

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # SunFounder Pico-4wd Car Kit V2
This is the code, drivers and some documents for Pico-4wd Car.You can buy it on [our website](https://www.sunfounder.com/), or search sunfounder in Amazon.

	[Pico-4wd Car](#nano-sloth-kit)

	[Related Links](#related-links)

	[File Tree](#file-tree)

	[About SunFounder](#about-sunfounder)

	[Contact Us](#contact-us)

Pico-4wd Car
<div align=”center”>

<!– –>

</div>

The Pico-4wd is a Raspberry Pi Pico based, cool, robot car kit that everyone can have.

Equipped with greyscale sensor module and ultrasonic module, it can perform line tracking, cliff detection, follow and obstacle avoidance functions. The RGB boards assembled at the bottom and rear of the car make it the coolest spirit in the dark.

We have provided sample code based on MicroPython so you can get started quickly.

In addition, you can also use an app - SunFounder Controller - to DIY your own control methods!

Related Links
- documentation:

https://docs.sunfounder.com/projects/pico-4wd-car/en/latest/index.html

	
	our website:
	https://sunfounder.com

File Tree

pico_4wd_car
├─ esp8266-uart-wsserver // websocket-uart firmware for esp01s
├─ examples // examples
│ ├─ app_control.py
│ ├─ app_control_v2.py
│ ├─ battery_test.py
│ ├─ bull_fight.py
│ ├─ donot_push_me.py
│ ├─ follow_hand.py
│ ├─ follow_hand_v2.py
│ ├─ line_track.py
│ ├─ mileage_test.py
│ └─ obstacle_avoid.py
├─ img
├─ libs // library
│ ├─ pico_4wd.py
│ ├─ pico_rdp.py
│ └─ ws.py
├─ tests // test examples
│ ├─ app_test.py
│ ├─ light_effect.py
│ ├─ pico_4wd_test.py
│ ├─ test.py
│ ├─ test_grayscale.py
│ ├─ test_light.py
│ ├─ test_motor.py
│ ├─ test_servo.py
│ ├─ test_sonar.py
│ └─ test_speed.py
├─ api_reference_pico_4wd.md
└─ README.md

About SunFounder
SunFounder is a company focused on STEAM education with products like open source robots, development boards, STEAM kit, modules, tools and other smart devices distributed globally. In SunFounder, we strive to help elementary and middle school students as well as hobbyists, through STEAM education, strengthen their hands-on practices and problem-solving abilities. In this way, we hope to disseminate knowledge and provide skill training in a full-of-joy way, thus fostering your interest in programming and making, and exposing you to a fascinating world of science and engineering. To embrace the future of artificial intelligence, it is urgent and meaningful to learn abundant STEAM knowledge.

Contact Us
website:

www.sunfounder.com

	E-mail:
	service@sunfounder.com

 # pico_4wd

Module for pico 4wd car

Methods

LED Strip

set_light_all_color(color): Set all LED color

	color: list of [R, G, B], R/G/B range 0~255

	return: None


```python
import pico_4wd as car

car.set_light_all_color([100, 0, 0]) # set all LED color to red
car.set_light_all_color([0, 100, 0]) # set all LED color to green
car.set_light_all_color([0, 0, 100]) # set all LED color to blue
```

set_light_color_at(num, color, preset=0): Set single LED color

	num: int for the position of LED, from 0 to 23

	color: list of [R, G, B], R/G/B range 0~255

	preset: set LIGHT_REAR/LIGHT_BOTTOM_LEFT/LIGHT_BOTTOM_RIGHT

	return: None


```python
import pico_4wd as car

car.set_light_color_at(1, [100, 0, 0]) # set the first LED color to red

# set rear LED strip to green
for i in range(0, 8):


car.set_light_all_color(i, [0, 100, 0])




# set bottom LED strip to red
for i in range(8, 24):


car.set_light_all_color(i, [100, 0, 0])




```

set_light_bottom_left_color(color): Set bottom left LED strip color

	color: list of [R, G, B], R/G/B range 0~255

	return: None


```python
import pico_4wd as car

car.set_light_bottom_left_color([100, 0, 0]) # set bottom left LED strip color to red
```

set_light_bottom_right_color(color): Set bottom left LED strip color

	color: list of [R, G, B], R/G/B range 0~255

	return: None


```python
import pico_4wd as car

car.set_light_bottom_right_color([100, 0, 0]) # set bottom left LED strip color to red
```

set_light_bottom_color(color): Set both bottom LED strips color

	color: list of [R, G, B], R/G/B range 0~255

	return: None


```python
import pico_4wd as car

car.set_light_bottom_color([100, 0, 0]) # set bottom LED strip color to red
```

