]
Step 2: Open the code file.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.8_Keypad.py

After the code runs, the values of pressed buttons on keypad (button
Value) will be printed on the screen.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

class Keypad():

 def __init__(self, rowsPins, colsPins, keys):
 self.rowsPins = rowsPins
 self.colsPins = colsPins
 self.keys = keys
 GPIO.setwarnings(False)
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(self.rowsPins, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(self.colsPins, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

 def read(self):
 pressed_keys = []
 for i, row in enumerate(self.rowsPins):
 GPIO.output(row, GPIO.HIGH)
 for j, col in enumerate(self.colsPins):
 index = i * len(self.colsPins) + j
 if (GPIO.input(col) == 1):
 pressed_keys.append(self.keys[index])
 GPIO.output(row, GPIO.LOW)
 return pressed_keys

def setup():
 global keypad, last_key_pressed
 rowsPins = [18,23,24,25]
 colsPins = [10,22,27,17]
 keys = ["1","2","3","A",
 "4","5","6","B",
 "7","8","9","C",
 "*","0","#","D"]
 keypad = Keypad(rowsPins, colsPins, keys)
 last_key_pressed = []

def loop():
 global keypad, last_key_pressed
 pressed_keys = keypad.read()
 if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:
 print(pressed_keys)
 last_key_pressed = pressed_keys
 time.sleep(0.1)

Define a destroy function for clean up everything after the script finished
def destroy():
 # Release resource
 GPIO.cleanup()

if __name__ == '__main__': # Program start from here
 try:
 setup()
 while True:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

def setup():
 global keypad, last_key_pressed
 rowsPins = [18,23,24,25]
 colsPins = [10,22,27,17]
 keys = ["1","2","3","A",
 "4","5","6","B",
 "7","8","9","C",
 "*","0","#","D"]
 keypad = Keypad(rowsPins, colsPins, keys)
 last_key_pressed = []

Declare each key of the matrix keyboard to the array keys[] and define
the pins on each row and column.

def loop():
 global keypad, last_key_pressed
 pressed_keys = keypad.read()
 if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:
 print(pressed_keys)
 last_key_pressed = pressed_keys
 time.sleep(0.1)

This is the part of the main function that reads and prints the button
value.

The function keyRead() will read the state of every button.

The statement if len(pressed_keys) != 0 and last_key_pressed !=
pressed_keys is used to judge

whether a key is pressed and the state of the pressed button. (If you
press ‘3’ when you press ‘1’, the judgement is tenable.)

Prints the value of the currently pressed key when the condition is
tenable.

The statement last_key_pressed = pressed_keys assigns the state of each
judgment to an array last_key_pressed to facilitate the next round of
conditional judgment.

def read(self):
 pressed_keys = []
 for i, row in enumerate(self.rowsPins):
 GPIO.output(row, GPIO.HIGH)
 for j, col in enumerate(self.colsPins):
 index = i * len(self.colsPins) + j
 if (GPIO.input(col) == 1):
 pressed_keys.append(self.keys[index])
 GPIO.output(row, GPIO.LOW)
 return pressed_keys

This function assigns a high level to each row in turn, and when the
button in the column is pressed, the column in which the key is located
gets a high level. After the two-layer loop is judged, the value of the
button whose state is 1 is stored in the array pressed_keys.

If you press the key ‘3’:

[image: _images/image187.png]
rowPins[0] is written in high level, and colPins[2] gets high level.

colPins[0]、colPins[1]、colPins[3] get low level.

There are four states: 0, 0, 1, 0; and we write ‘3’ into pressed_keys.

When rowPins[1] , rowPins[2] , rowPins[3] are written into high level,
colPins[0] ~ colPins[4] get low level.

The loop stopped, there returns pressed_keys = ‘3’.

If you press the buttons ‘1’ and ‘3’, there will return pressed_keys =
[‘1’,’3’].

Phenomenon Picture

[image: _images/image188.jpeg]

2.1.9 Joystick

Introduction

In this project, We’re going to learn how joystick works. We manipulate
the Joystick and display the results on the screen.

Components

[image: _images/image317.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Joystick Module

	ADC0834

Schematic Diagram

When the data of joystick is read, there are some differents between
axis: data of X and Y axis is analog, which need to use ADC0834 to
convert the analog value to digital value. Data of Z axis is digital, so
you can directly use the GPIO to read, or you can also use ADC to read.

[image: _images/image319.png]
[image: _images/image320.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image193.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.1.9_Joystick.py

After the code runs, turn the Joystick, then the corresponding values of
x, y, Btn are displayed on screen.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import ADC0834
import time

BtnPin = 22

def setup():
 # Set the GPIO modes to BCM Numbering
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
 ADC0834.setup()

def destroy():
 # Release resource
 GPIO.cleanup()

def loop():
 while True:
 x_val = ADC0834.getResult(0)
 y_val = ADC0834.getResult(1)
 Btn_val = GPIO.input(BtnPin)
 print ('X: %d Y: %d Btn: %d' % (x_val, y_val, Btn_val))
 time.sleep(0.2)

if __name__ == '__main__':
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

def loop():
 while True:
 x_val = ADC0834.getResult(0)
 y_val = ADC0834.getResult(1)
 Btn_val = GPIO.input(BtnPin)
 print ('X: %d Y: %d Btn: %d' % (x_val, y_val, Btn_val))
 time.sleep(0.2)

VRX and VRY of Joystick are connected to CH0, CH1 of ADC0834
respectively. So the function getResult() is called to read the values
of CH0 and CH1. Then the read values should be stored in the variables
x_val and y_val. In addition, read the value of SW of joystick and store
it into the variable Btn_val. Finally, the values of x_val, y_val and
Btn_val shall be printed with print() function.

Phenomenon Picture

[image: _images/image194.jpeg]

2.2.1 Photoresistor

Introduction

Photoresistor is a commonly used component of ambient light intensity in
life. It helps the controller to recognize day and night and realize
light control functions such as night lamp. This project is very similar
to potentiometer, and you might think it changing the voltage to sensing
light.

Components

[image: _images/list_2.2.1_photoresistor.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	ADC0834

	Photoresistor

Schematic Diagram

[image: _images/image321.png]
[image: _images/image322.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image198.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 2.2.1_Photoresistor.py

When the code is running, the brightness of the LED will change according to the light intensity sensed by the photoresistor.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import ADC0834
import time
LedPin = 22
def setup():
 global led_val
 # Set the GPIO modes to BCM Numbering
 GPIO.setmode(GPIO.BCM)
 # Set all LedPin's mode to output and initial level to High(3.3v)
 GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)
 ADC0834.setup()
 # Set led as pwm channel and frequece to 2KHz
 led_val = GPIO.PWM(LedPin, 2000)
 # Set all begin with value 0
 led_val.start(0)
def destroy():
 # Stop all pwm channel
 led_val.stop()
 # Release resource
 GPIO.cleanup()
def loop():
 while True:
 analogVal = ADC0834.getResult()
 print ('analog value = %d' % analogVal)
 led_val.ChangeDutyCycle(analogVal*100/255)
 time.sleep(0.2)
if __name__ == '__main__':
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

def loop():
 while True:
 analogVal = ADC0834.getResult()
 print ('analog value = %d' % analogVal)
 led_val.ChangeDutyCycle(analogVal*100/255)
 time.sleep(0.2)

Read the analog value of CH0 of ADC0834. By default, the function
getResult() is used to read the value of CH0, so if you want to read
other channels, please input 1, 2, or 3 into () of the function
getResult(). Next, what you need is to print the value via the print
function. Because the changing element is the duty cycle of LedPin, the
computational formula, analogVal*100/255 is needed to convert analogVal
into percentage. Finally, ChangeDutyCycle() is called to write the
percentage into LedPin.

Phenomenon Picture

[image: _images/image199.jpeg]

2.2.2 Thermistor

Introduction

Just like photoresistor can sense light, thermistor is a temperature
sensitive electronic device that can be used for realizing functions of
temperature control, such as making a heat alarm.

Components

[image: _images/list_2.2.2_thermistor.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Thermistor

	ADC0834

Schematic Diagram

[image: _images/image323.png]
[image: _images/image324.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image202.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file

sudo python3 2.2.2_Thermistor.py

With the code run, the thermistor detects ambient temperature which will
be printed on the screen once it finishes the program calculation.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
-*- coding: utf-8 -*-

import RPi.GPIO as GPIO
import ADC0834
import time
import math

def init():
 ADC0834.setup()

def loop():
 while True:
 analogVal = ADC0834.getResult()
 Vr = 5 * float(analogVal) / 255
 Rt = 10000 * Vr / (5 - Vr)
 temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
 Cel = temp - 273.15
 Fah = Cel * 1.8 + 32
 print ('Celsius: %.2f °C Fahrenheit: %.2f ℉' % (Cel, Fah))
 time.sleep(0.2)

if __name__ == '__main__':
 init()
 try:
 loop()
 except KeyboardInterrupt:
 ADC0834.destroy()

Code Explanation

import math

There is a numerics library which declares a set of functions to compute
common mathematical operations and transformations.

analogVal = ADC0834.getResult()

This function is used to read the value of the thermistor.

Vr = 5 * float(analogVal) / 255
Rt = 10000 * Vr / (5 - Vr)
temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
Cel = temp - 273.15
Fah = Cel * 1.8 + 32
print ('Celsius: %.2f °C Fahrenheit: %.2f ℉' % (Cel, Fah))

These calculations convert the thermistor values into centigrade degree
and Fahrenheit degree.

Vr = 5 * float(analogVal) / 255
Rt = 10000 * Vr / (5 - Vr)

These two lines of codes are calculating the voltage distribution with
the read value analog so as to get Rt (resistance of thermistor).

temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))

This code refers to plugging Rt into the formula
TK=1/(ln(RT/RN)/B+1/TN) to get Kelvin temperature.

temp = temp - 273.15

Convert Kelvin temperature into centigrade degree.

Fah = Cel * 1.8 + 32

Convert the centigrade degree into Fahrenheit degree.

print ('Celsius: %.2f °C Fahrenheit: %.2f ℉' % (Cel, Fah))

Print centigrade degree, Fahrenheit degree and their units on the
display.

Phenomenon Picture

[image: _images/image203.jpeg]

2.2.3 DHT-11

Introduction

The digital temperature and humidity sensor DHT11 is a composite sensor
that contains a calibrated digital signal output of temperature and
humidity. The technology of a dedicated digital modules collection and
the technology of the temperature and humidity sensing are applied to
ensure that the product has high reliability and excellent stability.

The sensors include a wet element resistive sensor and a NTC temperature
sensor and they are connected to a high performance 8-bit
microcontroller.

Components

[image: _images/list_2.2.3_dht-11.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Humiture Sensor Module

Schematic Diagram

[image: _images/image326.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image207.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 2.2.3_DHT.py

After the code runs, the program will print the temperature and humidity
detected by DHT11 on the computer screen.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

dhtPin = 17

GPIO.setmode(GPIO.BCM)

MAX_UNCHANGE_COUNT = 100

STATE_INIT_PULL_DOWN = 1
STATE_INIT_PULL_UP = 2
STATE_DATA_FIRST_PULL_DOWN = 3
STATE_DATA_PULL_UP = 4
STATE_DATA_PULL_DOWN = 5

def readDht11():
 GPIO.setup(dhtPin, GPIO.OUT)
 GPIO.output(dhtPin, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(dhtPin, GPIO.LOW)
 time.sleep(0.02)
 GPIO.setup(dhtPin, GPIO.IN, GPIO.PUD_UP)

 unchanged_count = 0
 last = -1
 data = []
 while True:
 current = GPIO.input(dhtPin)
 data.append(current)
 if last != current:
 unchanged_count = 0
 last = current
 else:
 unchanged_count += 1
 if unchanged_count > MAX_UNCHANGE_COUNT:
 break

 state = STATE_INIT_PULL_DOWN

 lengths = []
 current_length = 0

 for current in data:
 current_length += 1

 if state == STATE_INIT_PULL_DOWN:
 if current == GPIO.LOW:
 state = STATE_INIT_PULL_UP
 else:
 continue
 if state == STATE_INIT_PULL_UP:
 if current == GPIO.HIGH:
 state = STATE_DATA_FIRST_PULL_DOWN
 else:
 continue
 if state == STATE_DATA_FIRST_PULL_DOWN:
 if current == GPIO.LOW:
 state = STATE_DATA_PULL_UP
 else:
 continue
 if state == STATE_DATA_PULL_UP:
 if current == GPIO.HIGH:
 current_length = 0
 state = STATE_DATA_PULL_DOWN
 else:
 continue
 if state == STATE_DATA_PULL_DOWN:
 if current == GPIO.LOW:
 lengths.append(current_length)
 state = STATE_DATA_PULL_UP
 else:
 continue
 if len(lengths) != 40:
 #print ("Data not good, skip")
 return False

 shortest_pull_up = min(lengths)
 longest_pull_up = max(lengths)
 halfway = (longest_pull_up + shortest_pull_up) / 2
 bits = []
 the_bytes = []
 byte = 0

 for length in lengths:
 bit = 0
 if length > halfway:
 bit = 1
 bits.append(bit)
 #print ("bits: %s, length: %d" % (bits, len(bits)))
 for i in range(0, len(bits)):
 byte = byte << 1
 if (bits[i]):
 byte = byte | 1
 else:
 byte = byte | 0
 if ((i + 1) % 8 == 0):
 the_bytes.append(byte)
 byte = 0
 #print (the_bytes)
 checksum = (the_bytes[0] + the_bytes[1] + the_bytes[2] + the_bytes[3]) & 0xFF
 if the_bytes[4] != checksum:
 #print ("Data not good, skip")
 return False

 return the_bytes[0], the_bytes[2]

def main():

 while True:
 result = readDht11()
 if result:
 humidity, temperature = result
 print ("humidity: %s %%, Temperature: %s ℃" % (humidity, temperature))
 time.sleep(1)

def destroy():
 GPIO.cleanup()

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

def readDht11():
 GPIO.setup(dhtPin, GPIO.OUT)
 GPIO.output(dhtPin, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(dhtPin, GPIO.LOW)
 time.sleep(0.02)
 GPIO.setup(dhtPin, GPIO.IN, GPIO.PUD_UP)
 unchanged_count = 0
 last = -1
 data = []
 #...

This function is used to implement the functions of DHT11. It stores the
detected data in the the_bytes[] array. DHT11 transmits data of 40 bits
at a time. The first 16 bits are related to humidity, the middle 16 bits
are related to temperature, and the last eight bits are used for
verification. The data format is:

8bit humidity integer data +8bit humidity decimal data
+8bit temperature integer data + 8bit temperature decimal data
+ 8bit check bit.

When the validity is detected via the check bit, the function returns
two results: 1. error; 2. humidity and temperature.

checksum = (the_bytes[0] + the_bytes[1] + the_bytes[2] + the_bytes[3]) & 0xFF
if the_bytes[4] != checksum:
 #print ("Data not good, skip")
 return False

return the_bytes[0], the_bytes[2]

For example, if the received date is 00101011(8-bit value of humidity
integer) 00000000 (8-bit value of humidity decimal) 00111100 (8-bit
value of temperature integer) 00000000 (8-bit value of temperature
decimal) 01100111 (check bit)

Calculation:

00101011+00000000+00111100+00000000=01100111.

If the final result is equal to the check bit data, the data
transmission is abnormal: return False.

If the final result is equal to the check bit data, the received data is
correct, then there will return the_bytes[0] and the_bytes[2] and output
“Humidity =43%，Temperature =60C”.

Phenomenon Picture

[image: _images/image209.jpeg]

2.2.4 Reed Switch Module

Introduction

In this project, we will learn about the reed switch, which is an electrical switch that operates by means of an applied magnetic field.

