

SunFounder PiCar-X Kit

Thanks for choosing our PiCar-X.

Note

This document is available in the following languages.

	Deutsch Online-Kurs

	日本語オンライン教材

	English Online-tutorials

Please click on the respective links to access the document in your preferred language.

[image: _images/picar-x_v2.png]
The PiCar-X is an AI-driven self-driving robot car for the Raspberry Pi platform, upon which the Raspberry Pi acts as the control center.
The PiCar-X’s 2-axis camera module, ultrasonic module, and line tracking modules can provide the functions of color/face/traffic-signs detection,
automatic obstacle avoidance, automatic line tracking, etc.

PiCar-X has two programming languages: Blockly and Python. No matter what language you program in, you’ll find detailed steps to teach you everything from configuring the Raspberry Pi to running the relevant example code.

	Play with Python

	This chapter is for those who enjoy programming in Python or want to learn the Python language.

	To get Picar-X working properly, you must install some libraries first.

	The Raspberry Pi configuration and samples code for the PiCar-X are provided in this chapter.

	An APP - SunFounder Controller is also provided to allow you to remotely control the PiCar-X on your mobile device.

	Play with Ezblock

	In this section, you will use a Blockly based APP, Ezblock Studio, which, like Scratch, allows you to drag and drop blocks to make Picar-X move.

	It is required to reinstall the SD card with the operating system we provide with pre-installed Ezblock environment before programming. It is recommended to use a new or unused TF card for this section.

	Ezblock Studio is available for nearly all types of devices, including Macs, PCs, and Androids.

	Ezblock Studio is a good choice if you are 6-12 years old, or don’t have programming skills, or want to test Picar-X quickly.

Content

	About This Kit

	Introduction
	The History of Self-driving Cars

	About PiCar-X

	Deep Learning and Neural Networks

	Assembly Instructions

	Adjust Servo for Assembly

	Play with Python
	Quick Guide on Python
	What Do We Need?

	Installing the OS

	Set up Your Raspberry Pi

	Install All the Modules(Important)

	Enable I2C Interface(Important)

	Servo Adjust(Important)

	Power ON & Charge
	Charge

	Power ON

	18650 Battery

	0. Calibrating the PiCar-X
	Calibrate Motors & Servo

	Calibrate Grayscale Module

	1. Let PiCar-X Move

	2. Keyboard Control

	3. Text to Speech & Sound Effect

	4. Obstacle Avoidance

	5. Line Tracking

	6. Cliff Detection

	7. Computer Vision

	8. Stare at You

	9. Record Video

	10. Bull Fight

	11. Video Car

	12. Treasure Hunt

	13. Controlled by the APP

	Python Video Course
	Video A1: Starting with Raspbrry Pi

	Video A2: Assembly of the PICAR-X

	Video A3: Calibrate the PiCar-X

	Video 1: Motor Move and Steering Control

	Video 2: Controlling the PiCar-X using keyboard

	Video 3: Text to Speech

	Video 4: Obstacle Avoidance with Ultrasonic

	Video 5: Greyscale Line Tracking

	Video 6: Cliff Detection

	Video 7: PiCar-X Computer Vision

	Video 8: PiCar-X Stares at You

	Video 9: Recording Video

	Video 10: Bull Fight with PiCar-X

	Video 11: PiCar-X as Video Car

	Video 12: Treasure Hunt Game

	Play with Ezblock
	Quick Guide on EzBlock

	Install and Configure EzBlock Studio

	Calibrate the Car

	Move

	Remote Control

	Test Ultrasonic Module

	Test Grayscale Module

	Color Detection

	Face Detection

	Sound Effect

	Background Music

	Say Hello

	Music Car

	Cliff Detection

	Minecart

	Minecart Plus

	Bullfight

	Beware of Pedestrians

	Traffic Sign Detection

	Orienteering

	Appendix
	Filezilla Software

	PuTTY

	Install OpenSSH via Powershell

	FAQ
	Q1: After installing Ezblock OS, the servo can’t turn to 0°?

	Q2: When using VNC, I am prompted that the desktop cannot be displayed at the moment?

	Q3: Why does the servo sometimes return to the middle position for no reason?

	Q4: About the Robot HAT Detailed Tutorial?

	Thank You

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes, under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.

Introduction

The History of Self-driving Cars

Experiments have been conducted on self-driving cars since at least the 1920’s.
Promising trials took place in the 1950’s, and work has proceeded forward ever since.
The first self-sufficient and truly autonomous cars appeared in the 1980’s,
with Carnegie Mellon University’s Navlab and ALV projects in 1984,
and Mercedes-Benz and Bundeswehr University Munich’s Eureka Prometheus Project in 1987. Since the late 1980’s,
numerous research organizations and major automakers have developed working autonomous vehicles,
including: Mercedes-Benz, General Motors, Continental Automotive Systems, Autoliv Inc., Bosch, Nissan, Toyota,
Audi, Volvo, Vislab from University of Parma, Oxford University, and Google.
In July 2013, Vislab demonstrated BRAiVE, a vehicle that moved autonomously on a mixed traffic route open to the public.
As of 2019, twenty-nine U.S. states have already passed laws permitting autonomous cars on public roadways.

Some UNECE members and EU members, including the UK,
have enacted rules and regulations related to automated and fully automated cars.
In Europe, cities in Belgium, France, Italy, and the UK have plans in place to operate transport systems for driverless cars,
and Germany, the Netherlands, and Spain have already allowed the testing of robotic cars in public traffic.
In 2020, the UK, the EU, and Japan are already on track to regulate automated cars.

	Reference: History of self-driving cars - Wikipedia [https://en.wikipedia.org/wiki/History_of_self-driving_cars]

Today, self-driving cars are the closest technological revolution at hand. Some experts predict that by 2025, Level 4 cars are likely to enter the market. The Level 4 cars will allow drivers to divert their attention to something else entirely, eliminating the need to pay attention to traffic conditions as long as the system is functioning properly.

Level 4 reference:

	SAE Levels of Driving Automation™ [https://www.sae.org/blog/sae-j3016-update]

	ABI Research Forecasts 8 Million Vehicles to Ship with SAE Level 3, 4 and 5 Autonomous Technology in 2025 [https://www.abiresearch.com/press/abi-research-forecasts-8-million-vehicles-ship-sae-level-3-4-and-5-autonomous-technology-2025/]

[image: _images/self_driving_car.jpeg]
Recent rapid advances in software (Artificial Intelligence, Machine Learning), hardware (GPUs, FPGAs, accelerometers, etc.), and cloud computing are driving this technological revolution forward.

	In October 2010, a driverless truck designed by the Italian technology company Vislab took three months to travel from Italy to China [http://edition.cnn.com/2010/TECH/innovation/10/27/driverless.car/], with a total distance of 8, 077 miles.

	In April 2015, a car designed by Delphi Automotive traveled from San Francisco to New York [https://money.cnn.com/2015/04/03/autos/delphi-driverless-car-cross-country-trip/] , traversing 3,400 miles, completing 99 percent of that distance under computer control.

	In December 2018, Alphabet’s Waymo launched a level 4 self-driving taxi service in Arizona [https://www.reuters.com/article/us-waymo-selfdriving-focus/waymo-unveils-self-driving-taxi-service-in-arizona-for-paying-customers-idUSKBN1O41M2] , where they had already been testing driverless cars since 2008. With no one in the driver’s seat, the vehicles operated for more than a year and traveled over 10 million miles.

	In October 2020, Baidu fully opened its Apollo Robotaxi self-driving cab service [http://autonews.gasgoo.com/icv/70017615.html] in Beijing. The driving routes cover local residential, commercial, leisure, and industrial parks areas, and offer a fully autonomous driving system.

However, despite the massive amounts of data collected every day, including training data from real driving records and simulated scenarios, the complexity of AI models for self-driving cars has not been fully met.

According to RAND’s report [https://www.rand.org/pubs/research_reports/RR1478.html] , reaching the appropriate level of autonomous learning requires training data from hundreds of millions, or even hundreds of billions of miles to establish a level of reliability.

So, while the future of self-driving cars is promising and exciting, there are still many more years of development to go before the technology has matured enough to become fully accessible to the self-driving car market.

The proven way to allow an emerging technology to quickly mature is to make it easily accessible to everyone by minimizing the market-entry requirements.
This is SunFounders motivation for launching PiCar-X.

SunFounders goal is to help beginners, novices, and those who simply just want to learn about autonomous driving, to understand the development process, the technology, and the latest innovations in self-driving vehicles.