set_light_rear_color(color): Set rear LED strip color

	color: list of [R, G, B], R/G/B range 0~255

	return: None


```python
import pico_4wd as car

car.set_light_rear_color([100, 0, 0]) # set bottom LED strip color to red
```

write_light_color_at(num, color, preset=0): Write single LED color to buffer, but not excute

	num: int for the position of LED, from 0 to 23

	color: list of [R, G, B], R/G/B range 0~255

	preset: set LIGHT_REAR/LIGHT_BOTTOM_LEFT/LIGHT_BOTTOM_RIGHT

	return: None


```python
import pico_4wd as car

car.write_light_color_at(1, [100, 0, 0]) # set the first LED color to red

# set rear LED strip to green
for i in range(0, 8):


car.write_light_color_at(i, [0, 100, 0])




car.light_excute()
# set bottom LED strip to red
for i in range(8, 24):


car.write_light_color_at(i, [100, 0, 0])




car.light_excute()
```

light_excute(): Excute light from buffer

	return: None


```python
import pico_4wd as car

car.write_light_color_at(1, [100, 0, 0]) # set the first LED color to red
car.light_excute()

# set rear LED strip to green
for i in range(0, 8):


car.write_light_color_at(i, [0, 100, 0])




car.light_excute()
# set bottom LED strip to red
for i in range(8, 24):


car.write_light_color_at(i, [100, 0, 0])




car.light_excute()
```

set_light_off(): Turn all LED off

	return: None


```python
import pico_4wd as car
import time

# All led blink red
while True:


car.set_light_all_color([100, 0, 0])
car.set_light_off()
car.set_light_all_color([100, 0, 0])
car.set_light_off()
time.sleep(1)




```

hue2rgb(_h, _s = 1, _b = 1): Convert HSB to RGB

	_h: hue value 0~360

	_s: saturation value 0.0~1.0

	_b: brightness value 0.0~1.0

	return: [r, g, b]


```python
import pico_4wd as car

# All led to red
rgb = car.hue2rgb(0, 1, 1)
car.set_light_all_color(rgb)
# All led to green
rgb = car.hue2rgb(120, 1, 1)
car.set_light_all_color(rgb)
# All led to blue
rgb = car.hue2rgb(240, 1, 1)
car.set_light_all_color(rgb)
```

Grayscale sensor

get_grayscale_values(): Get grayscale values

	return: [left, middle, right], each 0~65535


```python
import pico_4wd as car
import time


	while True:
	print(car.get_grayscale_values())
time.sleep(1)





```

is_greyscale_on_edge(): Check if the car is on edge according to GRAYSCALE_EDGE_REFERENCE

	return: True/False


```python
import pico_4wd as car
import time


	while True:
	print(car.is_greyscale_on_edge())
time.sleep(1)





```

get_greyscale_status(): Get Grayscale status according to GRAYSCALE_LINE_REFERENCE

	return: [status, status, status] status = 1/0 as line/not


```python
import pico_4wd as car
import time


	while True:
	print(car.get_greyscale_status())
time.sleep(1)





```

Radar

get_radar_distance_at(angle): Turn the servo of radar at the angle and return distance

	angle: -90~90

	return: distance unit cm


```python
import pico_4wd as car
import time


	while True:
	print(“distance: %scm”%car.get_radar_distance_at(0))
time.sleep(1)





```

get_radar_distance(): Turn the servo of radar by step at every call of this method, and return distance

	return: distance unit cm


```python
import pico_4wd as car
import time


	while True:
	angle, distance = car.get_radar_distance()
print(“angle: %s, distance: %scm”%(angle, distance)
time.sleep(0.5)





```

set_radar_scan_angle(angle): Set radar scan angle, 180 for a full scan, 90 for only scan ahead

	angle: 0~180

	return: None


```python
import pico_4wd as car

car.set_radar_scan_angle(90)
while True:


angle, distance = car.get_radar_distance()
print(“angle: %s, distance: %scm”%(angle, distance)
time.sleep(0.5)




```

get_radar_status(distance): Convert distance to status base on RADAR_REFERENCE

	distance: distance normally get from sonar reads

	return: 0/1 0 in under reference, 1 is over


```python
import pico_4wd as car
import time


	while True:
	distance = car.get_radar_distance_at(0)
print(“Radar status at 90: %s” % car.get_radar_status(distance))
time.sleep(1)





```

radar_scan(): radar scan to get a list of status when scan finished or current angle status if not.

	return: list of status or current status, 0 in under reference, 1 is over


```python
import pico_4wd as car
import time


	while True:
	status = radar_scan
if isinstance(status, int):


print(“Scanning, current status: %s” % status)





	else:
	print(“Scan finished, status: %s” % status)





time.sleep(1)