[image: _images/2.2.4reed_switch.png]

Components

[image: _images/2.2.4component.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Reed Switch Module

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

[image: _images/reed_schematic.png]
[image: _images/reed_schematic2.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/2.2.4fritzing.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 2.2.4_ReedSwitch.py

The green LED will light up when the code is run. If a magnet is placed close to the reed switch module, the red LED lights up; take away the magnet and the green LED lights up again.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

ReedPin = 17
Gpin = 27
Rpin = 22

def setup():
 GPIO.setmode(GPIO.BCM) #
 GPIO.setup(Gpin, GPIO.OUT) # Set Green Led Pin mode to output
 GPIO.setup(Rpin, GPIO.OUT) # Set Red Led Pin mode to output
 GPIO.setup(ReedPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set ReedPin's mode is input, and pull up to high level(3.3V)
 GPIO.add_event_detect(ReedPin, GPIO.BOTH, callback=detect, bouncetime=200)

def Led(x):
 if x == 0:
 GPIO.output(Rpin, 1)
 GPIO.output(Gpin, 0)
 if x == 1:
 GPIO.output(Rpin, 0)
 GPIO.output(Gpin, 1)

def detect():
 Led(GPIO.input(ReedPin))

def loop():
 while True:
 pass

def destroy():
 GPIO.output(Gpin, GPIO.HIGH) # Green led on
 GPIO.output(Rpin, GPIO.LOW) # Red led off
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 detect()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

Code Explanation

ReedPin = 17
Gpin = 27
Rpin = 22

def setup():
 GPIO.setmode(GPIO.BCM) #
 GPIO.setup(Gpin, GPIO.OUT) # Set Green Led Pin mode to output
 GPIO.setup(Rpin, GPIO.OUT) # Set Red Led Pin mode to output
 GPIO.setup(ReedPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set ReedPin's mode is input, and pull up to high level(3.3V)
 GPIO.add_event_detect(ReedPin, GPIO.BOTH, callback=detect, bouncetime=200)

Set the GPIO modes to BCM Numbering. ReedPin, Gpin and Rpin connects to the GPIO17, GPIO27 and GPIO22.

GPIO.add_event_detect() is used to add an event that is triggered by a change in the value (level) of ReedPin, at which point the callback function detect() is called.

def Led(x):
 if x == 0:
 GPIO.output(Rpin, 1)
 GPIO.output(Gpin, 0)
 if x == 1:
 GPIO.output(Rpin, 0)
 GPIO.output(Gpin, 1)

Define a function Led() to turn the two LEDs on or off. If x=0, the red LED lights up; otherwise, the green LED will be lit.

def detect(chn):
Led(GPIO.input(ReedPin))

In this callback function, the value of the reed switch is used to control the 2 LEDs.

Phenomenon Picture

[image: _images/2.2.4reed_switch.JPG]

2.2.5 IR Obstacle Avoidance Sensor

Introduction

In this project, we will learn IR obstacle avoidance module, which is a sensor module that can be used to detect obstacles at short distances, with small interference, easy to assemble, easy to use, etc. It can be widely used in robot obstacle avoidance, obstacle avoidance trolley, assembly line counting, etc.

[image: _images/2.2.5IR_Obstacle.png]

Components Required

[image: _images/2.2.5component.png]

	GPIO Extension Board

	Breadboard

	Obstacle Avoidance Module

Schematic Diagram

[image: _images/IR_schematic.png]

Experimental Procedures

Step 1: Build the circuit

[image: _images/2.2.5fritzing.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 2.2.5_IrObstacle.py

After the code runs, when you put your hand in front of the module’s probe, the output indicator on the module lights up and the “Detected Barrier!” will be
repeatedly printed on the screen until the your hand is removed.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

ObstaclePin = 17

def setup():
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
 GPIO.setup(ObstaclePin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def loop():
 while True:
 if (0 == GPIO.input(ObstaclePin)):
 print ("Detected Barrier!")
 time.sleep(1)

def destroy():
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

Code Explanation

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
GPIO.setup(ObstaclePin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Set the GPIO mode to BCM Numbering. Set ObstaclePin to input mode and initial it to High level (3.3v).

def loop():
 while True:
 if (0 == GPIO.input(ObstaclePin)):
 print ("Detected Barrier!")

When ObstaclePin is low level, print “Detected Barrier!”. It means that an obstacle is detected.

Phenomenon Picture

[image: _images/2.2.5IR.JPG]

2.2.6 Speed Sensor Module

Introduction

In this project, we will learn the use of the speed sensor module. A Speed sensor module is a type of tachometer that is used to measure the speed of a rotating object like a motor.

Components

[image: _images/2.2.6component.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Speed Sensor Module

Schematic Diagram

[image: _images/2.2.6circuit.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/2.2.6fritzing.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 2.2.6_speed_sensor_module.py

After the code runs, the green LED will light up. If you place an obstacle in the gap of the speed sensor module, the “light blocked” will be printed on the screen and the red LED will be lit.
Remove the obstacle and the green LED will light up again.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO

speedPin = 17
Gpin = 27
Rpin = 22

def setup():
 GPIO.setmode(GPIO.BCM) #
 GPIO.setup(Gpin, GPIO.OUT) # Set Green Led Pin mode to output
 GPIO.setup(Rpin, GPIO.OUT) # Set Red Led Pin mode to output
 GPIO.setup(speedPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set speedPin's mode is input, and pull up to high level(3.3V)
 GPIO.add_event_detect(speedPin, GPIO.BOTH, callback=detect, bouncetime=200)

def Led(x):
 if x == 0:
 GPIO.output(Rpin, 0)
 GPIO.output(Gpin, 1)
 if x == 1:
 GPIO.output(Rpin, 1)
 GPIO.output(Gpin, 0)
 print ('Light was blocked')

def detect(chn):
 Led(GPIO.input(speedPin))

def loop():
 while True:
 pass

def destroy():
 GPIO.output(Gpin, GPIO.LOW) # Green led off
 GPIO.output(Rpin, GPIO.LOW) # Red led off
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

Code Explanation

GPIO.add_event_detect(speedPin, GPIO.BOTH, callback=detect, bouncetime=200)

Add an event here, triggered by a change in the level of speedPin and call detect() to control the 2 LEDs on and off.

def Led(x):
 if x == 0:
 GPIO.output(Rpin, 0)
 GPIO.output(Gpin, 1)
 if x == 1:
 GPIO.output(Rpin, 1)
 GPIO.output(Gpin, 0)
 print ('Light was blocked')

Define a function Led() that turns the red LED on and prints Light was blocked when the parameter is 1; turn the green LED on when the parameter is 0.

def detect(chn):
 Led(GPIO.input(speedPin))

Define a callback function where the value of speedPin will control the turning on or off of the 2 LEDs.

Phenomenon Picture

[image: _images/2.2.6photo_interrrupter.JPG]

2.2.7 PIR

Introduction

In this project, we will make a device by using the human body infrared
pyroelectric sensors. When someone gets closer to the LED, the LED will
turn on automatically. If not, the light will turn off. This infrared
motion sensor is a kind of sensor that can detect the infrared emitted
by human and animals.

Components

[image: _images/list_2.2.4_pir.png]

	GPIO Extension Board

	Breadboard

	Resistor

	RGB LED

	PIR Motion Sensor Module

Schematic Diagram

[image: _images/image327.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image214.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 2.2.7_PIR.py

After the code runs, PIR detects surroundings and let RGB LED glow
yellow if it senses someone walking by. There are two potentiometers on
the PIR module: one is to adjust sensitivity and the other is to adjust
the detection distance. In order to make the PIR module work better, you
need to try to adjust these two potentiometers.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

rgbPins = {'Red':18, 'Green':27, 'Blue':22}
pirPin = 17 # the pir connect to pin17

def setup():
 global p_R, p_G, p_B
 GPIO.setmode(GPIO.BCM) # Set the GPIO modes to BCM Numbering
 GPIO.setup(pirPin, GPIO.IN) # Set pirPin to input
 # Set all LedPin's mode to output and initial level to High(3.3v)
 for i in rgbPins:
 GPIO.setup(rgbPins[i], GPIO.OUT, initial=GPIO.HIGH)

 # Set all led as pwm channel and frequece to 2KHz
 p_R = GPIO.PWM(rgbPins['Red'], 2000)
 p_G = GPIO.PWM(rgbPins['Green'], 2000)
 p_B = GPIO.PWM(rgbPins['Blue'], 2000)

 # Set all begin with value 0
 p_R.start(0)
 p_G.start(0)
 p_B.start(0)

Define a MAP function for mapping values. Like from 0~255 to 0~100
def MAP(x, in_min, in_max, out_min, out_max):
 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

Define a function to set up colors
def setColor(color):
configures the three LEDs' luminance with the inputted color value .
 # Devide colors from 'color' veriable
 R_val = (color & 0xFF0000) >> 16
 G_val = (color & 0x00FF00) >> 8
 B_val = (color & 0x0000FF) >> 0
 # Map color value from 0~255 to 0~100
 R_val = MAP(R_val, 0, 255, 0, 100)
 G_val = MAP(G_val, 0, 255, 0, 100)
 B_val = MAP(B_val, 0, 255, 0, 100)

 #Assign the mapped duty cycle value to the corresponding PWM channel to change the luminance.
 p_R.ChangeDutyCycle(R_val)
 p_G.ChangeDutyCycle(G_val)
 p_B.ChangeDutyCycle(B_val)
 #print ("color_msg: R_val = %s, G_val = %s, B_val = %s"%(R_val, G_val, B_val))

def loop():
 while True:
 pir_val = GPIO.input(pirPin)
 if pir_val==GPIO.HIGH:
 setColor(0xFFFF00)
 else :
 setColor(0x0000FF)

def destroy():
 p_R.stop()
 p_G.stop()
 p_B.stop()
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

Code Explanation

rgbPins = {'Red':18, 'Green':27, 'Blue':22}

def setup():
 global p_R, p_G, p_B
 GPIO.setmode(GPIO.BCM)
 # ……
 for i in rgbPins:
 GPIO.setup(rgbPins[i], GPIO.OUT, initial=GPIO.HIGH)
 p_R = GPIO.PWM(rgbPins['Red'], 2000)
 p_G = GPIO.PWM(rgbPins['Green'], 2000)
 p_B = GPIO.PWM(rgbPins['Blue'], 2000)
 p_R.start(0)
 p_G.start(0)
 p_B.start(0)

def MAP(x, in_min, in_max, out_min, out_max):
 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def setColor(color):
...

These codes are used to set the color of the RGB LED, and please refer
to 1.1.2_rgbled for more details.

def loop():
 while True:
 pir_val = GPIO.input(pirPin)
 if pir_val==GPIO.HIGH:
 setColor(0xFFFF00)
 else :
 setColor(0x0000FF)

When PIR detects the human infrared spectrum, RGB LED emits the yellow
light; if not, emits the blue light.

Phenomenon Picture

[image: _images/image215.jpeg]

2.2.8 Ultrasonic Sensor Module

Introduction

The ultrasonic sensor uses ultrasonic to accurately detect objects and
measure distances. It sends out ultrasonic waves and converts them into
electronic signals.

Components

[image: _images/list_2.2.5.png]

	GPIO Extension Board

	Breadboard

	Ultrasonic Module

Schematic Diagram

[image: _images/image329.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image220.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 2.2.8_Ultrasonic.py

With the code run, the ultrasonic sensor module detects the distance
between the obstacle ahead and the module itself, then the distance
value will be printed on the screen.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

TRIG = 16
ECHO = 18

def setup():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(TRIG, GPIO.OUT)
 GPIO.setup(ECHO, GPIO.IN)

def distance():
 GPIO.output(TRIG, 0)
 time.sleep(0.000002)

 GPIO.output(TRIG, 1)
 time.sleep(0.00001)
 GPIO.output(TRIG, 0)

 while GPIO.input(ECHO) == 0:
 a = 0
 time1 = time.time()
 while GPIO.input(ECHO) == 1:
 a = 1
 time2 = time.time()

 during = time2 - time1
 return during * 340 / 2 * 100

def loop():
 while True:
 dis = distance()
 print ('Distance: %.2f' % dis)
 time.sleep(0.3)

def destroy():
 GPIO.cleanup()

if __name__ == "__main__":
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

Code Explanation

def distance():

This function is used to realize the function of ultrasonic sensor by
calculating the return detection distance.

GPIO.output(TRIG, 1)
time.sleep(0.00001)
GPIO.output(TRIG, 0)

This is sending out a 10us ultrasonic pulse.

while GPIO.input(ECHO) == 0:
 a = 0
time1 = time.time()

This empty loop is used to ensure that when the trigger signal is sent,
there is no interfering echo signal and then get the current time.

while GPIO.input(ECHO) == 1:
 a = 1
time2 = time.time()

This empty loop is used to ensure that the next step is not performed
until the echo signal is received and then get the current time.

during = time2 - time1

Execute the interval calculation.

return during * 340 / 2 * 100

The distance is calculated in the light of time interval and the speed
of sound propagation. The speed of sound in the air: 340m/s.

Phenomenon Picture

[image: _images/image221.jpeg]

2.2.9 MPU6050 Module

Introduction

The MPU-6050 is the world’s first and only 6-axis motion tracking
devices (3-axis Gyroscope and 3-axis Accelerometer) designed for
smartphones, tablets and wearable sensors that have these features,
including the low power, low cost, and high performance requirements.

In this experiment, use I2C to obtain the values of the three-axis
acceleration sensor and three-axis gyroscope for MPU6050 and display
them on the screen.

Components

[image: _images/list_2.2.6.png]

	GPIO Extension Board

	Breadboard

	MPU6050 Module

Schematic Diagram

MPU6050 communicates with the microcontroller through the I2C bus
interface. The SDA1 and SCL1 need to be connected to the corresponding
pin.

[image: _images/image330.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image227.png]
Step 2: Setup I2C (see Appendix I2C Configuration. If you have set I2C, skip this
step.)

Step 3: Go to the folder of the code.

cd /home/pi/raphael-kit/python

Step 4: Run the executable file.

sudo python3 2.2.9_mpu6050.py

With the code run, the angle of deflection of the x-axis and y-axis and
the acceleration, angular velocity on each axis read by MPU6050 will be
printed on the screen after being calculating.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import smbus
import math
import time

Power management registers
power_mgmt_1 = 0x6b
power_mgmt_2 = 0x6c

def read_byte(adr):
 return bus.read_byte_data(address, adr)

def read_word(adr):
 high = bus.read_byte_data(address, adr)
 low = bus.read_byte_data(address, adr+1)
 val = (high << 8) + low
 return val

def read_word_2c(adr):
 val = read_word(adr)
 if (val >= 0x8000):
 return -((65535 - val) + 1)
 else:
 return val

def dist(a,b):
 return math.sqrt((a*a)+(b*b))

def get_y_rotation(x,y,z):
 radians = math.atan2(x, dist(y,z))
 return -math.degrees(radians)

def get_x_rotation(x,y,z):
 radians = math.atan2(y, dist(x,z))
 return math.degrees(radians)

bus = smbus.SMBus(1) # or bus = smbus.SMBus(1) for Revision 2 boards
address = 0x68 # This is the address value read via the i2cdetect command

Now wake the 6050 up as it starts in sleep mode
bus.write_byte_data(address, power_mgmt_1, 0)

while True:
 time.sleep(0.1)
 gyro_xout = read_word_2c(0x43)
 gyro_yout = read_word_2c(0x45)
 gyro_zout = read_word_2c(0x47)

 print ("gyro_xout : ", gyro_xout, " scaled: ", (gyro_xout / 131))
 print ("gyro_yout : ", gyro_yout, " scaled: ", (gyro_yout / 131))
 print ("gyro_zout : ", gyro_zout, " scaled: ", (gyro_zout / 131))

 accel_xout = read_word_2c(0x3b)
 accel_yout = read_word_2c(0x3d)
 accel_zout = read_word_2c(0x3f)

 accel_xout_scaled = accel_xout / 16384.0
 accel_yout_scaled = accel_yout / 16384.0
 accel_zout_scaled = accel_zout / 16384.0

 print ("accel_xout: ", accel_xout, " scaled: ", accel_xout_scaled)
 print ("accel_yout: ", accel_yout, " scaled: ", accel_yout_scaled)
 print ("accel_zout: ", accel_zout, " scaled: ", accel_zout_scaled)

 print ("x rotation: " , get_x_rotation(accel_xout_scaled, accel_yout_scaled, accel_zout_scaled))
 print ("y rotation: " , get_y_rotation(accel_xout_scaled, accel_yout_scaled, accel_zout_scaled))

 time.sleep(1)

Code Explanation

def read_word(adr):
 high = bus.read_byte_data(address, adr)
 low = bus.read_byte_data(address, adr+1)
 val = (high << 8) + low
 return val

def read_word_2c(adr):
 val = read_word(adr)
 if (val >= 0x8000):
 return -((65535 - val) + 1)
 else:
 return val

Read sensor data sent from MPU6050.

def get_y_rotation(x,y,z):
 radians = math.atan2(x, dist(y,z))
 return -math.degrees(radians)

Calculate the deflection angle of the y-axis.

def get_x_rotation(x,y,z):
 radians = math.atan2(y, dist(x,z))
 return math.degrees(radians)

Calculate the deflection angle of the x-axis.

gyro_xout = read_word_2c(0x43)
gyro_yout = read_word_2c(0x45)
gyro_zout = read_word_2c(0x47)

print ("gyro_xout : ", gyro_xout, " scaled: ", (gyro_xout / 131))
print ("gyro_yout : ", gyro_yout, " scaled: ", (gyro_yout / 131))
print ("gyro_zout : ", gyro_zout, " scaled: ", (gyro_zout / 131))

Read the values of the x axis, y axis and z axis on the gyroscope sensor,
convert the metadata to angular velocity values, and then print them.

accel_xout = read_word_2c(0x3b)
accel_yout = read_word_2c(0x3d)
accel_zout = read_word_2c(0x3f)

accel_xout_scaled = accel_xout / 16384.0
accel_yout_scaled = accel_yout / 16384.0
accel_zout_scaled = accel_zout / 16384.0

print ("accel_xout: ", accel_xout, " scaled: ", accel_xout_scaled)
print ("accel_yout: ", accel_yout, " scaled: ", accel_yout_scaled)
print ("accel_zout: ", accel_zout, " scaled: ", accel_zout_scaled)

Read the values of the x axis, y axis and z axis on the acceleration sensor,
convert the elements to accelerated speed value (gravity unit), and print
them.

print ("x rotation: " , get_x_rotation(accel_xout_scaled, accel_yout_scaled, accel_zout_scaled))
print ("y rotation: " , get_y_rotation(accel_xout_scaled, accel_yout_scaled, accel_zout_scaled))

Print the deflection angles of the x-axis and y-axis.