About PiCar-X

The PiCar-X is an AI-controlled self-driving robot car for the Raspberry Pi platform, upon which the Raspberry Pi acts as the control center. The PiCar-X’s 2-axis camera module, ultrasonic module, and line tracking modules can provide the functions of color/face/traffic signs detection, automatic obstacle avoidance, automatic line tracking, etc.

With the SunFounder-designed Robot HAT board, the PiCar-X integrates left/right driving motors, servo motors for steering and the camera’s pan/tilt functions, and pre-sets the Robot HAT’s ADC, PWM, and Digital I2C pins to allow for extensions to the standard functionality of the Raspberry Pi. Both a speaker and a bluetooth chip have been engineered into the Robot HAT for remote control of Text-to-Speech, sound effects, or even background music functionality.

All of the PiCar-X functions, including GPIO control, computer vision, and deep learning, are implemented through the open sourced Python programming language, OpenCV’s Computer Vision Library software, and Google’s TensorFlow for deep learning frameworks. Other software has been included to optimize the PiCar-X capabilities, allowing the user a near-limitless learning environment.

Deep Learning and Neural Networks

To learn more about deep learning and Neural Networks, SunFounder recommends the following resources:

Machine Learning - Andrew Ng [https://www.coursera.org/learn/machine-learning] : This course provides a broad introduction to machine learning, datamining, and statistical pattern recognition.

Neural Networks and Deep Learning [http://neuralnetworksanddeeplearning.com/] : This E-book covers both Neural Networks, a biologically-inspired programming paradigm that enables a computer to learn from observational data, and Deep learning, a powerful set of techniques for machine learning in neural networks.

Rethinking the Inception Architecture for Computer Vision [https://arxiv.org/abs/1512.00567] : This high-level white-paper explores the methods users can scale up networks by utilizing added computations as efficiently as possible through factorized convolutions and aggressive regularization.

Assembly Instructions

Before assembling the PiCar-X, please first verify that all parts and components have been included. If there are any missing or damaged components, please contact SunFounder immediately at service@sunfounder.com to resolve the issue as soon as possible.

Please follow the steps on the following PDF for assembly instructions:

[PDF]Component List and Assembly of PiCar-X [https://github.com/sunfounder/sf-pdf/raw/master/assembly_file/z0104V31-a0001013-picar-x.pdf].

Mount Raspberry Pi Zero W on PiCar-X

If your mainboard is a Raspberry Pi Zero W, here are the steps to install it on the PiCar-X.

 Adjust Servo for Assembly

Adjust Servo for Assembly

Before assembling the servo,
the angle needs to be set to zero.
This is because the servo motor has a limited range of motion,
setting the angle to zero degrees ensures that the servo is in its
initial position and does not exceed its range of motion when the servo is powered on.
If the servo is not set to zero degrees prior to assembly,
it may attempt to exceed its range of motion when powered,
potentially damaging the servo or the mechanical system it is connected to.
Therefore, setting the angle to zero is an important step to ensure the
safe and normal operation of the servo motor.

[image: _images/IMG_9897.png]
For Python User

Please refer to Quick Guide on Python to complete the
installation of the Raspberry Pi OS and adjust the angle of the servos.

For Ezblock User

After you have installed the ezblock system,
the P11 pin can be used to adjust the servo.
Please refer to Quick Guide on EzBlock for details.

 Play with Python

Play with Python

For novices and beginners wishing to program in Python, some basic Python programming skills and knowledge of the Raspberry Pi OS are needed.
To start configuring the Raspberry Pi, please reference Quick Guide on Python:

	Quick Guide on Python
	What Do We Need?

	Installing the OS

	Set up Your Raspberry Pi

	Install All the Modules(Important)

	Enable I2C Interface(Important)

	Servo Adjust(Important)

	Power ON & Charge
	Charge

	Power ON

	18650 Battery

After the PiCar-X assembly is completed, try running the projects below:

	0. Calibrating the PiCar-X
	Calibrate Motors & Servo

	Calibrate Grayscale Module

	1. Let PiCar-X Move

	2. Keyboard Control

	3. Text to Speech & Sound Effect

	4. Obstacle Avoidance

	5. Line Tracking

	6. Cliff Detection

	7. Computer Vision

	8. Stare at You

	9. Record Video

	10. Bull Fight

	11. Video Car

	12. Treasure Hunt

	13. Controlled by the APP

 Quick Guide on Python

Quick Guide on Python

This section is to teach you how to install Raspberry Pi OS, configure wifi to Raspberry Pi, remote access to Raspberry Pi to run the corresponding code.

If you are familiar with Raspberry Pi and can open the command line successfully, then you can skip the first 3 parts and then complete the last part.

	What Do We Need?

	Installing the OS

	Set up Your Raspberry Pi

	Install All the Modules(Important)

	Enable I2C Interface(Important)

	Servo Adjust(Important)

Video

In our assembly video from 6:25 to 8:48, there is also a detailed tutorial for this chapter. You can follow the video instructions directly.

 What Do We Need?

What Do We Need?

Required Components

Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs
into a computer monitor or TV, and uses a standard keyboard and mouse.
It is a capable little device that enables people of all ages to explore
computing, and to learn how to program in languages like Scratch and
Python.

[image: ../../_images/image10.jpeg]
Power Adapter

To connect to a power socket, the Raspberry Pi has a micro USB port (the
same found on many mobile phones). You will need a power supply which
provides at least 2.5 amps.

Micro SD Card

Your Raspberry Pi needs an Micro SD card to store all its files and the
Raspberry Pi OS. You will need a micro SD card with a capacity of at
least 8 GB

Optional Components

Screen

To view the desktop environment of Raspberry Pi, you need to use the
screen that can be a TV screen or a computer monitor. If the screen has
built-in speakers, the Pi plays sounds via them.

Mouse & Keyboard

When you use a screen , a USB keyboard and a USB mouse are also needed.

HDMI

The Raspberry Pi has a HDMI output port that is compatible with the HDMI
ports of most modern TV and computer monitors. If your screen has only
DVI or VGA ports, you will need to use the appropriate conversion line.

Case

You can put the Raspberry Pi in a case; by this means, you can protect
your device.

Sound or Earphone

The Raspberry Pi is equipped with an audio port about 3.5 mm that can be
used when your screen has no built-in speakers or when there is no
screen operation.

 Installing the OS

Installing the OS

Required Components

	Raspberry Pi 4B/Zero 2 w/3B 3B+/2B/Zero W

	1 x Personal Computer

	1 x Micro SD card

Steps

	Go to the Raspberry Pi software download page: Raspberry Pi Imager [https://www.raspberrypi.org/software/]. Select the Imager version for your operating system. After downloading, open the file to start the installation.

[image: ../../_images/os_install_imager.png]

	Upon launching the installer, your OS might display a security warning. For instance, Windows may show a caution message. If this occurs, select More info and then Run anyway. Follow the on-screen instructions to install the Raspberry Pi Imager.

[image: ../../_images/os_info.png]

	Insert your SD card into the computer or laptop SD card slot.

	Open the Raspberry Pi Imager application either by clicking its icon or executing rpi-imager in your terminal.

[image: ../../_images/os_open_imager.png]

	Click CHOOSE DEVICE and select your specific Raspberry Pi model from the list (Note: Raspberry Pi 5 is not applicable).

[image: ../../_images/os_choose_device.png]

	Select CHOOSE OS and then choose Raspberry Pi OS (Legacy).

Warning

	Please do not install the Bookworm version as the speaker will not work.

	You need to install the Raspberry Pi OS (Legacy) version - Debian Bullseye.

[image: ../../_images/os_choose_os.png]

	Click Choose Storage and pick the correct storage device for the installation.

Note

Be sure to select the correct device, especially if multiple storage devices are connected. Disconnect others if you’re unsure.

[image: ../../_images/os_choose_sd.png]

	Press NEXT and select EDIT SETTINGS to customize your OS settings.

[image: ../../_images/os_enter_setting.png]

	Set your Raspberry Pi’s hostname.

Note

The hostname is what your Raspberry Pi uses to identify itself on the network. You can connect to your Pi using <hostname>.local or <hostname>.lan.

[image: ../../_images/os_set_hostname.png]

	Create a Username and Password for the Raspberry Pi’s administrator account.

Note

Setting a unique username and password is crucial for security, as the Raspberry Pi does not have a default password.

[image: ../../_images/os_set_username.png]

	Set up wireless LAN by inputting your network’s SSID and Password.

Note

Wireless LAN country should be set the two-letter ISO/IEC alpha2 code [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements] for the country in which you are using your Raspberry Pi.