```

set_motor_power_gradually(*powers): slowly increase power of the motor, to avoid hight reverse voltage from motors. but this will slows the motor react, not suit for high reaction application like avoid obstacle and line tracking

	powers: powers for left front motor, right front motor, left rear motor, right rear motor

	return: None


```python
import pico_4wd as car
import time

# all motors from 100 to -100, then -100 to 100, but gradually
while True:


car.set_motor_power_gradually(100, 100, 100, 100)
time.sleep(1)
car.set_motor_power_gradually(-100, -100, -100, -100)
time.sleep(1)




```

set power
set_motor_power(*powers): Set all motor powers immediatlly, carefully use this method.

	powers: powers for left front motor, right front motor, left rear motor, right rear motor

	return: None


```python
import pico_4wd as car
import time

# all motors from 30 to -30, then -30 to 30, DONOT try from 100 to -100 or -100 to 100.
while True:


car.set_motor_power(30, 30, 30, 30)
time.sleep(1)
car.set_motor_power(-30, -30, -30, -30)
time.sleep(1)




```

stop(): Stop all motors

	return: None


```python
import pico_4wd as car
import time


	def main():
	# all motors from 30 to -30, then -30 to 30, DONOT try from 100 to -100 or -100 to 100.
car.set_motor_power(30, 30, 30, 30)
time.sleep(3)





# Add stop to finally to stop the car when you code finished or after you terminate it
try:


main()





	finally:
	car.stop()





```

move(dir, power=0): Move the Car with simple strings

	dir: “forward”/”backward”/”left”/”right”

	power: 0~100

	return: None


```python
import pico_4wd as car
import time


	def main():
	# all motors from 30 to -30, then -30 to 30, DONOT try from 100 to -100 or -100 to 100.
car.move(“forward”, 50)
time.sleep(1)
car.move(“backward”, 50)
time.sleep(1)
car.move(“left”, 50)
time.sleep(1)
car.move(“right”, 50)
time.sleep(1)





# Add stop to finally to stop the car when you code finished or after you terminate it
try:


main()





	finally:
	car.stop()





```

Atrtribute

	GRAYSCALE_EDGE_REFERENCE: Reference for detecting edged

	GRAYSCALE_LINE_REFERENCE: Reference for detecting Line

	RADAR_REFERENCE: Reference for detecting obstables

	RADAR_MAX_ANGLE: Max angle for radar scanning

	RADAR_MIN_ANGLE: Min angle for radar scanning

	RADAR_STEP_ANGLE: Angle of every step for radar scanning

	LIGHT_REAR: Rear light order (0/1/2)

	LIGHT_BOTTOM_LEFT: Bottom left light order (0/1/2)

	LIGHT_BOTTOM_RIGHT: Bottom right light order (0/1/2)

 # Change Log

[1.2.0] - 2023-1-16

Added
- Add the method of simplifying the data received by websocket and then sending it to the lower computer through the serial port

Modified
- Separate code into multiple files for easier reading

[1.1.0] - 2023-1-11:
- Add version print

[1.0.3] - 2023-9-30:

Added
- Add usage of burning esp8266 with pico

[1.0.2] - 2022-9-9:

Added
- Add LED to indicate connection

[1.0.1] - 2021-12-23:

Modified
- Tide code
- Add timeout for serial read

 # ESP8266 UART to Websocket Server Usage

This is a firmware read convert uart command and create a websocket server. It’s originally for Arduino or Raspberry Pi Pico to connect to SunFounder Controller. Send command and data over UART in boardrate 115200