Phenomenon Picture

[image: _images/image228.jpeg]

2.2.10 MFRC522 RFID Module

Introduction

Radio Frequency Identification (RFID) refers to technologies that use
wireless communication between an object (or tag) and interrogating
device (or reader) to automatically track and identify such objects.

Some of the most common applications for this technology include retail
supply chains, military supply chains, automated payment methods,
baggage tracking and management, document tracking and pharmaceutical
management, to name a few.

In this project, we will use RFID for reading and writing.

Components

[image: _images/list_2.2.7.png]

	GPIO Extension Board

	Breadboard

	MFRC522 Module

Schematic Diagram

[image: _images/image331.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image232.png]
Step 2: Install the Spidev and MFRC522 libraries.

Step 3: Set up SPI (refer to SPI Configuration for more details. If you have
set SPI, skip this step.)

Step 4: Go to the folder of the code.

cd /home/pi/raphael-kit/python

Step 5: After running 2.2.10_write.py. You need to write a message first, press Enter to confirm, then put the card on the MFRC522 module, wait for “Data writing is complete” to appear and take the card away, or rewrite the message to another card and exit by Ctrl+C.

sudo python3 2.2.10_write.py

[image: _images/write_card.png]
Step 6: Now run 2.2.10_read.py to read the information of the tag or card you have written.

sudo python3 2.2.10_read.py

Code Explanation

reader = SimpleMFRC522()

Instantiate SimpleMFRC522() class.

reader.read()

This function is used to read card data. If the reading is successful, id and text will be returned.

reader.write(text)

This function is used to write information to the card, press Enter key to finish writing. text is the information to be written to the card.

Phenomenon Picture

[image: _images/image233.jpeg]

Audiovisual

Note

When use the camera module, you may need a screen for a better experience, refer to: Connect your Raspberry Pi [https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3]. Of course, if you don’t have a screen, you can also access the Raspberry Pi desktop remotely, for a detailed tutorial please refer to Remote Desktop.

	3.1.1 Photograph Module

	3.1.2 Video Module

	3.1.3 Audio Module

	3.1.4 Text-to-speech

3.1.1 Photograph Module

Introduction

In this kit, equipped with a camera module, let’s try to take a picture with Raspberry Pi.

Components

[image: _images/photo1.png]
For more information on how to connect the camera module and its configuration, please refer to Camera Module.

Experimental Procedures

Step 1: Go into the Raspberry Pi Desktop. You may need a screen for a better experience, refer to: Connect your Raspberry Pi [https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3]. Or access the Raspberry Pi desktop remotely, for a detailed tutorial please refer to Remote Desktop.

Step 2: Open a Terminal and get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 3.1.1_PhotographModule.py

After the code runs, the camera will take a photo. Now you can see the photo named my_photo.jpg in the /home/pi directory.

Note

You can also open 3.1.1_PhotographModule.py in the /home/pi/raphael-kit/python/ path with a Python IDE, click Run button to run, and stop the code with Stop button.

If you want to download the photo to your PC, please refer to Filezilla Software.

Code

from picamera import PiCamera

camera = PiCamera()

def setup():
 camera.start_preview(alpha=200)

def main():
 camera.capture('/home/pi/my_photo.jpg')
 while True:
 pass

def destroy():
 camera.stop_preview()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

from picamera import PiCamera

camera = PiCamera()

Import the picamera library and instantiate the PiCamera class to use the camera module.

start_preview(**options)

Show the preview overlay and change the transparency level of the preview with alpha - from 0 to 255. This method starts a camera preview as an overlay on the Pi’s primary display (HDMI or composite). By default, the renderer will be opaque and fullscreen.

This means the default preview overrides whatever is currently visible on the display. More specifically, the preview does not rely on a graphical environment like X-Windows (it can run quite happily from a TTY console); it is simply an overlay on the Pi’s video output. To stop the preview and reveal the display again, call stop_preview() . The preview can be started and stopped multiple times during the lifetime of the PiCamera object.

camera.capture('/home/pi/my_photo.jpg')

Capture an image from the camera, storing it in /home/pi/.

Note

You can use camera.capture() function and for loop together to achieve continuous shooting. And use the delay function to adjust the time interval for taking pictures.

for i in 5:
 camera.capture('/home/pi/my_photo%s.jpg' % i)

3.1.2 Video Module

Introduction

In addition to taking photos, the Camera Module can also be used to record videos.

Components

[image: _images/photo1.png]
For more information on how to connect the camera module and its configuration, please refer to Camera Module.

Experimental Procedures

Step 1: Go into the Raspberry Pi Desktop. You may need a screen for a better experience, refer to: Connect your Raspberry Pi [https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3]. Or access the Raspberry Pi desktop remotely, for a detailed tutorial please refer to Remote Desktop.

Step 2: Open a Terminal and get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 3.1.2_VideoModule.py

Run the code to start recording. Press Ctrl+C to end the recording. Name the video my_video.h264 and store it in the /home/pi directory.

Note

You can also open 3.1.2_PhotographModule.py in the /home/pi/raphael-kit/python/ path with a Python IDE, click Run button to run, and stop the code with Stop button.

If you want to send photos to your PC, please refer to Filezilla Software.

Code

from picamera import PiCamera

camera = PiCamera()

def setup():
 camera.start_preview(alpha=200)

def main():
 camera.start_recording('/home/pi/my_video.h264')
 while True:
 pass

def destroy():
 camera.stop_recording()
 camera.stop_preview()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

start_recording(output, format=None, resize=None, splitter_port=1, **options)

Start recording video from the camera, storing it in output.

camera.stop_recording()

End the recording.

3.1.3 Audio Module

Introduction

In this project, let’s make a DIY stereo with an audio power amplifier module, 8ohm/2w speakers and a 3.5mm Audio cable.

Components

[image: _images/audio2.png]

	GPIO Extension Board

	Breadboard

	Audio Module and Speaker

Experimental Procedures

Step 1: Build the circuit.

[image: _images/4.1.4fritzing.png]
After building the circuit according to the above diagram, then plug the audio cable into the Raspberry Pi’s 3.5mm audio jack.

[image: _images/audio4.png]
Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

python3 3.1.3_AudioModule.py

After the code runs, you can enjoy the music.

Note

If your speaker have no sound, it may be because the Raspberry Pi has selected the wrong audio output (The default is HDMI), you need to Change Audio Output to Headphones.

If you feel that the volume of the speakers is too low, you can Adjust Volume.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

from pygame import mixer

mixer.init()

def main():
 mixer.music.load('/home/pi/raphael-kit/music/my_music.mp3')
 mixer.music.set_volume(0.7)
 mixer.music.play()
 while True:
 pass# Don't do anything.

def destroy():
 mixer.music.stop()

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

from pygame import mixer

mixer.init()

Import the mixer method in the pygame library and initialize the method.

mixer.music.load('/home/pi/raphael-kit/music/my_music.mp3')
mixer.music.set_volume(0.7)
mixer.music.play()

This code reads the my_music.mp3 file in the /home/pi/raphael-kit/music directory and sets the volume to 0.7(The range is 0~1).
The Raspberry Pi will start playing audio When mixer.music.play() is called.

Note

You can also upload other music files to your Raspberry Pi. For a detailed tutorial, please refer to: Filezilla Software.

mixer.music.stop()

Calling mixer.music.stop() will stop playing audio.
In addition, you can also pause with mixer.music.pause() and continue with mixer.music.unpause().

Phenomenon Picture

[image: _images/3.1.3audio.JPG]

3.1.4 Text-to-speech

Introduction

In many places, we can come into contact with TTS (Text-to-speech) technology, which converts text into natural-sounding speech and brings people a good interactive experience.

Let’s try to make your project speak.

Components

[image: _images/audio2.png]

	GPIO Extension Board

	Breadboard

	Audio Module and Speaker

Experimental Procedures

Step 1: Build the circuit.

[image: _images/4.1.4fritzing.png]
After building the circuit according to the above diagram, then plug the audio cable into the Raspberry Pi’s 3.5mm audio jack.

[image: _images/audio4.png]
Step 2: Install espeak module.

sudo apt-get install espeak -y

Step 3: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 4: Run.

python3 3.1.4_Text-to-speech.py

Raspberry pi will greet you kindly after the code runs, and it will say goodbye to you when the code stops.

Note

If your speaker have no sound, it may be because the Raspberry Pi has selected the wrong audio output (The default is HDMI), you need to Change Audio Output to Headphones.

If you feel that the volume of the speakers is too low, you can Adjust Volume.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect. After confirming that there are no problems, you can use the Copy button to copy the modified code, then open the source code in Terminal via nano cammand and paste it.

from tts import TTS

tts = TTS(engine="espeak")
tts.lang('en-US')

def main():
 tts.say('Hello, nice to meet you!')

def destroy():
 tts.say('See you later')

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

from tts import TTS

tts = TTS(engine="espeak")

Import the TTS class and instantiate an object.

tts.lang('en-US')

Set the language.

Note

Currently the switchable language only supports English.

tts.say("Hello, nice to meet you!")

Fill in the text to be said as a parameter, after executing tts.say(), Raspberry Pi will say the text you wrote.

Phenomenon Picture

[image: _images/3.1.3audio.JPG]

Extension

	4.1.1 Camera

	4.1.2 Music Player

	4.1.3 Speech Clock

	4.1.4 Automatic Capture Camera

	4.1.5 Intelligent Visual Doorbell

	4.1.6 Magnetic Induction Alarm System

	4.1.7 Counting Device

	4.1.8 Welcome

	4.1.9 Reversing Alarm

	4.1.10 Smart Fan

	4.1.11 Battery Indicator

	4.1.12 Traffic Light

	4.1.13 Overheat Monitor

	4.1.14 Password Lock

	4.1.15 Alarm Bell

	4.1.16 Morse Code Generator

	4.1.17 GAME– Guess Number

	4.1.18 GAME - 10 Second

	4.1.19 AttendanceSystem

4.1.1 Camera

Introduction

Here we will make a camera with a shutter, when you press the button, the camera shoots while the LED flashes.

Components

[image: _images/3.1.15camera_list.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Button

	Camera Module

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

[image: _images/camera_schematic.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/3.1.15camera_fritzing.png]
Step 2: To connect the camera module and complete the configuration, please refer to: Camera Module.

Step 3: Go into the Raspberry Pi Desktop. You may need a screen for a better experience, refer to: Connect your Raspberry Pi [https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3]. Or access the Raspberry Pi desktop remotely, for a detailed tutorial please refer to Remote Desktop.

Step 4: Open a Terminal and get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 5: Run.

sudo python3 4.1.1_Camera.py

After the code runs, press the button, the Raspberry Pi will flash the LED and take a picture. The photo will be named my_photo.jpg and stored in the /home/pi directory.

Note

You can also open 4.1.1_Camera.py in the /home/pi/raphael-kit/python/ path with a Python IDE, click Run button to run, and stop the code with Stop button.

If you want to download the photo to your PC, please refer to Filezilla Software.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

from picamera import PiCamera
import RPi.GPIO as GPIO
import time

camera = PiCamera()

LedPin = 17 # Set GPIO17 as LED pin
BtnPin = 18 # Set GPIO18 as button pin

status = False

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.HIGH)
 GPIO.setup(BtnPin, GPIO.IN)
 camera.start_preview(alpha=200)

def takePhotos(pin):
 global status
 status = True

def main():
 global status
 GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=takePhotos)
 while True:
 if status:
 for i in range(5):
 GPIO.output(LedPin, GPIO.LOW)
 time.sleep(0.1)
 GPIO.output(LedPin, GPIO.HIGH)
 time.sleep(0.1)
 camera.capture('/home/pi/my_photo.jpg')
 print ('Take a photo!')
 status = False
 else:
 GPIO.output(LedPin, GPIO.HIGH)
 time.sleep(1)

def destroy():
 camera.stop_preview()
 GPIO.output(LedPin, GPIO.HIGH)
 GPIO.cleanup()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=takePhotos)

Set the event of BtnPin, when the button is pressed (the level signal changes from high to low) , call the function takePhotos().

def takePhotos(pin):
 global status
 status = True

When takePhotos() is called, modify the status to True.

if status:
 for i in range(5):
 GPIO.output(LedPin, GPIO.LOW)
 time.sleep(0.1)
 GPIO.output(LedPin, GPIO.HIGH)
 time.sleep(0.1)
 camera.capture('/home/pi/my_photo.jpg')
 print ('Take a photo!')
 status = False
else:
 GPIO.output(LedPin, GPIO.HIGH)
time.sleep(1)

When status is True, the Raspberry Pi will flash the LED and take a picture. The photo will be named my_photo.jpg and stored in the /home/pi directory.

Phenomenon Picture

[image: _images/4.1.1camera.JPG]

4.1.2 Music Player

Introduction

In project 3.1.3 Audio Module, let speaker play a song. Now we add 3 buttons to control the play/pause and volume of the music.

Components

[image: _images/musicplayer_list.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Audio Module and Speaker

	Button

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

[image: _images/3.1.16_schematic.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/3.1.16fritzing.png]
After building the circuit according to the above diagram, then plug the audio cable into the Raspberry Pi’s 3.5mm audio jack.

[image: _images/audio4.png]
Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

python3 4.1.2_MusicPlayer.py

After the code runs, Raspberry Pi will play the my_music.mp3 file in the /home/pi/raphael-kit/music directory.

	Button 1 pauses/play the music.

	Button 2 decreases the volume.

	Button 3 increases the volume.

If you want to upload other music files to Raspberry Pi, you can refer to Filezilla Software.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

from pygame import mixer
import RPi.GPIO as GPIO
import time

BtnPin1 = 18
BtnPin2 = 17
BtnPin3 = 27
volume = 0.7

status = False
upPressed = False
downPressed = False
playPressed = False

def setup():
 mixer.init()
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(BtnPin1, GPIO.IN, GPIO.PUD_UP)
 GPIO.setup(BtnPin2, GPIO.IN, GPIO.PUD_UP)
 GPIO.setup(BtnPin3, GPIO.IN, GPIO.PUD_UP)

def clip(x,min,max):
 if x < min:
 return min
 elif x > max:
 return max
 return x

def play(pin):
 global playPressed
 playPressed = True

def volDown(pin):
 global downPressed
 downPressed = True

def volUp(pin):
 global upPressed
 upPressed = True

def main():
 global volume, status
 global downPressed, upPressed, playPressed
 mixer.music.load('/home/pi/raphael-kit/music/my_music.mp3')
 mixer.music.set_volume(volume)
 mixer.music.play()
 GPIO.add_event_detect(BtnPin1, GPIO.FALLING, callback=play)
 GPIO.add_event_detect(BtnPin2, GPIO.FALLING, callback=volDown)
 GPIO.add_event_detect(BtnPin3, GPIO.FALLING, callback=volUp)
 while True:
 if upPressed:
 volume = volume + 0.1
 upPressed = False
 if downPressed:
 volume = volume - 0.1
 downPressed = False
 if playPressed:
 if status:
 mixer.music.pause()
 status = not status
 else:
 mixer.music.unpause()
 status = not status
 playPressed = False
 time.sleep(0.5)
 volume = clip(volume,0.2,1)
 mixer.music.set_volume(volume)
 time.sleep(0.1)

def destroy():
 # Release resource
 GPIO.cleanup()
 mixer.music.stop()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

from pygame import mixer

mixer.init()

Import the Mixer method in the pygame library and initialize the method.

BtnPin1 = 18
BtnPin2 = 17
BtnPin3 = 27
volume = 0.7

Define the pin ports of the three buttons and set the initial volume to 0.7.

upPressed = False
downPressed = False
playPressed = False

UpPressed, downPressed and playPressed are all interrupt flags, the corresponding task will be executed When they are True.

def clip(x,min,max):
if x < min:
 return min
elif x > max:
 return max
return x

The clip() function is used to set the upper and lower limits of input parameters.