[image: ../../_images/os_set_wifi.png]

	Click SERVICES and enable SSH for password-based remote access. Remember to click Save.

[image: ../../_images/os_enable_ssh.png]

	Confirm your choices by clicking Yes.

[image: ../../_images/os_click_yes.png]

	If your SD card has existing files, back them up to avoid data loss. Click Yes to proceed if no backup is necessary.

[image: ../../_images/os_continue.png]

	Wait as the OS is written to the SD card. Once completed, a confirmation window will appear.

[image: ../../_images/os_finish.png]

 Set up Your Raspberry Pi

Set up Your Raspberry Pi

Power Supply for Raspberry Pi (Important)

	Insert the SD card set up with Raspberry Pi OS into the microSD card slot located on the underside of the Raspberry Pi.

[image: ../../_images/insert_sd_card1.png]

	Following the assembly instructions, insert the battery cable and turn on the power switch. Next, insert the USB-C cable to power up the battery. Wait for 1-2 minutes, and you will hear a sound indicating that the Raspberry Pi has successfully booted.

[image: ../../_images/Z_BTR1.JPG]

Note

It is recommended to leave the USB-C cable plugged in, as the subsequent software setup process can take a considerable amount of time.

If You Have a Screen

Note

The Raspberry Pi ZERO installed on the Robot is not easy to connect to the screen, please use the method without a screen to set it up.

If you have a screen, it will be easy for you to operate on the
Raspberry Pi.

Required Components

	Raspberry Pi 4B/3B 3B+/2B

	1 * Power Adapter

	1 * Micro SD card

	1 * Screen Power Adapter

	1 * HDMI cable

	1 * Screen

	1 * Mouse

	1 * Keyboard

	Plug in the Mouse and Keyboard.

	Connect the screen to Raspberry Pi’s HDMI port and make sure your screen is plugged into a wall socket and switched on.

Note

If you use a Raspberry Pi 4, you need to connect the screen to the HDMI0 (nearest the power in port).

	Use the power adapter to power the Raspberry Pi. After a few seconds, the Raspberry Pi OS desktop will be displayed.

[image: ../../_images/image20.png]

If You Have No Screen

If you don’t have a monitor, you can remotely log into your Raspberry Pi.

Required Components

	
	Raspberry Pi 4B/Zero 2 w/3B 3B+/2B/Zero W

	1 * Power Adapter

	1 * Micro SD card

You can apply the SSH command to open the Raspberry Pi’s Bash shell. Bash is the standard default shell for Linux. The shell itself is a command (instruction) when the user uses Unix/Linux. Most of what you need to do can be done through the shell.

If you’re not satisfied with using the command window to access your Raspberry Pi, you can also use the remote desktop feature to easily manage files on your Raspberry Pi using a GUI.

See below for detailed tutorials for each system.

	Mac OS X user
	Have Temporarily Monitor (or TV)?

	Don’t Have Temporarily Monitor (or TV)?

	Windows Users
	Login Raspberry Pi Remotely

	Remote Desktop

	Linux /Unix Users

 Mac OS X user

Mac OS X user

For Mac users, accessing the Raspberry Pi desktop directly via VNC is more convenient than from the command line. You can access it via Finder by entering the set account password after enabling VNC on the Raspberry Pi side.

Note that this method does not encrypt communication between the Mac and Raspberry Pi.
The communication will take place within your home or business network, so even if it’s unprotected, it won’t be an issue.
However, if you are concerned about it, you can install a VNC application such as VNC® Viewer [https://www.realvnc.com/en/connect/download/viewer/].

Alternatively it would be handy if you could use a temporary monitor (TV), mouse and keyboard to open the Raspberry Pi desktop directly to set up VNC.
If not, it doesn’t matter, you can also use the SSH command to open the Raspberry Pi’s Bash shell and then using the command to set up the VNC.

	Have Temporarily Monitor (or TV)?

	Don’t Have Temporarily Monitor (or TV)?

Have Temporarily Monitor (or TV)?

	Connect a monitor (or TV), mouse and keyboard to the Raspberry Pi and power it on. Select the menu according to the numbers in the figure.

[image: ../../_images/mac_vnc1.png]

	The following screen will be displayed. Set VNC to Enabled on the Interfaces tab, and click OK.

[image: ../../_images/mac_vnc2.png]

	A VNC icon appears on the upper right of the screen and the VNC server starts.

[image: ../../_images/mac_vnc3.png]

	Open the VNC server window by clicking on the VNC icon, then click on the Menu button in the top right corner and select Options.

[image: ../../_images/mac_vnc4.png]

	You will be presented with the following screen where you can change the options.

[image: ../../_images/mac_vnc5.png]
Set Encryption to Prefer off and Authentication to VNC password.

	When you click the OK button, the password input screen is displayed. You can use the same password as the Raspberry pi password or a different password, so enter it and click OK.

[image: ../../_images/mac_vnc16.png]
You are now ready to connect from your Mac. It’s okay to disconnect the monitor.

From here, it will be the operation on the Mac side.

	Now, select Connect to Server from the Finder’s menu, which you can open by right-clicking.

[image: ../../_images/mac_vnc10.png]

	Type in vnc://<username>@<hostname>.local (or vnc://<username>@<IP address>). After entering, click Connect.

[image: ../../_images/mac_vnc11.png]

	You will be asked for a password, so please enter it.

[image: ../../_images/mac_vnc12.png]

	The desktop of the Raspberry pi will be displayed, and you will be able to operate it from the Mac as it is.

[image: ../../_images/mac_vnc13.png]

Don’t Have Temporarily Monitor (or TV)?

	You can apply the SSH command to open the Raspberry Pi’s Bash shell.

	Bash is the standard default shell for Linux.

	The shell itself is a command (instruction) when the user uses Unix/Linux.

	Most of what you need to do can be done through the shell.

	After setting up the Raspberry pi side, you can access the desktop of the Raspberry Pi using the Finder from the Mac.

	Type ssh <username>@<hostname>.local to connect to the Raspberry Pi.

ssh pi@raspberrypi.local

[image: ../../_images/mac_vnc14.png]

	The following message will be displayed only when you log in for the first time, so enter yes.

The authenticity of host 'raspberrypi.local (2400:2410:2101:5800:635b:f0b6:2662:8cba)' can't be established.
ED25519 key fingerprint is SHA256:oo7x3ZSgAo032wD1tE8eW0fFM/kmewIvRwkBys6XRwg.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])?

	Enter the password for the Raspberry pi. The password you enter will not be displayed, so be careful not to make a mistake.

pi@raspberrypi.local's password:
Linux raspberrypi 5.15.61-v8+ #1579 SMP PREEMPT Fri Aug 26 11:16:44 BST 2022 aarch64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Sep 22 12:18:22 2022
pi@raspberrypi:~ $

	Set up your Raspberry Pi so that you can log in via VNC from your Mac once you have successfully logged into it. The first step is to update your operating system by running the following commands.

sudo apt update
sudo apt upgrade

Do you want to continue? [Y/n], Enter Y when prompted.

It may take some time for the update to finish. (It depends on the amount of updates at that time.)

	Enter the following command to enable the VNC Server.

sudo raspi-config

	The following screen will be displayed. Select Interface Options with the arrow keys on the keyboard and press the Enter key.

[image: ../../_images/image282.png]

	Then select VNC.

[image: ../../_images/image288.png]

	Use the arrow keys on the keyboard to select <Yes> -> <OK> -> <Finish> to complete the setup.

[image: ../../_images/mac_vnc8.png]

	Now that the VNC server has started, let’s change the settings for connecting from a Mac.

To specify parameters for all programs for all user accounts on the computer, create /etc/vnc/config.d/common.custom.

sudo nano /etc/vnc/config.d/common.custom

After entering Authentication=VncAuthenter, press Ctrl+X -> Y -> Enter to save and exit.

[image: ../../_images/mac_vnc15.png]

	In addition, set a password for logging in via VNC from a Mac. You can use the same password as the Raspberry pi password or a different password.

sudo vncpasswd -service

	Once the setup is complete, restart the Raspberry Pi to apply the changes.

sudo sudo reboot

	Now, select Connect to Server from the Finder’s menu, which you can open by right-clicking.

[image: ../../_images/mac_vnc10.png]

	Type in vnc://<username>@<hostname>.local (or vnc://<username>@<IP address>). After entering, click Connect.

[image: ../../_images/mac_vnc11.png]

	You will be asked for a password, so please enter it.

[image: ../../_images/mac_vnc12.png]

	The desktop of the Raspberry pi will be displayed, and you will be able to operate it from the Mac as it is.