Libraries
- WebSockets

	https://www.arduinolibraries.info/libraries/web-sockets

	https://github.com/Links2004/arduinoWebSockets

	
	ArduinoJson
	
	https://arduinojson.org/?utm_source=meta&utm_medium=library.properties

Commands

SET+SSID<ssid>: set Wi-Fi SSID

`
SET+SSIDSunFounder
`

SET+PSK<password>: set Wi-Fi Password

`
SET+PSKsunfounder
`

SET+PORT<port>: set Websocket Port

`
SET+PORT8765
`

SET+MODE<mode>: set Wi-Fi Mode, STA = 1, AP = 2

`
SET+MODE1
`

SET+START: set Connect, return IP if connected

`
SET+START
`

SET+SMD<mode>: set send mode, 0:send original text; 1:send simplified text

`
SET+SMD1
`

SET+RESET: reset esp8266
`
SET+RESET
`
Data

WS+<data>: send data over websocket

`
WS+{"value": 25}
`

Example

Here’s an example connecting to Wi-Fi with ssid: SunFounder and password: sunfounder. Then echos what it reads from websocket client. [tx] is what you need to send over UART, and [rx] is what you get from rx. Under [rx], [DEBUG] will only appear in debug mode, and without it, is what you receive for your code.

```
[tx] SET+SSIDMakerStarsHall  // Set ssid to MakerStarsHall
[rx] [DEBUG] RX Receive: SET+SSIDMakerStarsHall
[rx] [DEBUG] Set SSID: SunFounder
[rx] [OK]

[tx] SET+PSKsunfounder   // Set password to sunfounder
[rx] [DEBUG] RX Receive: SET+PSKsunfounder
[rx] [DEBUG] Set password: sunfounder
[rx] [OK]

[tx] SET+MODE1   // Set mode to STA
[rx] [DEBUG] RX Receive: SET+MODE1
[rx] [DEBUG] Set mode: 1
[rx] [OK]

[tx] SET+MODE2   // Set mode to AP
[rx] [DEBUG] RX Receive: SET+MODE1
[rx] [DEBUG] Set mode: 1
[rx] [OK]

[tx] SET+PORT8765   // Set websocket server port to 8765
[rx] [DEBUG] RX Receive: SET+PORT8765
[rx] [DEBUG] Set port: 8765
[rx] [OK]

[tx] SET+START   // Start connecting and start websocket server
[rx] [DEBUG] Connecting  // it will automaticaly try to connect to Wi-Fi as you fill in both ssid and password
[rx] [DEBUG] WiFi connected
[rx] [DEBUG] IP address:
[rx] 192.168.43.145
[rx] [DEBUG] Is server live? 1
[rx] [DEBUG] Websocker on!    // Now Websocket is on!

[rx] [DEBUG] RX Receive: Hello    // Websocket receives a hello.
[tx] WS+Hello    // Send out a Hello back to the Websocket client.
```

```
SET+SSIDbuibuibui
SET+PSKsunfounder
SET+MODE1
SET+PORT8765
SET+START

SET+SSIDaaa
SET+PSKsunfounder
SET+MODE2
SET+PORT8765
SET+START

SET+SSIDMakerStarsHall
SET+PSKsunfounder
SET+MODE1
SET+PORT8765
SET+START
```

Changelog

https://github.com/sunfounder/esp8266-uart-wsserver/blob/main/CHANGELOG.md

 # Burning esp8266 with pico

Related links
Pico UART-USB bridge picoprobe:

https://github.com/raspberrypi/picoprobe
https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html#debugging-using-another-raspberry-pi-pico

	esp8266-uart-wsserver firmware:
	https://github.com/sunfounder/esp8266-uart-wsserver

	Ai-Thinker’s various ESP8266 module specifications summary:
	https://docs.ai-thinker.com/en/%E8%A7%84%E6%A0%BC%E4%B9%A6

Usage
1. Download files
- Download https://github.com/sunfounder/esp8266-uart-wsserver/archive/refs/heads/main.zip
- or use git clone


	```bash
	git clone https://github.com/sunfounder/esp8266-uart-wsserver.git





```


2. Pico to act as a USB-ART converter
- Long press the “BOOTSEL” button on the pico and connect the PC with the USB cable, copy the “picoprobe.uf2” file into the root directory of the pico memory, the pico will automatically install the uf2 file, which will make the GPIO4(TX1), GPIO5(RX1) of the pico become the USB-UART converter.

3. Connect esp8266 and pico
- If you are using Pico-4WD, you can skip this step.
- Wiring according to the following table:

esp8266 | pico |

:-: | :-: |

3v3 | 3v3 |

GND | GND |

TX | RX (IO5)|

RX | TX (IO4)|

EN | 3v3 |

IO | GND |

![pico_pinout](./pinout/pico-pinout.svg#pic_center “pico_pinout”)

4. Reset esp8266 and enter download mode
- IO0 connect to GND, connect RST to GND and then hang after, esp8266 will enter download mode, generally esp8266 will flash quickly for a while.
- For pico-4wd, you need to use a duplex cable to connect GND and IO0, then turn on the power,make the esp8266 enter the download mode, after that you can release IO0.

5. Execute install.bat
- Double click to execute the install.bat file, the program will automatically search the serial port and try to download esp8266-uart-wsserver firmware, if it fails, please reset the esp8266 and re-execute the install.bat.

Links about SunFounder
- https://sunfounder.com
- https://docs.sunfounder.com/en/latest/

Contact us

	website:
	ezblock.cc

	E-mail:
	service@sunfounder.com

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/minus.png

_static/plus.png

_static/file.png