GPIO.add_event_detect(BtnPin1, GPIO.FALLING, callback=play)
GPIO.add_event_detect(BtnPin2, GPIO.FALLING, callback=volDown)
GPIO.add_event_detect(BtnPin3, GPIO.FALLING, callback=volUp)

Set the key detection events of BtnPin1, BtnPin2 and BtnPin3.

	When BtnPin1 is pressed, the interrupt function play() is executed.

	when BtnPin2 is pressed, the interrupt function volDown() is executed.

	When BtnPin3 is pressed, the interrupt function volUp() is executed.

Phenomenon Picture

[image: _images/4.1.2musicplayer.JPG]

4.1.3 Speech Clock

Introduction

In this project, let’s make a voice clock with a speaker and a 4-digit 7-segment display. The 4-digit 7-segment display will display the time, and the speaker will broadcast the time every hour.

Components

[image: _images/3.1.17components.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Audio Module and Speaker

	4-Digit 7-Segment Display

	74HC595

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	SPIMOSI

	Pin 19

	12

	10

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

[image: _images/schmatic_4_digit.png]
[image: _images/3.1.17_schematic.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/3.1.17fritzing.png]
Before this project, you need to make sure you complete 3.1.4 Text-to-speech.

Step 2: Use the command date to view the local time.

date

If the local time is different from the real time, you need to use the following command to set the time zone.

sudo dpkg-reconfigure tzdata

Choose your time zone.

[image: _images/tzdata.png]
Step 3: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

python3 4.1.3_SpeechClock.py

When the code is run, the 4-digit 7-segment will display the time and chime on every hour.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
from tts import TTS
import time

tts = TTS(engine="espeak")
tts.lang('en-US')

SDI = 24
RCLK = 23
SRCLK = 18

placePin = (10, 22, 27, 17)
number = (0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(SDI, GPIO.OUT)
 GPIO.setup(RCLK, GPIO.OUT)
 GPIO.setup(SRCLK, GPIO.OUT)
 for i in placePin:
 GPIO.setup(i, GPIO.OUT)

def clearDisplay():
 for i in range(8):
 GPIO.output(SDI, 1)
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 GPIO.output(RCLK, GPIO.LOW)

def hc595_shift(data):
 for i in range(8):
 GPIO.output(SDI, 0x80 & (data << i))
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 GPIO.output(RCLK, GPIO.LOW)

def pickDigit(digit):
 for i in placePin:
 GPIO.output(i,GPIO.LOW)
 GPIO.output(placePin[digit], GPIO.HIGH)

def loop():
 status = 0
 while True:
 time.localtime(time.time())
 hour = int(time.strftime('%H',time.localtime(time.time())))
 minute = int(time.strftime('%M',time.localtime(time.time())))

 clearDisplay()
 pickDigit(0)
 hc595_shift(number[minute % 10])

 clearDisplay()
 pickDigit(1)
 hc595_shift(number[minute % 100//10])

 clearDisplay()
 pickDigit(2)
 hc595_shift(number[hour % 10])

 clearDisplay()
 pickDigit(3)
 hc595_shift(number[hour % 100//10])

 if minute == 0 and status == 0:
 tts.say('The time is now ' + str(hour) + ' hours and ' + str(minute) + ' minutes')
 status = 1
 elif minute != 0:
 status = 0

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
 GPIO.cleanup()

if __name__ == '__main__': # Program starting from here
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

Code Explanation

time.localtime(time.time())
hour = int(time.strftime('%H',time.localtime(time.time())))
minute = int(time.strftime('%M',time.localtime(time.time())))

Through the function time.time(), we can get the timestamp of the current time (the number of floating-point seconds that have passed since the 1970 epoch), and then use the time formatting method of the time module (time.localtime(time.time())) to process the current timestamp, so that we can format the timestamp as a local time.

The input result is:

time.struct_time(tm_year=2021, tm_mon=5, tm_mday=28, tm_hour=13, tm_min=54, tm_sec=26, tm_wday=4, tm_yday=148, tm_isdst=0)

Finally, we use the time.strftime() method to format the large string of information into what we want. If you want to get the current hour, you can get it through the function time.strftime('%H',time.localtime(time.time())) .

The output of the specified formatted string obtained by modifying the first parameter are listed below.

	%y

	Two-digit year representation(00-99)

	%Y

	Four-digit year representation(000-9999)

	%m

	month(01-12)

	%H

	Day of the month(0-31)

	%I

	Hours in a 24-hour clock(0-23)

	%M

	Hours in 12-hour clock(01-12)

	%y

	Minutes(00=59)

	%S

	second(00-59)

	%a

	Local simplified week name

	%A

	Full local week name

	%b

	Local simplified month name

	%B

	Local full month name

	%c

	Local corresponding date and time display

	%j

	Day of the year(001-366)

	%p

	The equivalent of local A.M. or P.M.

	%U

	Num of weeks of one year(00-53)starting with Sunday

	%w

	Week (0-6), starting with Sunday

	%W

	Num of weeks of one year(00-53)starting with Monday

	%x

	Local corresponding date representation

	%X

	Local corresponding time representation

	%Z

	The name of the current time zone

Note

The output of the time.strftime() method is all string variables. Before using it, remember to do a coercive type conversion.

clearDisplay()
pickDigit(0)
hc595_shift(number[minute % 10])

clearDisplay()
pickDigit(1)
hc595_shift(number[minute % 100//10])

clearDisplay()
pickDigit(2)
hc595_shift(number[hour % 10])

clearDisplay()
pickDigit(3)
hc595_shift(number[hour % 100//10])

The tens digit of the hour is displayed on the first 7-segment digital display, and the ones digit is displayed on the second.
Then the tens digit of the minutes is displayed on the third digital display, and the ones digit are displayed on the last.

if minute == 0 and status == 0:
 tts.say('The time is now ' + str(hour) + ' hours and ' + str(minute) + ' minutes')
 status = 1
elif minute != 0:
 status = 0

When the number of minutes is 0 (by hour), the Raspberry Pi will use TTS to announce the time for us.

Phenomenon Picture

[image: _images/4.1.3speech_clock.JPG]

4.1.4 Automatic Capture Camera

Introduction

When you are out, the little squirrels in the woods might visit your windowsill. Let’s make a automatic capture camera to leave pictures of these little cuties!

Components

[image: _images/3.1.18components.png]

	GPIO Extension Board

	Breadboard

	Camera Module

	PIR Motion Sensor Module

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

[image: _images/1.1.18_schematic.png]

Experimental Procedures

Before this project, you need to make sure you complete 3.1.1 Photograph Module .

Step 1: Build the circuit.

[image: _images/3.1.18fritzing.png]
Step 2: To connect the camera module and complete the configuration, please refer to: Camera Module.

Step 3: Go into the Raspberry Pi Desktop. You may need a screen for a better experience, refer to: Connect your Raspberry Pi [https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up/3]. Or access the Raspberry Pi desktop remotely, for a detailed tutorial please refer to Remote Desktop.

Step 4: Open a Terminal and get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 5: Run.

sudo python3 4.1.4_AutomaticCaptureCamera.py

After the code runs, PIR will detect the surrounding environment, and if it senses the little squirrel passing by, the camera will take a photo.
The photo interval is 3 seconds, and the total number of photos taken will be displayed through the print window.

Note

You can also open 4.1.4_AutomaticCaptureCamera.py in the /home/pi/raphael-kit/python/ path with a Python IDE, click Run button to run, and stop the code with Stop button.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

from picamera import PiCamera
import RPi.GPIO as GPIO
import time

camera = PiCamera()

pirPin = 17 # the pir connect to pin17

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(pirPin, GPIO.IN)
 camera.start_preview(alpha=200)

def main():
 i = 1
 while True:
 pirVal = GPIO.input(pirPin)
 if pirVal==GPIO.HIGH:
 camera.capture('/home/pi/capture%s.jpg' % i)
 print('The number is %s' % i)
 time.sleep(3)
 i = i + 1

def destroy():
 GPIO.cleanup()
 camera.stop_preview()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

pirVal = GPIO.input(pirPin)
if pirVal==GPIO.HIGH:
 camera.capture('/home/pi/capture%s.jpg' % i)
 print('The number is %s' % i)
 time.sleep(3)
 i = i + 1

Every time a little squirrel is detected by the PIR module, the Raspberry Pi will take a photo and tell you through the print window how many pictures have been taken. The interval between each photo is 3s.

Phenomenon Picture

[image: _images/4.1.4spycamera.JPG]

4.1.5 Intelligent Visual Doorbell

Introduction

In this project, let’s make a DIY intelligent visual doorbell.

Components

[image: _images/3.1.19components.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Button

	Audio Module and Speaker

	Camera Module

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO27

	Pin 13

	2

	27

[image: _images/3.1.19_schematic.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/3.1.19fritzing.png]
Before this project, you need to make sure you complete 3.1.3 Audio Module & 3.1.2 Video Module.

Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

python3 4.1.5_DoorBell.py

After the code runs, when the button is pressed, a bell will sound, and the camera will record a 5s video, which is stored as the visitor.h264 file in the /home/pi directory. If you have a screen, you can also view visitors by previewing the video in real time.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
from picamera import PiCamera
from pygame import mixer
import RPi.GPIO as GPIO
import time

camera = PiCamera()

BtnPin = 18
status = False

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(BtnPin, GPIO.IN, GPIO.PUD_UP)
 mixer.init()

def takePhotos(pin):
 global status
 status = True

def main():
 global status
 GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=takePhotos)
 while True:
 if status:
 mixer.music.load('/home/pi/raphael-kit/music/doorbell.wav')
 mixer.music.set_volume(0.7)
 mixer.music.play()
 camera.start_preview(alpha=200)
 camera.start_recording('/home/pi/visitor.h264')
 print ('Have a visitor')
 time.sleep(5)
 mixer.music.stop()
 camera.stop_preview()
 camera.stop_recording()
 status = False

def destroy():
 GPIO.cleanup()
 mixer.music.stop()
 camera.stop_preview()
 camera.stop_recording()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

status = False

This is a flag used to record whether the doorbell is used.

GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=takePhotos)

Set the event of BtnPin, when the button is pressed (the level signal changes from high to low) , call the function takePhotos().

if status:
 mixer.music.load('/home/pi/raphael-kit/music/doorbell.wav')
 mixer.music.set_volume(0.7)
 mixer.music.play()
 camera.start_preview(alpha=200)
 camera.start_recording('/home/pi/visitor.h264')
 print ('Have a visitor')
 time.sleep(5)
 mixer.music.stop()
 camera.stop_preview()
 camera.stop_recording()
 status = False

Five seconds are used here to play music and record videos, thus functioning as a doorbell.

Phenomenon Picture

[image: _images/4.1.5door_bell.JPG]

4.1.6 Magnetic Induction Alarm System

Introduction

When you get a precious vase, you can make a magnetic induction alarm system for it, no matter who moves it, you can hear the alarm in time.

Components

[image: _images/3.1.20components.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Buzzer

	Transistor

	Reed Switch Module

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

[image: _images/3.1.20_schematic.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/3.1.20fritzing.png]
Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.6_MagneticAlarmSystem.py

If the reed switch is affected by the magnet (for example, the reed switch is placed on the base and the magnet is placed in the vase), the object is safe. At this time, the reed switch is in the closed state, and the buzzer is silent.
After removing the magnet (such as the vase being stolen), the reed switch is not affected by the magnetic, the switch opens, and the buzzer sounds an alarm.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

BeepPin = 17
ReedPin = 18

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(BeepPin, GPIO.OUT, initial=GPIO.HIGH)
 GPIO.setup(ReedPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

def loop():
 while True:
 if GPIO.input(ReedPin) == 0:
 GPIO.output(BeepPin, GPIO.HIGH)
 else:
 GPIO.output(BeepPin, GPIO.LOW)
 time.sleep(0.1)
 GPIO.output(BeepPin, GPIO.HIGH)
 time.sleep(0.1)

def destroy():
 GPIO.output(BeepPin, GPIO.HIGH)
 GPIO.cleanup()

if __name__ == '__main__':
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

Code Explanation

def loop():
 while True:
 if GPIO.input(ReedPin) == 0:
 GPIO.output(BeepPin, GPIO.HIGH)
 else:
 GPIO.output(BeepPin, GPIO.LOW)
 time.sleep(0.1)
 GPIO.output(BeepPin, GPIO.HIGH)
 time.sleep(0.1)

We judge the state of the reed switch in the main loop. If the reed switch is closed, the buzzer does not work; otherwise, the buzzer beeps.

Phenomenon Picture

[image: _images/4.1.6_security.JPG]

4.1.7 Counting Device

Introduction

Here we will make a number-displaying counter system, consisting of a
PIR sensor and a 4-digit segment display. When the PIR detects that
someone is passing by, the number on the 4-digit segment display will
add 1. You can use this counter to count the number of people walking
through the passageway.

Components

[image: _images/list_Counting_Device1.png]
[image: _images/list_Counting_Device2.png]

	GPIO Extension Board

	Breadboard

	Resistor

	4-Digit 7-Segment Display

	74HC595

	PIR Motion Sensor Module

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	SPIMOSI

	Pin 19

	12

	10

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO26

	Pin 37

	25

	26

[image: _images/Schematic_three_one1.png]

Experimental Procedures

Step 1: Build the circuit.

[image: 计数器_bb]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 4.1.7_CountingDevice.py

After the code runs, when the PIR detects that someone is passing by,
the number on the 4-digit segment display will add 1.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

sensorPin = 26

SDI = 24
RCLK = 23
SRCLK = 18

placePin = (10, 22, 27, 17)
number = (0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)

counter = 0

def clearDisplay():
 for i in range(8):
 GPIO.output(SDI, 1)
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 GPIO.output(RCLK, GPIO.LOW)

def hc595_shift(data):
 for i in range(8):
 GPIO.output(SDI, 0x80 & (data << i))
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 GPIO.output(RCLK, GPIO.LOW)

def pickDigit(digit):
 for i in placePin:
 GPIO.output(i,GPIO.LOW)
 GPIO.output(placePin[digit], GPIO.HIGH)

def display():
 global counter
 clearDisplay()
 pickDigit(0)
 hc595_shift(number[counter % 10])

 clearDisplay()
 pickDigit(1)
 hc595_shift(number[counter % 100//10])

 clearDisplay()
 pickDigit(2)
 hc595_shift(number[counter % 1000//100])

 clearDisplay()
 pickDigit(3)
 hc595_shift(number[counter % 10000//1000])

def loop():
 global counter
 currentState = 0
 lastState = 0
 while True:
 display()
 currentState=GPIO.input(sensorPin)
 if (currentState == 0) and (lastState == 1):
 counter +=1
 lastState=currentState

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(SDI, GPIO.OUT)
 GPIO.setup(RCLK, GPIO.OUT)
 GPIO.setup(SRCLK, GPIO.OUT)
 for i in placePin:
 GPIO.setup(i, GPIO.OUT)
 GPIO.setup(sensorPin, GPIO.IN)

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
 GPIO.cleanup()

if __name__ == '__main__': # Program starting from here
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

Code Explanation

Based on 1.1.5_4_digit_python, this project adds PIR
module to change the automatic counting into count
detecting. When the PIR detects that someone is passing by, the number
on the 4-digit segment display will add 1.

def display():
 global counter
 clearDisplay()
 pickDigit(0)
 hc595_shift(number[counter % 10])

 clearDisplay()
 pickDigit(1)
 hc595_shift(number[counter % 100//10])

 clearDisplay()
 pickDigit(2)
 hc595_shift(number[counter % 1000//100])

 clearDisplay()
 pickDigit(3)
 hc595_shift(number[counter % 10000//1000])

First, start the fourth segment display, write the single-digit number.
Then start the third segment display, and type in the tens digit; after
that, start the second and the first segment display respectively, and
write the hundreds and thousands digits respectively. Because the
refreshing speed is very fast, we see a complete four-digit display.

def loop():
global counter
 currentState = 0
 lastState = 0
 while True:
 display()
 currentState=GPIO.input(sensorPin)
 if (currentState == 0) and (lastState == 1):
 counter +=1
 lastState=currentState

This is the main function: display the number on the 4-digit segment
display and read the PIR value. When the PIR detects that someone is
passing by, the number on the 4-digit segment display will add 1.

Phenomenon Picture

[image: _MG_3354]

4.1.8 Welcome

Introduction

In this project, we will use PIR to sense the movement of pedestrians,
and use servos, LED, buzzer to simulate the work of the sensor door of
the convenience store. When the pedestrian appears within the sensing
range of the PIR, the indicator light will be on, the door will be
opened, and the buzzer will play the opening bell.