[image: ../../_images/mac_vnc13.png]

 Windows Users

Windows Users

Login Raspberry Pi Remotely

If you are using win10, you can use follow way to login Raspberry Pi remotely.

	Type powershell in the search box of your Windows desktop, right click on the Windows PowerShell, and select Run as administrator from the menu that appears.

[image: ../../_images/powershell_ssh1.png]

	Then, check the IP address of your Raspberry Pi by typing in ping -4 <hostname>.local.

ping -4 raspberrypi.local

[image: ../../_images/sp221221_145225.png]
As shown above, you can see the Raspberry Pi’s IP address after it has been connected to the network.

	If terminal prompts Ping request could not find host pi.local. Please check the name and try again.. Please follow the prompts to make sure the hostname you fill in is correct.

	Still can’t get the IP? Check your network or WiFi configuration on the Raspberry Pi.

	At this point you will be able to log in to your Raspberry Pi using the ssh <username>@<hostname>.local (or ssh <username>@<IP address>).

ssh pi@raspberrypi.local

Warning

If a prompt appears The term 'ssh' is not recognized as the name of a cmdlet....

It means your system is too old and does not have ssh tools pre-installed, you need to manually Install OpenSSH via Powershell.

Or use a third party tool like PuTTY.

	The following message will be displayed only when you log in for the first time, so enter yes.

The authenticity of host 'raspberrypi.local (2400:2410:2101:5800:635b:f0b6:2662:8cba)' can't be established.
ED25519 key fingerprint is SHA256:oo7x3ZSgAo032wD1tE8eW0fFM/kmewIvRwkBys6XRwg.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])?

	Input the password you set before. (Mine is raspberry.)

Note

When you input the password, the characters do not display on
window accordingly, which is normal. What you need is to input the
correct password.

	We now get the Raspberry Pi connected and are ready to go to the next step.

[image: ../../_images/sp221221_140628.png]

Remote Desktop

If you’re not satisfied with using the command window to access your Raspberry Pi, you can also use the remote desktop feature to easily manage files on your Raspberry Pi using a GUI.

Here we use VNC® Viewer [https://www.realvnc.com/en/connect/download/viewer/].

Enable VNC service

The VNC service has been installed in the system. By default, VNC is
disabled. You need to enable it in config.

	Input the following command:

sudo raspi-config

[image: ../../_images/image287.png]

	Choose 3 Interfacing Options by press the down arrow key on your keyboard, then press the Enter key.

[image: ../../_images/image282.png]

	Then VNC.

[image: ../../_images/image288.png]

	Use the arrow keys on the keyboard to select <Yes> -> <OK> -> <Finish> to complete the setup.

[image: ../../_images/mac_vnc8.png]

Login to VNC

	You need to download and install the VNC Viewer [https://www.realvnc.com/en/connect/download/viewer/] on personal computer.

	Open it once the installation is complete. Then, enter the host name or IP address and press Enter.

[image: ../../_images/vnc_viewer1.png]

	After entering your Raspberry Pi name and password, click OK.

[image: ../../_images/vnc_viewer2.png]

	Now you can see the desktop of the Raspberry Pi.

[image: ../../_images/image294.png]

 Linux /Unix Users

Linux /Unix Users

#. Go to Applications->Utilities, find the Terminal, and open
it.

[image: ../../_images/image21.png]

	Check if your Raspberry Pi is on the same network by type in ping <hostname>.local.

ping raspberrypi.local

[image: ../../_images/mac-ping.png]
As shown above, you can see the Raspberry Pi’s IP address after it has been connected to the network.

	If terminal prompts Ping request could not find host pi.local. Please check the name and try again.. Please follow the prompts to make sure the hostname you fill in is correct.

	Still can’t get the IP? Check your network or WiFi configuration on the Raspberry Pi.

	Type in ssh <username>@<hostname>.local (or ssh <username>@<IP address>).

ssh pi@raspberrypi.local

Note

If a prompt appears The term 'ssh' is not recognized as the name of a cmdlet....

It means your system is too old and does not have ssh tools pre-installed, you need to manually Install OpenSSH via Powershell.

Or use a third party tool like PuTTY.

	The following message will be displayed only when you log in for the first time, so enter yes.

The authenticity of host 'raspberrypi.local (2400:2410:2101:5800:635b:f0b6:2662:8cba)' can't be established.
ED25519 key fingerprint is SHA256:oo7x3ZSgAo032wD1tE8eW0fFM/kmewIvRwkBys6XRwg.
This key is not known by any other names
Are you sure you want to continue connecting (yes/no/[fingerprint])?

	Input the password you set before. (Mine is raspberry.)

Note

When you input the password, the characters do not display on
window accordingly, which is normal. What you need is to input the
correct password.

	We now get the Raspberry Pi connected and are ready to go to the nextstep.

[image: ../../_images/mac-ssh-terminal.png]

 Install All the Modules(Important)

Install All the Modules(Important)

Make sure you are connected to the Internet and update your system:

sudo apt update
sudo apt upgrade

Note

Python3 related packages must be installed if you are installing the Lite version OS.

sudo apt install git python3-pip python3-setuptools python3-smbus

Install robot-hat.

cd ~/
git clone -b v2.0 https://github.com/sunfounder/robot-hat.git
cd robot-hat
sudo python3 setup.py install

Then download and install the vilib module.

cd ~/
git clone -b picamera2 https://github.com/sunfounder/vilib.git
cd vilib
sudo python3 install.py

Download and install the picar-x module.

cd ~/
git clone -b v2.0 https://github.com/sunfounder/picar-x.git
cd picar-x
sudo python3 setup.py install

This step will take a little while, so please be patient.

Finally, you need to run the script i2samp.sh to install the components required by the i2s amplifier, otherwise the picar-x will have no sound.

cd ~/picar-x
sudo bash i2samp.sh

[image: ../../_images/i2s.png]
Type y and press enter to continue running the script.

[image: ../../_images/i2s2.png]
Type y and press enter to run /dev/zero in the background.

[image: ../../_images/i2s3.png]
Type y and press enter to restart the Picar-X.

Note

If there is no sound after restarting, you may need to run the i2samp.sh script several times.

 Enable I2C Interface(Important)

Enable I2C Interface(Important)

Here we are using the Raspberry Pi’s I2C interfaces, but by default they are disabled, so we need to enable them first.

	Input the following command:

sudo raspi-config

	Choose Interfacing Options by press the down arrow key on your keyboard, then press the Enter key.

[image: ../../_images/image282.png]

	Then I2C.

[image: ../../_images/image283.png]

	Use the arrow keys on the keyboard to select <Yes> -> <OK> to complete the setup of the I2C.

[image: ../../_images/image284.png]

	After you select <Finish>, a pop-up will remind you that you need to reboot for the settings to take effect, select <Yes>.

[image: ../../_images/camera_enable2.png]

 Servo Adjust(Important)

Servo Adjust(Important)

The angle range of the servo is -90~90, but the angle set at the factory is random, maybe 0°, maybe 45°; if we assemble it with such an angle directly, it will lead to a chaotic state after the robot runs the code, or worse, it will cause the servo to block and burn out.

So here we need to set all the servo angles to 0° and then install them, so that the servo angle is in the middle, no matter which direction to turn.

	To ensure that the servo has been properly set to 0°, first insert the servo arm into the servo shaft and then gently rotate the rocker arm to a different angle. This servo arm is just to allow you to clearly see that the servo is rotating.

[image: ../../_images/servo_arm1.png]

	Now, run servo_zeroing.py in the example/ folder.

cd ~/picar-x/example
sudo python3 servo_zeroing.py

	Next, plug the servo cable into the P11 port as follows, at the same time you will see the servo arm rotate to a position(This is the 0° position, which is a random location and may not be vertical or parallel.).

[image: ../../_images/Z_P111.JPG]

	Now, remove the servo arm, ensuring the servo wire remains connected, and do not turn off the power. Then continue the assembly following the paper instructions.

Note

	Do not unplug this servo cable before fixing it with the servo screw, you can unplug it after fixing it.

	Do not rotate the servo while it is powered on to avoid damage; if the servo shaft is not inserted at the right angle, pull the servo out and reinsert it.

	Before assembling each servo, you need to plug the servo cable into P11 and turn on the power to set its angle to 0°.

 Power ON & Charge

Power ON & Charge

Charge

Insert the battery cable. Next, insert the USB-C cable to charge the battery.
You will need to provide your own charger; we recommend a 5V 3A charger, or your commonly used smartphone charger will suffice.

[image: ../_images/BTR_IMG_1096.png]

Note

Connect an external Type-C power source to the Type-C port on the robot hat; it will immediately start charging the battery, and a red indicator light will illuminate.When the battery is fully charged, the red light will automatically turn off.

Power ON

Turn on the power switch. The Power indicator light and the battery level indicator light will illuminate.

[image: ../_images/BTR_IMG_1097.png]
Wait for a few seconds, and you will hear a slight beep, indicating that the Raspberry Pi has successfully booted.

Note

If both battery level indicator lights are off, please charge the battery.
When you need extended programming or debugging sessions, you can keep the Raspberry Pi operational by inserting the USB-C cable to charge the battery simultaneously.

18650 Battery

[image: ../_images/3pin_battery.jpg]

	VCC: Battery positive terminal, here there are two sets of VCC and GND is to increase the current and reduce the resistance.

	Middle: To balance the voltage between the two cells and thus protect the battery.

	GND: Negative battery terminal.

This is a custom battery pack made by SunFounder consisting of two 18650 batteries with a capacity of 2000mAh. The connector is XH2.54 3P, which can be charged directly after being inserted into the shield.

Features

	Battery charge: 5V/2A

	Battery output: 5V/5A

	Battery capacity: 3.7V 2000mAh x 2

	Battery life: 90min

	Battery charge time: 130min

	Connector:XH2.54 3P

 0. Calibrating the PiCar-X

0. Calibrating the PiCar-X

Calibrate Motors & Servo

Some servo angles may be slightly tilted due to possible deviations during PiCar-X
installation or limitations of the servos themselves, so you can calibrate them.

Of course, you can skip this chapter if you think the assembly is perfect and doesn’t require calibration.

	Run the calibration.py.

cd ~/picar-x/example/calibration
sudo python3 calibration.py

	After running the code, you will see the following interface displayed in the terminal.

[image: ../_images/calibrate11.png]

	The R key is used to test if the 3 servos are working properly. After selecting a servo with the 1, 2 or 3 keys, then press the R key to test that servo.

	Press the number key 1 to select the front wheel servo, and then press the W/S key to let the front wheel looks as forward as possible without skewing left and right.

[image: ../_images/calibrate21.png]

	Press the number key 2 to select the Pan servo, then press the W/S key to make the pan/tilt platform look straight ahead and not tilt left or right.

[image: ../_images/calibrate31.png]

	Press the number key 3 to select the tilt servo, then press the W/S key to make the pan/tilt platform look straight ahead and not tilt up and down.

[image: ../_images/calibrate41.png]

	Since the wiring of the motors may be reversed during installation, you can press E to test whether the car can move forward normally. If not, use the number keys 4 and 5 to select the left and right motors, then press the Q key to calibrate the rotation direction.

[image: ../_images/calibrate6.png]

	When the calibration is completed, press the Spacebar to save the calibration parameters. There will be a prompt to enter y to confirm, and then press Ctrl+C to exit the program to complete the calibration.

[image: ../_images/calibrate51.png]

Calibrate Grayscale Module

Due to varying environmental conditions and lighting situations,
the preset parameters for the greyscale module might not be optimal.
You can fine-tune these settings through this program to achieve better results.

	Lay down a strip of black electrical tape, about 15cm long, on a light-colored floor. Center your PiCar-X so that it straddles the tape. In this setup, the middle sensor of the greyscale module should be directly above the tape, while the two flanking sensors should hover over the lighter surface.

	Run the grayscale_calibration.py.

cd ~/picar-x/example/calibration
sudo python3 grayscale_calibration.py

	After running the code, you will see the following interface displayed in the terminal.

[image: ../_images/calibrate_g1.png]

	Press the “Q” key to initiate the greyscale calibration. You’ll then observe the PiCar-X make minor movements to both the left and the right. During this process, each of the three sensors should sweep across the electrical tape at least once.

	Additionally, you will notice three pairs of significantly different values appearing in the “threshold value” section, while the “line reference” will display two intermediate values, each representing the average of one of these pairs.

[image: ../_images/calibrate_g2.png]

	Next, suspend the PiCar-X in mid-air (or position it over a cliff edge) and press the “E” key. You’ll observe that the “cliff reference” values are also updated accordingly.

[image: ../_images/calibrate_g3.png]

	Once you’ve verified that all the values are accurate, press the “space” key to save the data. You can then exit the program by pressing Ctrl+C.

 1. Let PiCar-X Move

1. Let PiCar-X Move

This is the first project, let’s test the basic movement of Picar-X.

Run the Code

cd ~/picar-x/example
sudo python3 1.move.py

After running the code, PiCar-X will move forward, turn in an S-shape, stop and shake its head.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like picar-x/example. After modifying the code, you can run it directly to see the effect.

from picarx import Picarx
import time

if __name__ == "__main__":
 try:
 px = Picarx()
 px.forward(30)
 time.sleep(0.5)
 for angle in range(0,35):
 px.set_dir_servo_angle(angle)
 time.sleep(0.01)
 for angle in range(35,-35,-1):
 px.set_dir_servo_angle(angle)
 time.sleep(0.01)
 for angle in range(-35,0):
 px.set_dir_servo_angle(angle)
 time.sleep(0.01)
 px.forward(0)
 time.sleep(1)

 for angle in range(0,35):
 px.set_camera_servo1_angle(angle)
 time.sleep(0.01)
 for angle in range(35,-35,-1):
 px.set_camera_servo1_angle(angle)
 time.sleep(0.01)
 for angle in range(-35,0):
 px.set_camera_servo1_angle(angle)
 time.sleep(0.01)
 for angle in range(0,35):
 px.set_camera_servo2_angle(angle)
 time.sleep(0.01)
 for angle in range(35,-35,-1):
 px.set_camera_servo2_angle(angle)
 time.sleep(0.01)
 for angle in range(-35,0):
 px.set_camera_servo2_angle(angle)
 time.sleep(0.01)

 finally:
 px.forward(0)

How it works?

The basic functionality of PiCar-X is in the picarx module,
Can be used to control steering gear and wheels,
and will make the PiCar-X move forward, turn in an S-shape, or shake its head.

Now, the libraries to support the basic functionality of PiCar-X are imported.
These lines will appear in all the examples that involve PiCar-X movement.

from picarx import Picarx
import time

The following function with the for loop is then used to make PiCar-X
move forward, change directions, and move the camera’s pan/tilt.

px.forward(speed)
px.set_dir_servo_angle(angle)
px.set_camera_servo1_angle(angle)
px.set_camera_servo2_angle(angle)

	forward(): Orders the PiCar-X go forward at a given speed.

	set_dir_servo_angle: Turns the Steering servo to a specific angle.

	set_cam_pan_angle: Turns the Pan servo to a specific angle.

	set_cam_tilt_angle: Turns the Tilt servo to a specific angle.

[image: ../_images/pan_tilt_servo.png]

 2. Keyboard Control

2. Keyboard Control

In this project, we will learn how to use the keyboard to remotely control the PiCar-X.
You can control the PiCar-X to move forward, backward, left, and right.

Run the Code

cd ~/picar-x/example
sudo python3 2.keyboard_control.py

Press keys on keyboard to control PiCar-X!

	w: Forward

	a: Turn left

	s: Backward

	d: Turn right

	i: Head up

	k: Head down

	j: Turn head left

	l: Turn head right

	ctrl + c: Press twice to exit the program

Code

from picarx import Picarx
from time import sleep
import readchar

manual = '''
Press keys on keyboard to control PiCar-X!
 w: Forward
 a: Turn left
 s: Backward
 d: Turn right
 i: Head up
 k: Head down
 j: Turn head left
 l: Turn head right
 ctrl+c: Quit
'''

def show_info():
 print("\033[H\033[J",end='') # clear terminal windows
 print(manual)

if __name__ == "__main__":
 try:
 pan_angle = 0
 tilt_angle = 0
 px = Picarx()
 show_info()
 while True:
 key = readchar.readkey()
 key = key.lower()
 if key in('wsadikjl'):
 if 'w' == key:
 px.set_dir_servo_angle(0)
 px.forward(80)
 elif 's' == key:
 px.set_dir_servo_angle(0)
 px.backward(80)
 elif 'a' == key:
 px.set_dir_servo_angle(-35)
 px.forward(80)
 elif 'd' == key:
 px.set_dir_servo_angle(35)
 px.forward(80)
 elif 'i' == key:
 tilt_angle+=5
 if tilt_angle>35:
 tilt_angle=35
 elif 'k' == key:
 tilt_angle-=5
 if tilt_angle<-35:
 tilt_angle=-35
 elif 'l' == key:
 pan_angle+=5
 if pan_angle>35:
 pan_angle=35
 elif 'j' == key:
 pan_angle-=5
 if pan_angle<-35:
 pan_angle=-35

 px.set_cam_tilt_angle(tilt_angle)
 px.set_cam_pan_angle(pan_angle)
 show_info()
 sleep(0.5)
 px.forward(0)

 elif key == readchar.key.CTRL_C:
 print("\n Quit")
 break

 finally:
 px.set_cam_tilt_angle(0)
 px.set_cam_pan_angle(0)
 px.set_dir_servo_angle(0)
 px.stop()
 sleep(.2)

How it works?