Components

[image: _images/list_Welcome.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	PIR Motion Sensor Module

	Servo

	Buzzer

	Transistor

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO18

	Pin 12

	1

	18

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

[image: _images/Schematic_three_one2.png]

Experimental Procedures

Step 1: Build the circuit.

[image: C:\Users\sunfounder\Desktop\3.1.4_Welcome_bb.png3.1.4_Welcome_bb]
Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.8_Welcome.py

After the code runs, if the PIR sensor detects someone passing by, the
door will automatically open (simulated by the servo), turn on the
indicator and play the doorbell music. After the doorbell music plays,
the system will automatically close the door and turn off the indicator
light, waiting for the next time someone passes by.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time

SERVO_MIN_PULSE = 500
SERVO_MAX_PULSE = 2500

ledPin = 18 # define the ledPin
pirPin = 17 # define the sensorPin
servoPin = 22 # define the servoPin
buzPin = 27 # define the buzzerpin

CL = [0, 131, 147, 165, 175, 196, 211, 248] # Frequency of Low C notes

CM = [0, 262, 294, 330, 350, 393, 441, 495] # Frequency of Middle C notes

CH = [0, 525, 589, 661, 700, 786, 882, 990] # Frequency of High C notes

song = [CH[5],CH[2],CM[6],CH[2],CH[3],CH[6],CH[3],CH[5],CH[3],CM[6],CH[2]]

beat = [1,1,1,1,1,2,1,1,1,1,1,]

def setup():
 global p
 global Buzz # Assign a global variable to replace GPIO.PWM
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
 GPIO.setup(ledPin, GPIO.OUT) # Set ledPin's mode is output
 GPIO.setup(pirPin, GPIO.IN) # Set sensorPin's mode is input
 GPIO.setup(servoPin, GPIO.OUT) # Set servoPin's mode is output
 GPIO.output(servoPin, GPIO.LOW) # Set servoPin to low
 GPIO.setup(buzPin, GPIO.OUT) # Set pins' mode is output

 Buzz = GPIO.PWM(buzPin, 440) # 440 is initial frequency.
 Buzz.start(50) # Start Buzzer pin with 50% duty ration

 p = GPIO.PWM(servoPin, 50) # set Frequece to 50Hz
 p.start(0) # Duty Cycle = 0

def map(value, inMin, inMax, outMin, outMax):
 return (outMax - outMin) * (value - inMin) / (inMax - inMin) + outMin

def setAngle(angle): # make the servo rotate to specific angle (0-180 degrees)
 angle = max(0, min(180, angle))
 pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
 pwm = map(pulse_width, 0, 20000, 0, 100)
 p.ChangeDutyCycle(pwm)#map the angle to duty cycle and output it

def doorbell():
 for i in range(1, len(song)): # Play song 1
 Buzz.ChangeFrequency(song[i]) # Change the frequency along the song note
 time.sleep(beat[i] * 0.25) # delay a note for beat * 0.25s
 time.sleep(1) # Wait a second for next song.

def closedoor():
 GPIO.output(ledPin, GPIO.LOW)
 for i in range(180, -1, -1): #make servo rotate from 180 to 0 deg
 setAngle(i)
 time.sleep(0.001)
 time.sleep(1)
def opendoor():
 GPIO.output(ledPin, GPIO.HIGH)
 for i in range(0, 181, 1): #make servo rotate from 0 to 180 deg
 setAngle(i) # Write to servo
 time.sleep(0.001)
 time.sleep(1)
 doorbell()
 closedoor()

def loop():
 while True:
 if GPIO.input(pirPin)==GPIO.HIGH:
 opendoor()

def destroy():
 GPIO.cleanup() # Release resource
 p.stop()
 Buzz.stop()

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

def setup():
 global p
 global Buzz # Assign a global variable to replace GPIO.PWM
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by physical location
 GPIO.setup(ledPin, GPIO.OUT) # Set ledPin's mode is output
 GPIO.setup(pirPin, GPIO.IN) # Set sensorPin's mode is input
 GPIO.setup(buzPin, GPIO.OUT) # Set pins' mode is output
 Buzz = GPIO.PWM(buzPin, 440) # 440 is initial frequency.
 Buzz.start(50) # Start Buzzer pin with 50% duty ration
 GPIO.setup(servoPin, GPIO.OUT) # Set servoPin's mode is output
 GPIO.output(servoPin, GPIO.LOW) # Set servoPin to low
 p = GPIO.PWM(servoPin, 50) # set Frequece to 50Hz
 p.start(0) # Duty Cycle = 0

These statements are used to initialize the pins of each component.

def setAngle(angle): # make the servo rotate to specific angle (0-180 degrees)
 angle = max(0, min(180, angle))
 pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
 pwm = map(pulse_width, 0, 20000, 0, 100)
 p.ChangeDutyCycle(pwm)#map the angle to duty cycle and output it

Create a function, servowrite to write the angle in the servo that is
0-180.

def doorbell():
 for i in range(1,len(song)): # Play song1
 Buzz.ChangeFrequency(song[i]) # Change the frequency along the song note
 time.sleep(beat[i] * 0.25) # delay a note for beat * 0.25s

Create a function, doorbell to enable the buzzer to play music.

def closedoor():
 GPIO.output(ledPin, GPIO.LOW)
 Buzz.ChangeFrequency(1)
 for i in range(180, -1, -1): #make servo rotate from 180 to 0 deg
 setAngle(i)
 time.sleep(0.001)

Close the door and turn off the indicator light.

def opendoor():
 GPIO.output(ledPin, GPIO.HIGH)
 for i in range(0, 181, 1): #make servo rotate from 0 to 180 deg
 setAngle(i) # Write to servo
 time.sleep(0.001)
 doorbell()
 closedoor()

The function, opendoor() consists of several parts: turn on the
indicator light, turn the servo (to simulate the action of opening the
door), play the doorbell music of the convenience store, and call the
function , closedoor() after playing music.

def loop():
while True:
 if GPIO.input(pirPin)==GPIO.HIGH:
 opendoor()

When PIR senses that someone is passing by, it calls the function,
opendoor() .

Phenomenon Picture

[image: _images/image240.jpeg]

4.1.9 Reversing Alarm

Introduction

In this project, we will use LCD, buzzer and ultrasonic sensors to make
a reverse assist system. We can put it on the remote control vehicle to
simulate the actual process of reversing the car into the garage.

Components

[image: _images/list_Reversing_Alarm.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Buzzer

	Transistor

	Ultrasonic Module

	I2C LCD1602

Schematic Diagram

Ultrasonic sensor detects the distance between itself and the obstacle
that will be displayed on the LCD in the form of code. At the same time,
the ultrasonic sensor let the buzzer issue prompt sound of different
frequency according to different distance value.

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO17

	Pin 11

	0

	17

	SDA1

	Pin 3

	
	

	SCL1

	Pin 5

	
	

[image: _images/Schematic_three_one3.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image242.png]
Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.9_ReversingAlarm.py

As the code runs, ultrasonic sensor module detects the distance to the
obstacle and then displays the information about the distance on
LCD1602; besides, buzzer emits warning tone whose frequency changes with
the distance.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import LCD1602
import time
import RPi.GPIO as GPIO

TRIG = 16
ECHO = 18
BUZZER = 11

def lcdsetup():
LCD1602.init(0x27, 1) # init(slave address, background light)
LCD1602.clear()
LCD1602.write(0, 0, 'Ultrasonic Starting')
LCD1602.write(1, 1, 'By SunFounder')
time.sleep(2)

def setup():
GPIO.setmode(GPIO.BOARD)
GPIO.setup(TRIG, GPIO.OUT)
GPIO.setup(ECHO, GPIO.IN)
GPIO.setup(BUZZER, GPIO.OUT, initial=GPIO.LOW)
lcdsetup()

def distance():
GPIO.output(TRIG, 0)
time.sleep(0.000002)

GPIO.output(TRIG, 1)
time.sleep(0.00001)
GPIO.output(TRIG, 0)

while GPIO.input(ECHO) == 0:
 a = 0
time1 = time.time()
while GPIO.input(ECHO) == 1:
 a = 1
time2 = time.time()

during = time2 - time1
return during * 340 / 2 * 100

def destroy():
GPIO.output(BUZZER, GPIO.LOW)
GPIO.cleanup()
LCD1602.clear()

def loop():
while True:
 dis = distance()
 print (dis, 'cm')
 print ('')
 GPIO.output(BUZZER, GPIO.LOW)
 if (dis > 400):
 LCD1602.clear()
 LCD1602.write(0, 0, 'Error')
 LCD1602.write(3, 1, 'Out of range')
 time.sleep(0.5)
 else:
 LCD1602.clear()
 LCD1602.write(0, 0, 'Distance is')
 LCD1602.write(5, 1, str(round(dis,2)) +' cm')
 if(dis>=50):
 time.sleep(0.5)
 elif(dis<50 and dis>20):
 for i in range(0,2,1):
 GPIO.output(BUZZER, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(BUZZER, GPIO.LOW)
 time.sleep(0.2)
 elif(dis<=20):
 for i in range(0,5,1):
 GPIO.output(BUZZER, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(BUZZER, GPIO.LOW)
 time.sleep(0.05)

if __name__ == "__main__":
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

Code Explanation

def lcdsetup():
 LCD1602.init(0x27, 1) # init(slave address, background light)

def setup():
 GPIO.setmode(GPIO.BOARD)
 GPIO.setup(TRIG, GPIO.OUT)
 GPIO.setup(ECHO, GPIO.IN)
 GPIO.setup(BUZZER, GPIO.OUT, initial=GPIO.LOW)
 lcdsetup()

In this program, we apply the previously used components synthetically.
Here we use buzzers, LCD and ultrasonic. We can initialize them in the
same way as we did before.

dis = distance()
print (dis, 'cm')
print ('')
GPIO.output(BUZZER, GPIO.LOW)
if (dis > 400):
 LCD1602.clear()
 LCD1602.write(0, 0, 'Error')
 LCD1602.write(3, 1, 'Out of range')
 time.sleep(0.5)
else:
 LCD1602.clear()
 LCD1602.write(0, 0, 'Distance is')
 LCD1602.write(5, 1, str(round(dis,2)) +' cm')

Here we get the values of the ultrasonic sensor and get the distance
through calculation. If the value of distance is greater than the range
of value to be detected, an error message is printed on the LCD. And if
the distance is within the working range, the corresponding results will
be output.

LCD1602.write(5, 1, str(round(dis,2)) +' cm')

Since the LCD output only supports character types, we need to use str
() to convert numeric values to characters. We are going to round it
to two decimal places.

if(dis>=50):
 time.sleep(0.5)
elif(dis<50 and dis>20):
 for i in range(0,2,1):
 GPIO.output(BUZZER, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(BUZZER, GPIO.LOW)
 time.sleep(0.2)
elif(dis<=20):
 for i in range(0,5,1):
 GPIO.output(BUZZER, GPIO.HIGH)
 time.sleep(0.05)
 GPIO.output(BUZZER, GPIO.LOW)
 time.sleep(0.05)

This judgment condition is used to control the sound of the buzzer.
According to the difference in distance, it can be divided into three
cases, in which there will be different sound frequencies. Since the
total value of delay is 500, all of them can provide a 500ms interval
for the ultrasonic sensor to work.

Phenomenon Picture

[image: _images/image243.jpeg]

4.1.10 Smart Fan

Introduction

In this project, we will use motors, buttons and thermistors to make a
manual + automatic smart fan whose wind speed is adjustable.

Components

[image: _images/list_Smart_Fan.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Power Supply Module

	Thermistor

	L293D

	ADC0834

	Button

	DC Motor

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	GPIO5

	Pin 29

	21

	5

	GPIO6

	Pin 31

	22

	6

	GPIO13

	Pin 33

	23

	13

[image: _images/Schematic_three_one4.png]

Experimental Procedures

Step 1: Build the circuit.

[image: Smart Fan_bb]

Note

The power module can apply a 9V battery with the 9V Battery
Buckle in the kit. Insert the jumper cap of the power module into the 5V
bus strips of the breadboard.

[image: _MG_2084]
Step 2: Get into the folder of the code.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 4.1.10_SmartFan.py

As the code runs, start the fan by pressing the button. Every time you
press, 1 speed grade is adjusted up or down. There are 5 kinds of
speed grades: 0~4. When set to the 4th speed grade and you
press the button, the fan stops working with a 0 wind speed.

Once the temperature goes up or down for more than 2℃, the speed
automatically gets 1-grade faster or slower.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time
import ADC0834
import math

Set up pins
MotorPin1 = 5
MotorPin2 = 6
MotorEnable = 13
BtnPin = 22

def setup():
 global p_M1,p_M2
 ADC0834.setup()
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(MotorPin1, GPIO.OUT)
 GPIO.setup(MotorPin2, GPIO.OUT)
 p_M1=GPIO.PWM(MotorPin1,2000)
 p_M2=GPIO.PWM(MotorPin2,2000)
 p_M1.start(0)
 p_M2.start(0)
 GPIO.setup(MotorEnable, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(BtnPin, GPIO.IN)

def temperature():
 analogVal = ADC0834.getResult()
 Vr = 5 * float(analogVal) / 255
 Rt = 10000 * Vr / (5 - Vr)
 temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
 Cel = temp - 273.15
 Fah = Cel * 1.8 + 32
 return Cel

def motor(level):
 if level == 0:
 GPIO.output(MotorEnable, GPIO.LOW)
 return 0
 if level>=4:
 level = 4
 GPIO.output(MotorEnable, GPIO.HIGH)
 p_M1.ChangeDutyCycle(level*25)
 return level

def main():
 lastState=0
 level=0
 markTemp = temperature()
 while True:
 currentState =GPIO.input(BtnPin)
 currentTemp=temperature()
 if currentState == 1 and lastState == 0:
 level=(level+1)%5
 markTemp = currentTemp
 time.sleep(0.5)
 lastState=currentState
 if level!=0:
 if currentTemp-markTemp <= -2:
 level = level -1
 markTemp=currentTemp
 if currentTemp-markTemp >= 2:
 level = level +1
 markTemp=currentTemp
 level = motor(level)

def destroy():
 GPIO.output(MotorEnable, GPIO.LOW)
 p_M1.stop()
 p_M2.stop()
 GPIO.cleanup()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

def temperature():
 analogVal = ADC0834.getResult()
 Vr = 5 * float(analogVal) / 255
 Rt = 10000 * Vr / (5 - Vr)
 temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
 Cel = temp - 273.15
 Fah = Cel * 1.8 + 32
 return Cel

temperture() works by converting thermistor values read by ADC0834
into temperature values. Refer to 2.2.2_thermistor_python for more details.

def motor(level):
 if level == 0:
 GPIO.output(MotorEnable, GPIO.LOW)
 return 0
 if level>=4:
 level = 4
 GPIO.output(MotorEnable, GPIO.HIGH)
 p_M1.ChangeDutyCycle(level*25)
 return level

This function controls the rotating speed of the motor. The range of the
Lever: 0-4 (level 0 stops the working motor). One level
adjustment stands for a 25% change of the wind speed.

def main():
 lastState=0
 level=0
 markTemp = temperature()
 while True:
 currentState =GPIO.input(BtnPin)
 currentTemp=temperature()
 if currentState == 1 and lastState == 0:
 level=(level+1)%5
 markTemp = currentTemp
 time.sleep(0.5)
 lastState=currentState
 if level!=0:
 if currentTemp-markTemp <= -2:
 level = level -1
 markTemp=currentTemp
 if currentTemp-markTemp >= 2:
 level = level +1
 markTemp=currentTemp
 level = motor(level)

The function main() contains the whole program process as shown:

	Constantly read the button state and the current temperature.

	Every press makes level+1 and at the same time, the temperature
is updated. The Level ranges 1~4.

	As the fan works (the level is not 0), the temperature is under
detection. A 2℃+ change causes the up and down of the level.

	The motor changes the rotating speed with the Level.

Phenomenon Picture

[image: _images/image246.png]

4.1.11 Battery Indicator

Introduction

In this project, we will make a battery indicator device that can
visually display the battery level on the LED Bargraph.

Components

[image: _images/list_Battery_Indicator.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED Bar Graph

	ADC0834

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

	GPIO25

	Pin 22

	6

	25

	GPIO12

	Pin 32

	26

	12

	GPIO16

	Pin 36

	27

	16

	GPIO20

	Pin 38

	28

	20

	GPIO21

	Pin 40

	29

	21

	GPIO5

	Pin 29

	21

	5

	GPIO6

	Pin 31

	22

	6

	GPIO13

	Pin 33

	23

	13

	GPIO19

	Pin 35

	24

	19

	GPIO26

	Pin 37

	25

	26

[image: _images/Schematic_three_one5.png]

Experimental Procedures

Step 1: Build the circuit.