PiCar-X should take appropriate action based on the keyboard characters read.
The lower() function converts upper case characters into lower case characters,
so that the letter remains valid regardless of case.

while True:
 key = readchar.readkey()
 key = key.lower()
 if key in('wsadikjl'):
 if 'w' == key:
 pass
 elif 's' == key:
 pass
 elif 'a' == key:
 pass
 elif 'd' == key:
 pass
 elif 'i' == key:
 pass
 elif 'k' == key:
 pass
 elif 'l' == key:
 pass
 elif 'j' == key:
 pass

 elif key == readchar.key.CTRL_C:
 print("\n Quit")
 break

 3. Text to Speech & Sound Effect

3. Text to Speech & Sound Effect

In this example, we use PiCar-X’s (to be precise, Robot HAT’s) sound effects.
It consists of three parts, namely Muisc, Sound, Text to Speech.

[image: ../_images/how_are_you1.jpg]
Install i2samp

Before using the Text-to-Speech (TTS) and Sound Effect functions,
first activate the speaker so that it will be enabled and can make sounds.

Run i2samp.sh in the picar-x folder,
and this script will install everything needed to use i2s amplifier.

cd ~/picar-x
sudo bash i2samp.sh

[image: ../_images/tt_bash.png]
There will be several prompts asking to confirm the request. Respond to all prompts with a Y. After the changes have been made to the Raspberry Pi system, the computer will need to reboot for these changes to take effect.

After rebooting, run the i2samp.sh script again to test the amplifier. If a sound successfully plays from the speaker, the configuration is complete.

Run the Code

cd ~/picar-x/example
sudo python3 3.tts_example.py

After the code runs, please operate according to the prompt that printed on the terminal.

Input key to call the function!

	space: Play sound effect (Car horn)

	c: Play sound effect with threads

	t: Text to speak (Say Hello)

	q: Play/Stop Music

Code

from time import sleep
from robot_hat import Music,TTS
import readchar

music = Music()
tts = TTS()

manual = '''
Input key to call the function!
 space: Play sound effect (Car horn)
 c: Play sound effect with threads
 t: Text to speak
 q: Play/Stop Music
'''

def main():
 print(manual)

 flag_bgm = False
 music.music_set_volume(20)
 tts.lang("en-US")

 while True:
 key = readchar.readkey()
 key = key.lower()
 if key == "q":
 flag_bgm = not flag_bgm
 if flag_bgm is True:
 music.music_play('../musics/slow-trail-Ahjay_Stelino.mp3')
 else:
 music.music_stop()

 elif key == readchar.key.SPACE:
 music.sound_play('../sounds/car-double-horn.wav')
 sleep(0.05)

 elif key == "c":
 music.sound_play_threading('../sounds/car-double-horn.wav')
 sleep(0.05)

 elif key == "t":
 words = "Hello"
 tts.say(words)

if __name__ == "__main__":
 main()

How it works?

Functions related to background music include these:

	music = Music() : Declare the object.

	music.music_set_volume(20) : Set the volume, the range is 0~100.

	music.music_play('../musics/slow-trail-Ahjay_Stelino.mp3') : Play music files, here is the slow-trail-Ahjay_Stelino.mp3 file under the ../musics path.

	music.music_stop() : Stop playing background music.

Note

You can add different sound effects or music to musics or sounds folder via Filezilla Software.

Functions related to sound effects include these:

	music = Music()

	music.sound_play('../sounds/car-double-horn.wav') : Play the sound effect file.

	muisc.sound_play_threading('../sounds/car-double-horn.wav') : Play the sound effect file in a new thread mode without suspending the main thread.

The eSpeak [http://espeak.sourceforge.net/] software is used to implement the functions of TTS.

Import the TTS module in robot_hat, which encapsulates functions that convert text to speech.

Functions related to Text to Speech include these:

	tts = TTS()

	tts.say(words) : Text audio.

	tts.lang("en-US") : Set the language.

Note

Set the language by setting the parameters of lang("") with the following characters.

Language

	zh-CN

	Mandarin (Chinese)

	en-US

	English-United States

	en-GB

	English-United Kingdom

	de-DE

	Germany-Deutsch

	es-ES

	España-Español

	fr-FR

	France-Le français

	it-IT

	Italia-lingua italiana

 4. Obstacle Avoidance

4. Obstacle Avoidance

In this project, PiCar-X will detect obstacles in front of it while moving forward,
and when the obstacles are too close, it will change the direction of moving forward.

Run the Code

cd ~/picar-x/example
sudo python3 4.avoiding_obstacles.py

After running the code, PiCar-X will walk forward.

If it detects that the distance of the obstacle ahead is less than 20cm, it will go backward.

If there is an obstacle within 20 to 40cm, it will turn left.

If there is no obstacle in the direction after turning left or the obstacle distance is greater than 25cm,
it will continue to move forward.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like picar-x/example. After modifying the code, you can run it directly to see the effect.

from picarx import Picarx
import time

POWER = 50
SafeDistance = 40 # > 40 safe
DangerDistance = 20 # > 20 && < 40 turn around,
 # < 20 backward

def main():
 try:
 px = Picarx()
 # px = Picarx(ultrasonic_pins=['D2','D3']) # tring, echo

 while True:
 distance = round(px.ultrasonic.read(), 2)
 print("distance: ",distance)
 if distance >= SafeDistance:
 px.set_dir_servo_angle(0)
 px.forward(POWER)
 elif distance >= DangerDistance:
 px.set_dir_servo_angle(30)
 px.forward(POWER)
 time.sleep(0.1)
 else:
 px.set_dir_servo_angle(-30)
 px.backward(POWER)
 time.sleep(0.5)

 finally:
 px.forward(0)

if __name__ == "__main__":
 main()

How it works?

	Importing the Picarx Module and Initializing Constants:

This section of the code imports the Picarx class from the picarx module, which is essential for controlling the Picarx robot. Constants like POWER, SafeDistance, and DangerDistance are defined, which will be used later in the script to control the robot’s movement based on distance measurements.

from picarx import Picarx
import time

POWER = 50
SafeDistance = 40 # > 40 safe
DangerDistance = 20 # > 20 && < 40 turn around,
< 20 backward

	Main Function Definition and Ultrasonic Sensor Reading:

The main function is where the Picarx robot is controlled. An instance of Picarx is created, which activates the robot’s functionalities. The code enters an infinite loop, constantly reading the distance from the ultrasonic sensor. This distance is used to determine the robot’s movement.

def main():
try:
px = Picarx()

 while True:
 distance = round(px.ultrasonic.read(), 2)
 # [Rest of the logic]

	Movement Logic Based on Distance:

The robot’s movement is controlled based on the distance read from the ultrasonic sensor. If the distance is greater than SafeDistance, the robot moves forward. If the distance is between DangerDistance and SafeDistance, it slightly turns and moves forward. If the distance is less than DangerDistance, the robot reverses while turning in the opposite direction.

if distance >= SafeDistance:
 px.set_dir_servo_angle(0)
 px.forward(POWER)
elif distance >= DangerDistance:
 px.set_dir_servo_angle(30)
 px.forward(POWER)
 time.sleep(0.1)
else:
 px.set_dir_servo_angle(-30)
 px.backward(POWER)
 time.sleep(0.5)

	Safety and Cleanup with the ‘finally’ Block:

The try...finally block ensures safety by stopping the robot’s motion in case of an interruption or error. This is a crucial part for preventing uncontrollable behavior of the robot.

try:
[Control logic]
finally:
px.forward(0)

	Execution Entry Point:

The standard Python entry point if __name__ == "__main__": is used to run the main function when the script is executed as a standalone program.

if name == "main":
 main()

In summary, the script uses the Picarx module to control a robot, utilizing an ultrasonic sensor for distance measurement. The robot’s movement is adapted based on these measurements, ensuring safe operation through careful control and a safety mechanism in the finally block.