[image: 电量计_bb]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 4.1.11_BatteryIndicator.py

After the program runs, give the 3rd pin of ADC0834 and the GND a
lead-out wire separately and then lead them to the two poles of a
battery separately. You can see the corresponding LED on the LED
Bargraph is lit up to display the power level (measuring range: 0-5V).

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import ADC0834
import time

ledPins = [25, 12, 16, 20, 21, 5, 6, 13, 19, 26]

def setup():
 GPIO.setmode(GPIO.BCM)
 ADC0834.setup()
 for i in ledPins:
 GPIO.setup(i, GPIO.OUT)
 GPIO.output(i, GPIO.HIGH)

def LedBarGraph(value):
 for i in ledPins:
 GPIO.output(i,GPIO.HIGH)
 for i in range(value):
 GPIO.output(ledPins[i],GPIO.LOW)

def destroy():
 GPIO.cleanup()

def loop():
 while True:
 analogVal = ADC0834.getResult()
 LedBarGraph(int(analogVal/25))

if __name__ == '__main__':
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

def LedBarGraph(value):
 for i in ledPins:
 GPIO.output(i,GPIO.HIGH)
 for i in range(value):
 GPIO.output(ledPins[i],GPIO.LOW)

This function works for controlling the turning on or off of the 10
LEDs on the LED Bargraph. We give these 10 LEDs high levels to let
they are off at first, then decide how many LEDs are lit up by
changing the received analog value.

def loop():
 while True:
 analogVal = ADC0834.getResult()
 LedBarGraph(int(analogVal/25))

analogVal produces values (0-255) with varying voltage values
(0-5V), ex., if a 3V is detected on a battery, the corresponding
value 152 is displayed on the voltmeter.

The 10 LEDs on the LED Bargraph are used to display the
analogVal readings. 255/10=25, so every 25 the analog value
increases, one more LED turns on, ex., if “analogVal=150 (about 3V),
there are 6 LEDs turning on.”

Phenomenon Picture

[image: _images/image249.jpeg]

4.1.12 Traffic Light

Introduction

In this project, we will use LED lights of three colors to realize the
change of traffic lights and a four-digit 7-segment display will be used
to display the timing of each traffic state.

Components

[image: _images/list_Traffic_Light.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	4-Digit 7-Segment Display

	74HC595

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	SPIMOSI

	Pin 19

	12

	10

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO25

	Pin 22

	6

	25

	SPICE0

	Pin 24

	10

	8

	SPICE1

	Pin 26

	11

	7

[image: _images/Schematic_three_one7.png]

Experimental Procedures

Step 1: Build the circuit.

[image: 3.1.7_TrafficLight_bb]
Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.12_TrafficLight.py

As the code runs, LEDs will simulate the color changing of traffic
lights. Firstly, the red LED lights up for 60s, then the green LED
lights up for 30s; next, the yellow LED lights up for 5s. After that,
the red LED lights up for 60s once again. In this way, this series of
actions will be executed repeatedly. Meanwhile, the 4-digit 7-segment
display displays the countdown time continuously.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time
import threading

#define the pins connect to 74HC595
SDI = 24 #serial data input(DS)
RCLK = 23 #memory clock input(STCP)
SRCLK = 18 #shift register clock input(SHCP)
number = (0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90)

placePin = (10,22,27,17)
ledPin =(25,8,7)

greenLight = 30
yellowLight = 5
redLight = 60
lightColor=("Red","Green","Yellow")

colorState=0
counter = 60
timer1 = 0

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(SDI, GPIO.OUT)
 GPIO.setup(RCLK, GPIO.OUT)
 GPIO.setup(SRCLK, GPIO.OUT)
 for pin in placePin:
 GPIO.setup(pin,GPIO.OUT)
 for pin in ledPin:
 GPIO.setup(pin,GPIO.OUT)
 global timer1
 timer1 = threading.Timer(1.0,timer)
 timer1.start()

def clearDisplay():
 for i in range(8):
 GPIO.output(SDI, 1)
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 GPIO.output(RCLK, GPIO.LOW)

def hc595_shift(data):
 for i in range(8):
 GPIO.output(SDI, 0x80 & (data << i))
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 GPIO.output(RCLK, GPIO.LOW)

def pickDigit(digit):
 for i in placePin:
 GPIO.output(i,GPIO.LOW)
 GPIO.output(placePin[digit], GPIO.HIGH)

def timer(): #timer function
 global counter
 global colorState
 global timer1
 timer1 = threading.Timer(1.0,timer)
 timer1.start()
 counter-=1
 if (counter is 0):
 if(colorState is 0):
 counter= greenLight
 if(colorState is 1):
 counter=yellowLight
 if (colorState is 2):
 counter=redLight
 colorState=(colorState+1)%3
 print ("counter : %d color: %s "%(counter,lightColor[colorState]))

def lightup():
 global colorState
 for i in range(0,3):
 GPIO.output(ledPin[i], GPIO.HIGH)
 GPIO.output(ledPin[colorState], GPIO.LOW)

def display():
 global counter

 a = counter % 10000//1000 + counter % 1000//100
 b = counter % 10000//1000 + counter % 1000//100 + counter % 100//10
 c = counter % 10000//1000 + counter % 1000//100 + counter % 100//10 + counter % 10

 if (counter % 10000//1000 == 0):
 clearDisplay()
 else:
 clearDisplay()
 pickDigit(3)
 hc595_shift(number[counter % 10000//1000])

 if (a == 0):
 clearDisplay()
 else:
 clearDisplay()
 pickDigit(2)
 hc595_shift(number[counter % 1000//100])

 if (b == 0):
 clearDisplay()
 else:
 clearDisplay()
 pickDigit(1)
 hc595_shift(number[counter % 100//10])

 if(c == 0):
 clearDisplay()
 else:
 clearDisplay()
 pickDigit(0)
 hc595_shift(number[counter % 10])

def loop():
 while True:
 display()
 lightup()

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
 global timer1
 GPIO.cleanup()
 timer1.cancel() #cancel the timer

if __name__ == '__main__': # Program starting from here
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

Code Explanation

SDI = 24 #serial data input(DS)
RCLK = 23 #memory clock input(STCP)
SRCLK = 18 #shift register clock input(SHCP)
number = (0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90)
placePin = (10,22,27,17)

def clearDisplay():
def hc595_shift(data):
def pickDigit(digit):
def display():

These codes are used to realize the function of number display of
4-Digit 7-Segment. Refer to chapter 1.1.5 of the document for more
details. Here, we use the codes to display countdown of traffic light
time.

ledPin =(25,8,7)
colorState=0

def lightup():
 global colorState
 for i in range(0,3):
 GPIO.output(ledPin[i], GPIO.HIGH)
 GPIO.output(ledPin[colorState], GPIO.LOW)

The codes are used to switch the LED on and off.

greenLight = 30
yellowLight = 5
redLight = 60
lightColor=("Red","Green","Yellow")

colorState=0
counter = 60
timer1 = 0

def timer(): #timer function
 global counter
 global colorState
 global timer1
 timer1 = threading.Timer(1.0,timer)
 timer1.start()
 counter-=1
 if (counter is 0):
 if(colorState is 0):
 counter= greenLight
 if(colorState is 1):
 counter=yellowLight
 if (colorState is 2):
 counter=redLight
 colorState=(colorState+1)%3
 print ("counter : %d color: %s "%(counter,lightColor[colorState]))

The codes are used to switch the timer on and off. Refer to chapter
1.1.5 for more details. Here, when the timer returns to zero, colorState
will be switched so as to switch LED, and the timer will be assigned to
a new value.

def setup():
 # ...
 global timer1
 timer1 = threading.Timer(1.0,timer)
 timer1.start()

def loop():
 while True:
 display()
 lightup()

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
 global timer1
 GPIO.cleanup()
 timer1.cancel() #cancel the timer

if __name__ == '__main__': # Program starting from here
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

In setup() function, start the timer. In loop() function, a while
True is used: call the relative functions of 4-Digit 7-Segment and LED
circularly.

Phenomenon Picture

[image: _images/image255.jpeg]

4.1.13 Overheat Monitor

Introduction

You may want to make an overheat monitoring device that applies to
various situations, ex., in the factory, if we want to have an alarm and
the timely automatic turning off of the machine when there is a circuit
overheating. In this project, we will use thermistor, joystick, buzzer,
LED and LCD to make an smart temperature monitoring device whose
threshold is adjustable.

Components

[image: _images/list_Overheat_Monitor.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Joystick Module

	ADC0834

	Transistor

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin15

	3

	22

	GPIO23

	Pin16

	4

	23

	GPIO24

	Pin18

	5

	24

	SDA1

	Pin 3

	
	

	SCL1

	Pin 5

	
	

[image: _images/Schematic_three_one8.png]

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image258.png]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 4.1.13_OverheatMonitor.py

As the code runs, the current temperature and the high-temperature
threshold 40 are displayed on I2C LCD1602. If the current
temperature is larger than the threshold, the buzzer and LED are started
to alarm you.

Joystick here is for your pressing to adjust the high-temperature
threshold. Toggling the Joystick in the direction of X-axis and
Y-axis can adjust (turn up or down) the current high-temperature
threshold. Press the Joystick once again to reset the threshold to
initial value.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import LCD1602
import RPi.GPIO as GPIO
import ADC0834
import time
import math

Joy_BtnPin = 22
buzzPin = 23
ledPin = 24

upperTem = 40

def setup():
 ADC0834.setup()
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(ledPin, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(buzzPin, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(Joy_BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
 LCD1602.init(0x27, 1)

def get_joystick_value():
 x_val = ADC0834.getResult(1)
 y_val = ADC0834.getResult(2)
 if(x_val > 200):
 return 1
 elif(x_val < 50):
 return -1
 elif(y_val > 200):
 return -10
 elif(y_val < 50):
 return 10
 else:
 return 0

def upper_tem_setting():
 global upperTem
 LCD1602.write(0, 0, 'Upper Adjust: ')
 change = int(get_joystick_value())
 upperTem = upperTem + change
 strUpperTem = str(upperTem)
 LCD1602.write(0, 1, strUpperTem)
 LCD1602.write(len(strUpperTem),1, ' ')
 time.sleep(0.1)

def temperature():
 analogVal = ADC0834.getResult()
 Vr = 5 * float(analogVal) / 255
 Rt = 10000 * Vr / (5 - Vr)
 temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
 Cel = temp - 273.15
 Fah = Cel * 1.8 + 32
 return round(Cel,2)

def monitoring_temp():
 global upperTem
 Cel=temperature()
 LCD1602.write(0, 0, 'Temp: ')
 LCD1602.write(0, 1, 'Upper: ')
 LCD1602.write(6, 0, str(Cel))
 LCD1602.write(7, 1, str(upperTem))
 time.sleep(0.1)
 if Cel >= upperTem:
 GPIO.output(buzzPin, GPIO.HIGH)
 GPIO.output(ledPin, GPIO.HIGH)
 else:
 GPIO.output(buzzPin, GPIO.LOW)
 GPIO.output(ledPin, GPIO.LOW)

def loop():
 lastState=1
 stage=0
 while True:
 currentState=GPIO.input(Joy_BtnPin)
 if currentState==1 and lastState ==0:
 stage=(stage+1)%2
 time.sleep(0.1)
 LCD1602.clear()
 lastState=currentState
 if stage == 1:
 upper_tem_setting()
 else:
 monitoring_temp()

def destroy():
 LCD1602.clear()
 ADC0834.destroy()
 GPIO.cleanup()

if __name__ == '__main__': # Program start from here
 try:
 setup()
 while True:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

def get_joystick_value():
 x_val = ADC0834.getResult(1)
 y_val = ADC0834.getResult(2)
 if(x_val > 200):
 return 1
 elif(x_val < 50):
 return -1
 elif(y_val > 200):
 return -10
 elif(y_val < 50):
 return 10
 else:
 return 0

This function reads values of X and Y. If X>200, there will return
“1”; X<50, return “-1”; y>200, return
“-10”, and y<50, return “10”.

def upper_tem_setting():
 global upperTem
 LCD1602.write(0, 0, 'Upper Adjust: ')
 change = int(get_joystick_value())
 upperTem = upperTem + change
LCD1602.write(0, 1, str(upperTem))
LCD1602.write(len(strUpperTem),1, ' ')
 time.sleep(0.1)

This function is for adjusting the threshold and displaying it on the
I2C LCD1602.

def temperature():
 analogVal = ADC0834.getResult()
 Vr = 5 * float(analogVal) / 255
 Rt = 10000 * Vr / (5 - Vr)
 temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))
 Cel = temp - 273.15
 Fah = Cel * 1.8 + 32
 return round(Cel,2)

Read the analog value of the CH0 (thermistor) of ADC0834 and
then convert it to temperature value.

def monitoring_temp():
 global upperTem
 Cel=temperature()
 LCD1602.write(0, 0, 'Temp: ')
 LCD1602.write(0, 1, 'Upper: ')
 LCD1602.write(6, 0, str(Cel))
 LCD1602.write(7, 1, str(upperTem))
 time.sleep(0.1)
 if Cel >= upperTem:
 GPIO.output(buzzPin, GPIO.HIGH)
 GPIO.output(ledPin, GPIO.HIGH)
 else:
 GPIO.output(buzzPin, GPIO.LOW)
 GPIO.output(ledPin, GPIO.LOW)

As the code runs, the current temperature and the high-temperature
threshold 40 are displayed on I2C LCD1602. If the current
temperature is larger than the threshold, the buzzer and LED are started
to alarm you.

def loop():
 lastState=1
 stage=0
 while True:
 currentState=GPIO.input(Joy_BtnPin)
 if currentState==1 and lastState ==0:
 stage=(stage+1)%2
 time.sleep(0.1)
 LCD1602.clear()
 lastState=currentState
 if stage == 1:
 upper_tem_setting()
 else:
 monitoring_temp()

The function main() contains the whole program process as shown:

	When the program starts, the initial value of stage is 0, and
the current temperature and the high-temperature threshold 40 are
displayed on I2C LCD1602. If the current temperature is larger
than the threshold, the buzzer and the LED are started to alarm you.

	Press the Joystick, and stage will be 1 and you can adjust
the high-temperature threshold. Toggling the Joystick in the
direction of X-axis and Y-axis can adjust (turn up or down) the
current high-temperature threshold. Press the Joystick once again to
reset the threshold to initial value.

Phenomenon Picture

[image: _images/image259.jpeg]

4.1.14 Password Lock

Introduction

In this project, we will use a keypad and a LCD to make a combination
lock. The LCD will display a corresponding prompt for you to type your
password on the Keypad. If the password is input correctly, “Correct”
will be displayed.

On the basis of this project, we can add additional electronic
components, such as buzzer, LED and so on, to add different experimental
phenomena for password input.

Components

[image: _images/list_Password_Lock.png]

	GPIO Extension Board

	Breadboard

	Resistor

	I2C LCD1602

	Keypad

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO25

	Pin 22

	6

	25

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	SPIMOSI

	Pin 19

	12

	10

	SDA1

	Pin 3

	
	

	SCL1

	Pin 5

	
	

[image: _images/Schematic_three_one9.png]

Experimental Procedures

Step 1: Build the circuit.