 5. Line Tracking

5. Line Tracking

This project will use the Grayscale module to make the PiCar-X move forward along a line.
Use dark-colored tape to make a line as straight as possible, and not too curved.
Some experimenting might be needed if the PiCar-X is derailed.

Run the Code

cd ~/picar-x/example
sudo python3 5.minecart_plus.py

After running the code, PiCar-X will move forward along a line.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like picar-x/example. After modifying the code, you can run it directly to see the effect.

from picarx import Picarx
from time import sleep

px = Picarx()
px = Picarx(grayscale_pins=['A0', 'A1', 'A2'])

Please run ./calibration/grayscale_calibration.py to Auto calibrate grayscale values
or manual modify reference value by follow code
px.set_line_reference([1400, 1400, 1400])

current_state = None
px_power = 10
offset = 20
last_state = "stop"

def outHandle():
 global last_state, current_state
 if last_state == 'left':
 px.set_dir_servo_angle(-30)
 px.backward(10)
 elif last_state == 'right':
 px.set_dir_servo_angle(30)
 px.backward(10)
 while True:
 gm_val_list = px.get_grayscale_data()
 gm_state = get_status(gm_val_list)
 print("outHandle gm_val_list: %s, %s"%(gm_val_list, gm_state))
 currentSta = gm_state
 if currentSta != last_state:
 break
 sleep(0.001)

def get_status(val_list):
 _state = px.get_line_status(val_list) # [bool, bool, bool], 0 means line, 1 means background
 if _state == [0, 0, 0]:
 return 'stop'
 elif _state[1] == 1:
 return 'forward'
 elif _state[0] == 1:
 return 'right'
 elif _state[2] == 1:
 return 'left'

if __name__=='__main__':
 try:
 while True:
 gm_val_list = px.get_grayscale_data()
 gm_state = get_status(gm_val_list)
 print("gm_val_list: %s, %s"%(gm_val_list, gm_state))

 if gm_state != "stop":
 last_state = gm_state

 if gm_state == 'forward':
 px.set_dir_servo_angle(0)
 px.forward(px_power)
 elif gm_state == 'left':
 px.set_dir_servo_angle(offset)
 px.forward(px_power)
 elif gm_state == 'right':
 px.set_dir_servo_angle(-offset)
 px.forward(px_power)
 else:
 outHandle()
 finally:
 px.stop()
 print("stop and exit")
 sleep(0.1)

How it works?

This Python script controls a Picarx robot car using grayscale sensors for navigation. Here’s a breakdown of its main components:

	Import and Initialization:

The script imports the Picarx class for controlling the robot car and the sleep function from the time module for adding delays.

An instance of Picarx is created, and there’s a commented line showing an alternative initialization with specific grayscale sensor pins.

from picarx import Picarx
from time import sleep

px = Picarx()

	Configuration and Global Variables:

current_state, px_power, offset, and last_state are global variables used to track and control the car’s movement. px_power sets the motor power, and offset is used for adjusting the steering angle.

current_state = None
px_power = 10
offset = 20
last_state = "stop"

	outHandle Function:

This function is called when the car needs to handle an ‘out of line’ scenario.

It adjusts the car’s direction based on last_state and checks the grayscale sensor values to determine the new state.

def outHandle():
 global last_state, current_state
 if last_state == 'left':
 px.set_dir_servo_angle(-30)
 px.backward(10)
 elif last_state == 'right':
 px.set_dir_servo_angle(30)
 px.backward(10)
 while True:
 gm_val_list = px.get_grayscale_data()
 gm_state = get_status(gm_val_list)
 print("outHandle gm_val_list: %s, %s"%(gm_val_list, gm_state))
 currentSta = gm_state
 if currentSta != last_state:
 break
 sleep(0.001)

	get_status Function:

It interprets the grayscale sensor data (val_list) to determine the car’s navigation state.

The car’s state can be ‘forward’, ‘left’, ‘right’, or ‘stop’, based on which sensor detects the line.

def get_status(val_list):
 _state = px.get_line_status(val_list) # [bool, bool, bool], 0 means line, 1 means background
 if _state == [0, 0, 0]:
 return 'stop'
 elif _state[1] == 1:
 return 'forward'
 elif _state[0] == 1:
 return 'right'
 elif _state[2] == 1:
 return 'left'

	Main Loop:

The while True loop continuously checks the grayscale data and adjusts the car’s movement accordingly.

Depending on the gm_state, it sets the steering angle and movement direction.

if __name__=='__main__':
 try:
 while True:
 gm_val_list = px.get_grayscale_data()
 gm_state = get_status(gm_val_list)
 print("gm_val_list: %s, %s"%(gm_val_list, gm_state))

 if gm_state != "stop":
 last_state = gm_state

 if gm_state == 'forward':
 px.set_dir_servo_angle(0)
 px.forward(px_power)
 elif gm_state == 'left':
 px.set_dir_servo_angle(offset)
 px.forward(px_power)
 elif gm_state == 'right':
 px.set_dir_servo_angle(-offset)
 px.forward(px_power)
 else:
 outHandle()

	Safety and Cleanup:

The try...finally block ensures the car stops when the script is interrupted or finished.

finally:
px.stop()
print("stop and exit")
sleep(0.1)

In summary, the script uses grayscale sensors to navigate the Picarx robot car. It continuously reads the sensor data to determine the direction and adjusts the car’s movement and steering accordingly. The outHandle function provides additional logic for situations where the car needs to adjust its path significantly.

 6. Cliff Detection

6. Cliff Detection

Let us give PiCar-X a little self-protection awareness and let it learn to use its own grayscale module to avoid rushing down the cliff.

In this example, the car will be dormant.
If you push it to a cliff, it will be awakened urgently, then back up, and say “danger”.

Run the Code

cd ~/picar-x/example
sudo python3 6.cliff_detection.py

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like picar-x/example. After modifying the code, you can run it directly to see the effect.

from picarx import Picarx
from time import sleep
from robot_hat import TTS

tts = TTS()
tts.lang("en-US")

px = Picarx()
px = Picarx(grayscale_pins=['A0', 'A1', 'A2'])
manual modify reference value
px.set_cliff_reference([200, 200, 200])

current_state = None
px_power = 10
offset = 20
last_state = "safe"

if __name__=='__main__':
 try:
 while True:
 gm_val_list = px.get_grayscale_data()
 gm_state = px.get_cliff_status(gm_val_list)
 # print("cliff status is: %s"%gm_state)

 if gm_state is False:
 state = "safe"
 px.stop()
 else:
 state = "danger"
 px.backward(80)
 if last_state == "safe":
 tts.say("danger")
 sleep(0.1)
 last_state = state

 finally:
 px.stop()
 print("stop and exit")
 sleep(0.1)

How it works?

The function to detect the cliff looks like this:

	get_grayscale_data(): This method directly outputs the readings of the three sensors, from right to left. The brighter the area, the larger the value obtained.

	get_cliff_status(gm_val_list): This method compares the readings from the three probes and outputs a result. If the result is true, it is detected that there is a cliff in front of the car.

 7. Computer Vision

7. Computer Vision

This project will officially enter the field of computer vision!

Run the Code

cd ~/picar-x/example
sudo python3 7.display.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !
* Serving Flask app "vilib.vilib" (lazy loading)
* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.
* Debug mode: off
* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: https://192.168.18.113:9000/mjpg

[image: ../_images/display.png]
After the program runs, you will see the following information in the final:

	Input key to call the function!

	q: Take photo

	1: Color detect : red

	2: Color detect : orange

	3: Color detect : yellow

	4: Color detect : green

	5: Color detect : blue

	6: Color detect : purple

	0: Switch off Color detect

	r: Scan the QR code

	f: Switch ON/OFF face detect

	s: Display detected object information

Please follow the prompts to activate the corresponding functions.

	Take Photo

Type q in the terminal and press Enter. The picture currently seen by the camera will be saved (if the color detection function is turned on, the mark box will also appear in the saved picture).
You can see these photos from the /home/{username}/Pictures/ directory of the Raspberry Pi.
You can use tools such as Filezilla Software to transfer photos to your PC.

	Color Detect

Entering a number between 1~6 will detect one of the colors in “red, orange, yellow, green, blue, purple”. Enter 0 to turn off color detection.

[image: ../_images/DTC2.png]

Note

You can download and print the PDF Color Cards [https://github.com/sunfounder/sf-pdf/raw/master/prop_card/object_detection/color-cards.pdf] for color detection.

	Face Detect

Type f to turn on face detection.

[image: ../_images/DTC5.png]

	QR Code Detect

Enter r to open the QR code recognition. No other operations can be performed before the QR code is recognized. The decoding information of the QR code will be printed in the terminal.