[image: 3.1.3_PasswordLock_bb_看图王]
Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.14_PasswordLock.py

After the code runs, keypad is used to input password: 1984. If the
“CORRECT” appears on LCD1602, there is no wrong with the password;
otherwise, “WRONG KEY” will appear.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time
import LCD1602

##################### HERE IS THE KEYPAD LIBRARY TRANSPLANTED FROM Arduino ############
#class Key:Define some of the properties of Key
class Keypad():

 def __init__(self, rowsPins, colsPins, keys):
 self.rowsPins = rowsPins
 self.colsPins = colsPins
 self.keys = keys
 GPIO.setwarnings(False)
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(self.rowsPins, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(self.colsPins, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

 def read(self):
 pressed_keys = []
 for i, row in enumerate(self.rowsPins):
 GPIO.output(row, GPIO.HIGH)
 for j, col in enumerate(self.colsPins):
 index = i * len(self.colsPins) + j
 if (GPIO.input(col) == 1):
 pressed_keys.append(self.keys[index])
 GPIO.output(row, GPIO.LOW)
 return pressed_keys

################ EXAMPLE CODE START HERE ################
LENS = 4
password=['1','9','8','4']
testword=['0','0','0','0']
keyIndex=0

def check():
 for i in range(0,LENS):
 if(password[i]!=testword[i]):
 return 0
 return 1

def setup():
 global keypad, last_key_pressed
 rowsPins = [18,23,24,25]
 colsPins = [10,22,27,17]
 keys = ["1","2","3","A",
 "4","5","6","B",
 "7","8","9","C",
 "*","0","#","D"]
 keypad = Keypad(rowsPins, colsPins, keys)
 last_key_pressed = []
 LCD1602.init(0x27, 1) # init(slave address, background light)
 LCD1602.clear()
 LCD1602.write(0, 0, 'WELCOME!')
 LCD1602.write(2, 1, 'Enter password')
 time.sleep(2)

def destroy():
 LCD1602.clear()
 GPIO.cleanup()

def loop():
 global keyIndex
 global LENS
 global keypad, last_key_pressed
 while(True):
 pressed_keys = keypad.read()
 if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:
 LCD1602.clear()
 LCD1602.write(0, 0, "Enter password:")
 LCD1602.write(15-keyIndex,1, pressed_keys)
 testword[keyIndex]=pressed_keys
 keyIndex+=1
 if (keyIndex is LENS):
 if (check() is 0):
 LCD1602.clear()
 LCD1602.write(3, 0, "WRONG KEY!")
 LCD1602.write(0, 1, "please try again")
 else:
 LCD1602.clear()
 LCD1602.write(4, 0, "CORRECT!")
 LCD1602.write(2, 1, "welcome back")
 keyIndex=keyIndex%LENS

 last_key_pressed = pressed_keys
 time.sleep(0.1)

if __name__ == '__main__': # Program start from here
 try:
 setup()
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

LENS = 4
password=['1','9','8','4']
...
rowsPins = [18,23,24,25]
colsPins = [10,22,27,17]
keys = ["1","2","3","A",
 "4","5","6","B",
 "7","8","9","C",
 "*","0","#","D"]

Here, we define the length of the password LENS, the array keys that
store the matrix keyboard keys, and the array password that stores the
correct password.

class Keypad():
 def __init__(self, rowsPins, colsPins, keys):
 self.rowsPins = rowsPins
 self.colsPins = colsPins
 self.keys = keys
 GPIO.setwarnings(False)
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(self.rowsPins, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(self.colsPins, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)
...

This class is the code that reads the values of the pressed keys. Refer
to 2.1.8_keypad_python of this document for more details.

while(True):
 pressed_keys = keypad.read()
 if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:
 LCD1602.clear()
 LCD1602.write(0, 0, "Enter password:")
 LCD1602.write(15-keyIndex,1, pressed_keys)
 testword[keyIndex]=pressed_keys
 keyIndex+=1
...

Read the key value and store it in the test array testword. If the
number of stored key values is more than 4, the correctness of the
password is automatically verified, and the verification results are
displayed on the LCD interface.

def check():
 for i in range(0,LENS):
 if(password[i]!=testword[i]):
 return 0
 return 1

Verify the correctness of the password. Return 1 if the password is
entered correctly, and 0 if not.

Phenomenon Picture

[image: _images/image263.jpeg]

4.1.15 Alarm Bell

Introduction

In this project, we will make a manual alarm device. You can replace the
toggle switch with a thermistor or a photosensitive sensor to make a
temperature alarm or a light alarm.

Components

[image: _images/list_Alarm_Bell.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Buzzer

	Slide Switch

	Transistor

	Capacitor

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO18

	Pin 12

	1

	18

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

[image: _images/Schematic_three_one10.png]

Experimental Procedures

Step 1: Build the circuit.

[image: Alarm Bell_bb]
Step 2: Change directory.

cd /home/pi/raphael-kit/python/

Step 3: Run.

sudo python3 4.1.15_AlarmBell.py

After the program starts, the toggle switch will be toggled to the
right, and the buzzer will give out alarm sounds. At the same time, the
red and green LEDs will flash at a certain frequency.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time
import threading

BeepPin=22
ALedPin=17
BLedPin=27
switchPin=18

Buzz=0
flag =0
note=150
pitch=20

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(BeepPin, GPIO.OUT)
 GPIO.setup(ALedPin,GPIO.OUT,initial=GPIO.LOW)
 GPIO.setup(BLedPin,GPIO.OUT,initial=GPIO.LOW)
 GPIO.setup(switchPin,GPIO.IN)
 global Buzz
 Buzz=GPIO.PWM(BeepPin,note)

def ledWork():
 while flag:
 GPIO.output(ALedPin,GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(ALedPin,GPIO.LOW)
 GPIO.output(BLedPin,GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(BLedPin,GPIO.LOW)

def buzzerWork():
 global pitch
 global note
 while flag:
 if note >= 800 or note <=130:
 pitch = -pitch
 note = note + pitch
 Buzz.ChangeFrequency(note)
 time.sleep(0.01)

def on():
 global flag
 flag = 1
 Buzz.start(50)
 tBuzz = threading.Thread(target=buzzerWork)
 tBuzz.start()
 tLed = threading.Thread(target=ledWork)
 tLed.start()

def off():
 global flag
 flag = 0
 Buzz.stop()
 GPIO.output(ALedPin,GPIO.LOW)
 GPIO.output(BLedPin,GPIO.LOW)

def main():
 lastState=0
 while True:
 currentState =GPIO.input(switchPin)
 if currentState == 1 and lastState == 0:
 on()
 elif currentState == 0 and lastState == 1:
 off()
 lastState=currentState

def destroy():
 off()
 GPIO.cleanup()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

import threading

Here, we import the Threading module and it allows you to do
multiple things at once, while normal programs can only execute code
from top to bottom. With Threading modules, the LED and the buzzer
can work separately.

def ledWork():
 while flag:
 GPIO.output(ALedPin,GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(ALedPin,GPIO.LOW)
 GPIO.output(BLedPin,GPIO.HIGH)
 time.sleep(0.5)
 GPIO.output(BLedPin,GPIO.LOW)

The function ledWork() helps to set the working state of these 2 LEDs:
it keeps the green LED lighting up for 0.5s and then turns off;
similarly, keeps the red LED lighting up for 0.5s and then turns off.

def buzzerWork():
 global pitch
 global note
 while flag:
 if note >= 800 or note <=130:
 pitch = -pitch
 note = note + pitch
 Buzz.ChangeFrequency(note)
 time.sleep(0.01)

The function buzzWork() is used to set the working state of the buzzer.
Here we set the frequency as between 130 and 800, to accumulate or decay
at an interval of 20.

def on():
 global flag
 flag = 1
 Buzz.start(50)
 tBuzz = threading.Thread(target=buzzerWork)
 tBuzz.start()
 tLed = threading.Thread(target=ledWork)
 tLed.start()

In the function on() :

	Define the mark “flag=1”, indicating the ending of the control
thread.

	Start the Buzz, and set the duty cycle to 50%.

	Create 2 separate threads so that the LED and the buzzer can work
at the same time.

threading.Thread() function is used to create the thread and its prototype is as follows:

class threading.Thread(group=None, target=None, name=None, args=(), kwargs={}, *, daemon=None)

Among the construction methods, the principal parameter is target,
we need to assign a callable object (here are the functions ledWork
and BuzzWork) to target.

Next start() is called to start the thread object, ex., tBuzz.start() is used to start the newly installed tBuzz thread.

def off():
 global flag
 flag = 0
 Buzz.stop()
 GPIO.output(ALedPin,GPIO.LOW)
 GPIO.output(BLedPin,GPIO.LOW)

The function Off() defines “flag=0” so as to exit the threads
ledWork and BuzzWork and then turn off the buzzer and the LED.

def main():
 lastState=0
 while True:
 currentState =GPIO.input(switchPin)
 if currentState == 1 and lastState == 0:
 on()
 elif currentState == 0 and lastState == 1:
 off()
 lastState=currentState

Main() contains the whole process of the program: firstly read the value
of the slide switch; if the toggle switch is toggled to the right (the
reading is 1), the function on() is called, the buzzer is driven to emit
sounds and the the red and the green LEDs blink. Otherwise, the buzzer
and the LED don’t work.

Phenomenon Picture

[image: _images/image267.jpeg]

4.1.16 Morse Code Generator

Introduction

In this project, we’ll make a Morse code generator, where you type in a
series of English letters in the Raspberry Pi to make it appear as Morse
code.

Components

[image: _images/list_Morse_Code_Generator.png]

	GPIO Extension Board

	Breadboard

	Resistor

	LED

	Buzzer

	Transistor

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO22

	Pin 15

	3

	22

[image: _images/Schematic_three_one11.png]

Experimental Procedures

Step 1: Build the circuit. (Pay attention to poles of the buzzer:
The one with + label is the positive pole and the other is the
negative.)

[image: Morse_bb]
Step 2: Open the code file.

cd /home/pi/raphael-kit/python

Step 3: Run.

sudo python3 4.1.16_MorseCodeGenerator.py

After the program runs, type a series of characters, and the buzzer and
the LED will send the corresponding Morse code signals.

Code

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time

BeepPin=22
ALedPin=17

MORSECODE = {
 'A':'01', 'B':'1000', 'C':'1010', 'D':'100', 'E':'0', 'F':'0010', 'G':'110',
 'H':'0000', 'I':'00', 'J':'0111', 'K':'101', 'L':'0100', 'M':'11', 'N':'10',
 'O':'111', 'P':'0110', 'Q':'1101', 'R':'010', 'S':'000', 'T':'1',
 'U':'001', 'V':'0001', 'W':'011', 'X':'1001', 'Y':'1011', 'Z':'1100',
 '1':'01111', '2':'00111', '3':'00011', '4':'00001', '5':'00000',
 '6':'10000', '7':'11000', '8':'11100', '9':'11110', '0':'11111',
 '?':'001100', '/':'10010', ',':'110011', '.':'010101', ';':'101010',
 '!':'101011', '@':'011010', ':':'111000',
 }

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(BeepPin, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(ALedPin,GPIO.OUT,initial=GPIO.LOW)

def on():
 GPIO.output(BeepPin, 1)
 GPIO.output(ALedPin, 1)

def off():
 GPIO.output(BeepPin, 0)
 GPIO.output(ALedPin, 0)

def beep(dt): # dt for delay time.
 on()
 time.sleep(dt)
 off()
 time.sleep(dt)

def morsecode(code):
 pause = 0.25
 for letter in code:
 for tap in MORSECODE[letter]:
 if tap == '0':
 beep(pause/2)
 if tap == '1':
 beep(pause)
 time.sleep(pause)

def main():
 while True:
 code=input("Please input the messenger:")
 code = code.upper()
 print(code)
 morsecode(code)

def destroy():
 print("")
 GPIO.output(BeepPin, GPIO.LOW)
 GPIO.output(ALedPin, GPIO.LOW)
 GPIO.cleanup()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

MORSECODE = {
 'A':'01', 'B':'1000', 'C':'1010', 'D':'100', 'E':'0', 'F':'0010', 'G':'110',
 'H':'0000', 'I':'00', 'J':'0111', 'K':'101', 'L':'0100', 'M':'11', 'N':'10',
 'O':'111', 'P':'0110', 'Q':'1101', 'R':'010', 'S':'000', 'T':'1',
 'U':'001', 'V':'0001', 'W':'011', 'X':'1001', 'Y':'1011', 'Z':'1100',
 '1':'01111', '2':'00111', '3':'00011', '4':'00001', '5':'00000',
 '6':'10000', '7':'11000', '8':'11100', '9':'11110', '0':'11111',
 '?':'001100', '/':'10010', ',':'110011', '.':'010101', ';':'101010',
 '!':'101011', '@':'011010', ':':'111000',
 }

This structure MORSE is the dictionary of the Morse code, containing
characters A-Z, numbers 0-9 and marks “?” “/” “:” “,” “.” “;” “!” “@” .

def on():
 GPIO.output(BeepPin, 1)
 GPIO.output(ALedPin, 1)

The function on() starts the buzzer and the LED.

def off():
 GPIO.output(BeepPin, 0)
 GPIO.output(ALedPin, 0)

The function off() is used to turn off the buzzer and the LED.

def beep(dt): # x for dalay time.
 on()
 time.sleep(dt)
 off()
 time.sleep(dt)

Define a function beep() to make the buzzer and the LED emit sounds and
blink in a certain interval of dt.

def morsecode(code):
 pause = 0.25
 for letter in code:
 for tap in MORSECODE[letter]:
 if tap == '0':
 beep(pause/2)
 if tap == '1':
 beep(pause)
 time.sleep(pause)

The function morsecode() is used to process the Morse code of input
characters by making the “1” of the code keep emitting sounds or lights
and the “0”shortly emit sounds or lights, ex., input “SOS”, and there
will be a signal containing three short three long and then three short
segments “ · · · - - - · · · ”.

def main():
 while True:
 code=input("Please input the messenger:")
 code = code.upper()
 print(code)
 morsecode(code)

When you type the relevant characters with the keyboard, upper() will
convert the input letters to their capital form.

printf() then prints the clear text on the computer screen, and the
morsecod() function causes the buzzer and the LED to emit Morse code.

Phenomenon Picture

[image: _images/image270.jpeg]

4.1.17 GAME– Guess Number

Introduction

Guessing Numbers is a fun party game where you and your friends take
turns inputting a number (0~99). The range will be smaller with the
inputting of the number till a player answers the riddle correctly. Then
the player is defeated and punished. For example, if the lucky number is
51 which the players cannot see, and the player ① inputs 50, the prompt
of number range changes to 50~99; if the player ② inputs 70, the range
of number can be 50~70; if the player ③ inputs 51, this player is the
unlucky one. Here, we use keypad to input numbers and use LCD to output
outcomes.

Components

[image: _images/list_GAME_Guess_Number.png]

	GPIO Extension Board

	Breadboard

	Resistor

	Keypad

	I2C LCD1602

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO25

	Pin 22

	6

	25

	SPIMOSI

	Pin 19

	12

	10

	GPIO22

	Pin 15

	3

	22

	GPIO27

	Pin 13

	2

	27

	GPIO17

	Pin 11

	0

	17

	SDA1

	Pin 3

	SDA1(8)

	SDA1(2)

	SCL1

	Pin 5

	SCL1(9)

	SDA1(3)

[image: _images/Schematic_three_one12.png]

Experimental Procedures

Step 1: Build the circuit.

[image: Guess Number_bb]
Step 2: Setup I2C (see I2C Configuration.)

Step 3: Change directory.

cd /home/pi/raphael-kit/python/

Step 4: Run.

sudo python3 4.1.17_GAME_GuessNumber.py

After the program runs, there displays the initial page on the LCD:

Welcome!
Press A to go!

Press ‘A’, and the game will start and the game page will appear on the
LCD.

Enter number:
0 ‹point‹ 99

A random number ‘point’ is produced but not displayed on the LCD
when the game starts, and what you need to do is to guess it. The number
you have typed appears at the end of the first line till the final
calculation is finished. (Press ‘D’ to start the comparation, and if the
input number is larger than 10, the automatic comparation will
start.)

The number range of ‘point’ is displayed on the second line. And you
must type the number within the range. When you type a number, the range
narrows; if you got the lucky number luckily or unluckily, there will
appear “You’ve got it!”

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

import RPi.GPIO as GPIO
import time
import LCD1602
import random

##################### HERE IS THE KEYPAD LIBRARY TRANSPLANTED FROM Arduino ############
#class Key:Define some of the properties of Key
class Keypad():

 def __init__(self, rowsPins, colsPins, keys):
 self.rowsPins = rowsPins
 self.colsPins = colsPins
 self.keys = keys
 GPIO.setwarnings(False)
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(self.rowsPins, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(self.colsPins, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

 def read(self):
 pressed_keys = []
 for i, row in enumerate(self.rowsPins):
 GPIO.output(row, GPIO.HIGH)
 for j, col in enumerate(self.colsPins):
 index = i * len(self.colsPins) + j
 if (GPIO.input(col) == 1):
 pressed_keys.append(self.keys[index])
 GPIO.output(row, GPIO.LOW)
 return pressed_keys

################ EXAMPLE CODE START HERE ################

count = 0
pointValue = 0
upper=99
lower=0

def setup():
 global keypad, last_key_pressed,keys
 rowsPins = [18,23,24,25]
 colsPins = [10,22,27,17]
 keys = ["1","2","3","A",
 "4","5","6","B",
 "7","8","9","C",
 "*","0","#","D"]
 keypad = Keypad(rowsPins, colsPins, keys)
 last_key_pressed = []
 LCD1602.init(0x27, 1) # init(slave address, background light)
 LCD1602.clear()
 LCD1602.write(0, 0, 'Welcome!')
 LCD1602.write(0, 1, 'Press A to Start!')

def init_new_value():
 global pointValue,upper,count,lower
 pointValue = random.randint(0,99)
 upper = 99
 lower = 0
 count = 0
 print('point is %d' %(pointValue))

def detect_point():
 global count,upper,lower
 if count > pointValue:
 if count < upper:
 upper = count
 elif count < pointValue:
 if count > lower:
 lower = count
 elif count == pointValue:
 count = 0
 return 1
 count = 0
 return 0

def lcd_show_input(result):
 LCD1602.clear()
 if result == 1:
 LCD1602.write(0,1,'You have got it!')
 time.sleep(5)
 init_new_value()
 lcd_show_input(0)
 return
 LCD1602.write(0,0,'Enter number:')
 LCD1602.write(13,0,str(count))
 LCD1602.write(0,1,str(lower))
 LCD1602.write(3,1,' < Point < ')
 LCD1602.write(13,1,str(upper))

def loop():
 global keypad, last_key_pressed,count
 while(True):
 result = 0
 pressed_keys = keypad.read()
 if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:
 if pressed_keys == ["A"]:
 init_new_value()
 lcd_show_input(0)
 elif pressed_keys == ["D"]:
 result = detect_point()
 lcd_show_input(result)
 elif pressed_keys[0] in keys:
 if pressed_keys[0] in list(["A","B","C","D","#","*"]):
 continue
 count = count * 10
 count += int(pressed_keys[0])
 if count >= 10:
 result = detect_point()
 lcd_show_input(result)
 print(pressed_keys)
 last_key_pressed = pressed_keys
 time.sleep(0.1)

Define a destroy function for clean up everything after the script finished
def destroy():
 # Release resource
 GPIO.cleanup()
 LCD1602.clear()

if __name__ == '__main__': # Program start from here
 try:
 setup()
 while True:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

At the beginning part of the code are the functional functions of
keypad and I2C LCD1602. You can learning more details about them
in 1.1.7_i2clcd1602_python and 2.1.8_keypad_python.

Here, what we need to know is as follows:

def init_new_value():
 global pointValue,upper,count,lower
 pointValue = random.randint(0,99)
 upper = 99
 lower = 0
 count = 0
 print('point is %d' %(pointValue))

The function produces the random number ‘point’ and resets the
range hint of the point.

def detect_point():
 global count,upper,lower
 if count > pointValue:
 if count < upper:
 upper = count
 elif count < pointValue:
 if count > lower:
 lower = count
 elif count == pointValue:
 count = 0
 return 1
 count = 0
 return 0

detect_point() compares the input number (count) with the produced
“point”. If the comparing outcome is that they are not same,
count will assign values to upper and lower and return
‘0’; otherwise, if the outcome indicates they are same, there
returns ‘1’.

def lcd_show_input(result):
 LCD1602.clear()
 if result == 1:
 LCD1602.write(0,1,'You have got it!')
 time.sleep(5)
 init_new_value()
 lcd_show_input(0)
 return
 LCD1602.write(0,0,'Enter number:')
 LCD1602.write(13,0,str(count))
 LCD1602.write(0,1,str(lower))
 LCD1602.write(3,1,' < Point < ')
 LCD1602.write(13,1,str(upper))

This function works for displaying the game page.

str(count): Because write() can only support the data type —
string, str() is needed to convert the number into
string.

def loop():
 global keypad, last_key_pressed,count
 while(True):
 result = 0
 pressed_keys = keypad.read()
 if len(pressed_keys) != 0 and last_key_pressed != pressed_keys:
 if pressed_keys == ["A"]:
 init_new_value()
 lcd_show_input(0)
 elif pressed_keys == ["D"]:
 result = detect_point()
 lcd_show_input(result)
 elif pressed_keys[0] in keys:
 if pressed_keys[0] in list(["A","B","C","D","#","*"]):
 continue
 count = count * 10
 count += int(pressed_keys[0])
 if count >= 10:
 result = detect_point()
 lcd_show_input(result)
 print(pressed_keys)
 last_key_pressed = pressed_keys
 time.sleep(0.1)

main() contains the whole process of the program, as show below:

	Initialize I2C LCD1602 and Keypad.

	Judge whether the button is pressed and get the button reading.

	If the button ‘A’ is pressed, a random number 0-99 will
appear then the game starts.

	If the button ‘D’ is detected to have been pressed, the
program will enter into the outcome judgement.

	If the button 0-9 is pressed, the value of count will be
changed; if the count is larger than 10, then the judgement
starts.

	The changes of the game and its values are displayed on LCD1602.

Phenomenon Picture

[image: _images/image274.jpeg]

4.1.18 GAME - 10 Second

Introduction

Next, follow me to make a game device to challenge your concentration.
Tie the tilt switch to a stick to make a magic wand. Shake the wand, the
4-digit segment display will start counting, shake again will let it
stop counting. If you succeed in keeping the displayed count at
10.00, then you win. You can play the game with your friends to see
who is the time wizard.

Components

[image: _images/list_GAME_10_Second.png]

	GPIO Extension Board

	Breadboard

	Resistor

	4-Digit 7-Segment Display

	74HC595

	Tilt Switch

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO17

	Pin 11

	0

	17

	GPIO27

	Pin 13

	2

	27

	GPIO22

	Pin 15

	3

	22

	SPIMOSI

	Pin 19

	12

	10

	GPIO18

	Pin 12

	1

	18

	GPIO23

	Pin 16

	4

	23

	GPIO24

	Pin 18

	5

	24

	GPIO26

	Pin 37

	25

	26

[image: _images/Schematic_three_one13.png]

Experimental Procedures

Step 1: Build the circuit.

[image: 10 second_bb]
Step 2: Go to the folder of the code.

cd /home/pi/raphael-kit/python/

Step 3: Run the executable file.

sudo python3 4.1.18_GAME_10Second.py

Shake the wand, the 4-digit segment display will start counting, shake
again will let it stop counting. If you succeed in keeping the displayed
count at 10.00, then you win. Shake it one more time to start the
next round of the game.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import RPi.GPIO as GPIO
import time
import threading

sensorPin = 26

SDI = 24
RCLK = 23
SRCLK = 18

placePin = (10, 22, 27, 17)
number = (0xc0, 0xf9, 0xa4, 0xb0, 0x99, 0x92, 0x82, 0xf8, 0x80, 0x90)

counter = 0
timer =0
gameState =0

def clearDisplay():
 for i in range(8):
 GPIO.output(SDI, 1)
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 GPIO.output(RCLK, GPIO.LOW)

def hc595_shift(data):
 for i in range(8):
 GPIO.output(SDI, 0x80 & (data << i))
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 GPIO.output(RCLK, GPIO.LOW)

def pickDigit(digit):
 for i in placePin:
 GPIO.output(i,GPIO.LOW)
 GPIO.output(placePin[digit], GPIO.HIGH)

def display():
 global counter
 clearDisplay()
 pickDigit(0)
 hc595_shift(number[counter % 10])

 clearDisplay()
 pickDigit(1)
 hc595_shift(number[counter % 100//10])

 clearDisplay()
 pickDigit(2)
 hc595_shift(number[counter % 1000//100]-0x80)

 clearDisplay()
 pickDigit(3)
 hc595_shift(number[counter % 10000//1000])

def stateChange():
 global gameState
 global counter
 global timer1
 if gameState == 0:
 counter = 0
 time.sleep(1)
 timer()
 elif gameState ==1:
 timer1.cancel()
 time.sleep(1)
 gameState = (gameState+1)%2

def loop():
 global counter
 currentState = 0
 lastState = 0
 while True:
 display()
 currentState=GPIO.input(sensorPin)
 if (currentState == 0) and (lastState == 1):
 stateChange()
 lastState=currentState

def timer():
 global counter
 global timer1
 timer1 = threading.Timer(0.01, timer)
 timer1.start()
 counter += 1

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(SDI, GPIO.OUT)
 GPIO.setup(RCLK, GPIO.OUT)
 GPIO.setup(SRCLK, GPIO.OUT)
 for i in placePin:
 GPIO.setup(i, GPIO.OUT)
 GPIO.setup(sensorPin, GPIO.IN)

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
 GPIO.cleanup()
 global timer1
 timer1.cancel()

if __name__ == '__main__': # Program starting from here
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

Code Explanation

def stateChange():
 global gameState
 global counter
 global timer1
 if gameState == 0:
 counter = 0
 time.sleep(1)
 timer()
 elif gameState ==1:
 timer1.cancel()
 time.sleep(1)
 gameState = (gameState+1)%2

The game is divided into two modes:

gameState==0 is the “start” mode, in which the time is timed and
displayed on the segment display, and the tilting switch is shaken to
enter the “show” mode.

gameState==1 is the “show” mode, which stops the timing and displays the
time on the segment display. Shaking the tilt switch again will reset
the timer and restart the game.

def loop():
 global counter
 currentState = 0
 lastState = 0
 while True:
 display()
 currentState=GPIO.input(sensorPin)
 if (currentState == 0) and (lastState == 1):
 stateChange()
 lastState=currentState

loop() is the main function. First, the time is displayed on the 4-bit
segment display and the value of the tilt switch is read. If the state
of the tilt switch has changed, stateChange() is called.

def timer():
 global counter
 global timer1
 timer1 = threading.Timer(0.01, timer)
 timer1.start()
 counter += 1

After the interval reaches 0.01s, the timer function is called; add 1 to
counter, and the timer is used again to execute itself repeatedly every
0.01s.

Phenomenon Picture

[image: _images/image278.jpeg]

4.1.19 AttendanceSystem

Introduction

Let’s make a simple attendance system. When we scan the card, the Raspberry Pi will record our information and generate a csv file.

Components

[image: _images/4.1.20components2.png]

	GPIO Extension Board

	Breadboard

	Audio Module and Speaker

	LED Matrix Module

	MFRC522 Module

Schematic Diagram

	T-Board Name

	physical

	wiringPi

	BCM

	GPIO25

	Pin 22

	6

	25

	SPIMOSI

	Pin 19

	12

	MOSI

	SPIMISO

	Pin 19

	12

	MISO

	SPICE0

	pin 24

	10

	CE0

	SPICE1

	pin 26

	11

	CE1

	SPISCLK

	Pin 23

	14

	SCLK

[image: _images/4.1.20_schematic.png]

Experimental Procedures

Note

Turn on the SPI before starting the experiment, refer to SPI Configuration for details.

The Luma.LED_Matrix and the Spidev and MFRC522 libraries are also needed.

Step 1: Build the circuit.

[image: _images/atten1.png]
Step 2: Run the 2.2.10_write.py file to modify the content of the rfid card.

cd /home/pi/raphael-kit/python
sudo python3 2.2.10_write.py

Step 3: Enter the name (here we use John``as an example) and press ``Enter to confirm, then put the card on the MFRC522 module, wait for “Data writing is complete” to appear and take the card away, or rewrite the message to another card and exit by Ctrl+C.

[image: _images/write_card.png]
Step 4: Get into the folder of code and run.

cd /home/pi/raphael-kit/python
sudo python3 4.1.19_Attendance_Machine.py

After starting the program, we put the RFID card close to the MFRC522 RFID Module, the Raspberry Pi will send out a voice to greet you and display it on the LED matrix.

We can also find a .csv file that records the time and list in the same directory. Open it with the nano command and you will see the record just now.

sudo nano attendance_sheet.2021.06.29.csv

[image: _images/atten3.png]
Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like raphael-kit/python. After modifying the code, you can run it directly to see the effect.

import time
from tts import TTS
import RPi.GPIO as GPIO
from mfrc522 import SimpleMFRC522
from luma.core.interface.serial import spi, noop
from luma.core.render import canvas
from luma.core.virtual import viewport
from luma.led_matrix.device import max7219
from luma.core.legacy import text
from luma.core.legacy.font import proportional, CP437_FONT, LCD_FONT

serial = spi(port=0, device=1, gpio=noop())
device = max7219(serial, rotate=1)
virtual = viewport(device, width=200, height=400)

reader = SimpleMFRC522()

tts = TTS(engine="espeak")
tts.lang('en-US')

attendance_statistics = {}

def get_time():
 time.time()
 year = str(time.strftime('%Y',time.localtime(time.time())))
 month = str(time.strftime('%m',time.localtime(time.time())))
 day = str(time.strftime('%d',time.localtime(time.time())))
 hour = str(time.strftime('%H',time.localtime(time.time())))
 minute = str(time.strftime('%M',time.localtime(time.time())))
 second = str(time.strftime('%S',time.localtime(time.time())))
 present_time = year + '.' + month + '.' + day + '.' + hour + '.' + minute + '.' + second
 present_date = year + '.' + month + '.' + day
 return present_date, present_time

def main():
 while True:
 print("Reading...Please place the card...")
 id, name = reader.read()
 print(id,name)
 greeting = name.rstrip() + ", Welcome!"
 present_date, present_time = get_time()
 attendance_statistics[name.rstrip()] = present_time
 tts.say(greeting)
 with open('attendance_sheet.' + present_date + '.csv', 'w') as f:
 [f.write('{0} {1}\n'.format(key, value)) for key, value in attendance_statistics.items()]
 with canvas(virtual) as draw:
 text(draw, (0, 0), greeting, fill="white", font=proportional(CP437_FONT))
 for offset in range(95):
 virtual.set_position((offset,0))
 time.sleep(0.1)

def destroy():
 GPIO.cleanup()
 pass

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

In order to better understand the program, you may need to complete 1.1.6 LED Dot Matrix , 2.2.10 MFRC522 RFID Module and 3.1.4 Text-to-speech first.

def get_time():
 time.time()
 year = str(time.strftime('%Y',time.localtime(time.time())))
 month = str(time.strftime('%m',time.localtime(time.time())))
 day = str(time.strftime('%d',time.localtime(time.time())))
 hour = str(time.strftime('%H',time.localtime(time.time())))
 minute = str(time.strftime('%M',time.localtime(time.time())))
 second = str(time.strftime('%S',time.localtime(time.time())))
 present_time = year + '.' + month + '.' + day + '.' + hour + '.' + minute + '.' + second
 present_date = year + '.' + month + '.' + day
 return present_date, present_time

Use the get_time() function to get the current timestamp and return two values.
Among them, present_date is accurate to the number of days of the current timestamp, and present_time is accurate to the number of seconds of the current timestamp.

id, name = reader.read()
greeting = name.rstrip() + ", Welcome!"
present_date, present_time = get_time()
attendance_statistics[name.rstrip()] = present_time

The reader.read() function reads the name information, and then creates a greeting.
Then an attendance_statistics dictionary is generated, and name.rstrip() and present_time are stored as keys and values.

tts.say(greeting)

Say a greeting through the speaker.

with open('attendance_sheet.' + present_date + '.csv', 'w') as f:
 [f.write('{0} {1}\n'.format(key, value)) for key, value in attendance_statistics.items()]

Write the attendance_statistics to the .csv file.

with canvas(virtual) as draw:
 text(draw, (0, 0), greeting, fill="white", font=proportional(CP437_FONT))
for offset in range(95):
 virtual.set_position((offset,0))
 time.sleep(0.1)

Scroll to display this greeting.

Phenomenon Picture

[image: _images/attend_system.JPG]

FAQ

C code is not working?

	Check your wiring for problems.

	Check if the code is reporting errors, if so, refer to: Check and Install the WiringPi.

	Has the code been compiled before running.

	If all the above 3 conditions are OK, it may be that your wiringPi version (2.50) is not compatible with your Raspberry Pi 4B and above, refer to Check and Install the WiringPi to manually upgrade it to version 2.52.

Thank You

Thanks to the evaluators who evaluated our products, the veterans who provided suggestions for the tutorial, and the users who have been following and supporting us.
Your valuable suggestions to us are our motivation to provide better products!

Particular Thanks

	Len Davisson

	Kalen Daniel

	Juan Delacosta

Now, could you spare a little time to fill out this questionnaire?

正在加载…
Note

After submitting the questionnaire, please go back to the top to view the results.

Index

 _images/1.10_list.png

_images/1.10_camera4.png
® video motion v on sprite » >®

:: play drum (1) Snare Drum w» for @ beats

_images/1.10_camera3.png
8 video motion v on sprite ¥ >®

I: play drum (5) Open Hi-Hat » for @ beats

_images/1.10_header.png

_images/1.10_fritzing_speaker.png
GPIO Extension Board|

_images/1.1.18_schematic.png
PIR

_images/1.10_camera.png

_images/1.1.6fritzing.png
LRAaAsarsazasa

32222222222

120149
9020149
©9101dD
@aND
©9101d9
@ans
@5 ar
®1301ds
®03D1ds
®5201dD
@ans
®v201dD
®£201d9
@aNs
©8101dD
@0axy
@o0axL
@ano
@0AS
@0

o 0000000000000 GGG

o e
920145 @
6L01dD @
£101dD @

90149 @
SO1dD @
asae

o e

N1DSIdS @

OSINIdS @

ISOWIdS @

EAE®
22014 @
L2014 @
£101dD @

o e
0149 @
s @
Lvas @
EAE @

pleog uoisuaix3y OId9)

RN

_images/1.10_camera11.png
stage

spie | oramsnare P

son | © | B sz= [1% Drecton | %0

Dy

_images/1.10_camera1.png