[image: ../_images/DTC4.png]

	Display Information

Entering s will print the information of the face detection (and color detection) target in the terminal. Including the center coordinates (X, Y) and size (Weight, height) of the measured object.

Code

from pydoc import text
from vilib import Vilib
from time import sleep, time, strftime, localtime
import threading
import readchar
import os

flag_face = False
flag_color = False
qr_code_flag = False

manual = '''
Input key to call the function!
 q: Take photo
 1: Color detect : red
 2: Color detect : orange
 3: Color detect : yellow
 4: Color detect : green
 5: Color detect : blue
 6: Color detect : purple
 0: Switch off Color detect
 r: Scan the QR code
 f: Switch ON/OFF face detect
 s: Display detected object information
'''

color_list = ['close', 'red', 'orange', 'yellow',
 'green', 'blue', 'purple',
]

def face_detect(flag):
 print("Face Detect:" + str(flag))
 Vilib.face_detect_switch(flag)

def qrcode_detect():
 global qr_code_flag
 if qr_code_flag == True:
 Vilib.qrcode_detect_switch(True)
 print("Waitting for QR code")

 text = None
 while True:
 temp = Vilib.detect_obj_parameter['qr_data']
 if temp != "None" and temp != text:
 text = temp
 print('QR code:%s'%text)
 if qr_code_flag == False:
 break
 sleep(0.5)
 Vilib.qrcode_detect_switch(False)

def take_photo():
 _time = strftime('%Y-%m-%d-%H-%M-%S',localtime(time()))
 name = 'photo_%s'%_time
 username = os.getlogin()

 path = f"/home/{username}/Pictures/"
 Vilib.take_photo(name, path)
 print('photo save as %s%s.jpg'%(path,name))

def object_show():
 global flag_color, flag_face

 if flag_color is True:
 if Vilib.detect_obj_parameter['color_n'] == 0:
 print('Color Detect: None')
 else:
 color_coodinate = (Vilib.detect_obj_parameter['color_x'],Vilib.detect_obj_parameter['color_y'])
 color_size = (Vilib.detect_obj_parameter['color_w'],Vilib.detect_obj_parameter['color_h'])
 print("[Color Detect] ","Coordinate:",color_coodinate,"Size",color_size)

 if flag_face is True:
 if Vilib.detect_obj_parameter['human_n'] == 0:
 print('Face Detect: None')
 else:
 human_coodinate = (Vilib.detect_obj_parameter['human_x'],Vilib.detect_obj_parameter['human_y'])
 human_size = (Vilib.detect_obj_parameter['human_w'],Vilib.detect_obj_parameter['human_h'])
 print("[Face Detect] ","Coordinate:",human_coodinate,"Size",human_size)

def main():
 global flag_face, flag_color, qr_code_flag
 qrcode_thread = None

 Vilib.camera_start(vflip=False,hflip=False)
 Vilib.display(local=True,web=True)
 print(manual)

 while True:
 # readkey
 key = readchar.readkey()
 key = key.lower()
 # take photo
 if key == 'q':
 take_photo()
 # color detect
 elif key != '' and key in ('0123456'): # '' in ('0123') -> True
 index = int(key)
 if index == 0:
 flag_color = False
 Vilib.color_detect('close')
 else:
 flag_color = True
 Vilib.color_detect(color_list[index]) # color_detect(color:str -> color_name/close)
 print('Color detect : %s'%color_list[index])
 # face detection
 elif key =="f":
 flag_face = not flag_face
 face_detect(flag_face)
 # qrcode detection
 elif key =="r":
 qr_code_flag = not qr_code_flag
 if qr_code_flag == True:
 if qrcode_thread == None or not qrcode_thread.is_alive():
 qrcode_thread = threading.Thread(target=qrcode_detect)
 qrcode_thread.setDaemon(True)
 qrcode_thread.start()
 else:
 if qrcode_thread != None and qrcode_thread.is_alive():
 # wait for thread to end
 qrcode_thread.join()
 print('QRcode Detect: close')
 # show detected object information
 elif key == "s":
 object_show()

 sleep(0.5)

if __name__ == "__main__":
 main()

How it works?

The first thing you need to pay attention to here is the following function. These two functions allow you to start the camera.

Vilib.camera_start()
Vilib.display()

Functions related to “object detection”:

	Vilib.face_detect_switch(True) : Switch ON/OFF face detection

	Vilib.color_detect(color) : For color detection, only one color detection can be performed at the same time. The parameters that can be input are: "red", "orange", "yellow", "green", "blue", "purple"

	Vilib.color_detect_switch(False) : Switch OFF color detection

	Vilib.qrcode_detect_switch(False) : Switch ON/OFF QR code detection, Returns the decoded data of the QR code.

	Vilib.gesture_detect_switch(False) : Switch ON/OFF gesture detection

	Vilib.traffic_sign_detect_switch(False) : Switch ON/OFF traffic sign detection

The information detected by the target will be stored in the detect_obj_parameter = Manager().dict() dictionary.

In the main program, you can use it like this:

Vilib.detect_obj_parameter['color_x']

The keys of the dictionary and their uses are shown in the following list:

	color_x: the x value of the center coordinate of the detected color block, the range is 0~320

	color_y: the y value of the center coordinate of the detected color block, the range is 0~240

	color_w: the width of the detected color block, the range is 0~320

	color_h: the height of the detected color block, the range is 0~240

	color_n: the number of detected color patches

	human_x: the x value of the center coordinate of the detected human face, the range is 0~320

	human_y: the y value of the center coordinate of the detected face, the range is 0~240

	human_w: the width of the detected human face, the range is 0~320

	human_h: the height of the detected face, the range is 0~240

	human_n: the number of detected faces

	traffic_sign_x: the center coordinate x value of the detected traffic sign, the range is 0~320

	traffic_sign_y: the center coordinate y value of the detected traffic sign, the range is 0~240

	traffic_sign_w: the width of the detected traffic sign, the range is 0~320

	traffic_sign_h: the height of the detected traffic sign, the range is 0~240

	traffic_sign_t: the content of the detected traffic sign, the value list is [‘stop’,’right’,’left’,’forward’]

	gesture_x: The center coordinate x value of the detected gesture, the range is 0~320

	gesture_y: The center coordinate y value of the detected gesture, the range is 0~240

	gesture_w: The width of the detected gesture, the range is 0~320

	gesture_h: The height of the detected gesture, the range is 0~240

	gesture_t: The content of the detected gesture, the value list is [“paper”,”scissor”,”rock”]

	qr_date: the content of the QR code being detected

	qr_x: the center coordinate x value of the QR code to be detected, the range is 0~320

	qr_y: the center coordinate y value of the QR code to be detected, the range is 0~240

	qr_w: the width of the QR code to be detected, the range is 0~320

	qr_h: the height of the QR code to be detected, the range is 0~320

 8. Stare at You

8. Stare at You

This project is also based on the 7. Computer Vision project,
with the addition of face detection algorithms.

When you appear in front of the camera, it will recognize your face and adjust its gimbal to keep your face in the center of the frame.

You can view the screen at http://<your IP>:9000/mjpg.

Run the Code

cd ~/picar-x/example
sudo python3 8.stare_at_you.py

When the code is run, the car’s camera will always be staring at your face.

Code

from picarx import Picarx
from time import sleep
from vilib import Vilib

px = Picarx()

def clamp_number(num,a,b):
 return max(min(num, max(a, b)), min(a, b))

def main():
 Vilib.camera_start()
 Vilib.display()
 Vilib.face_detect_switch(True)
 x_angle =0
 y_angle =0
 while True:
 if Vilib.detect_obj_parameter['human_n']!=0:
 coordinate_x = Vilib.detect_obj_parameter['human_x']
 coordinate_y = Vilib.detect_obj_parameter['human_y']

 # change the pan-tilt angle for track the object
 x_angle +=(coordinate_x*10/640)-5
 x_angle = clamp_number(x_angle,-35,35)
 px.set_cam_pan_angle(x_angle)

 y_angle -=(coordinate_y*10/480)-5
 y_angle = clamp_number(y_angle,-35,35)
 px.set_cam_tilt_angle(y_angle)

 sleep(0.05)

 else :
 pass
 sleep(0.05)

if __name__ == "__main__":
 try:
 main()

 finally:
 px.stop()
 print("stop and exit")
 sleep(0.1)

How it works?

These lines of code in while True make the camera follow the face.

while True:
 if Vilib.detect_obj_parameter['human_n']!=0:
 coordinate_x = Vilib.detect_obj_parameter['human_x']
 coordinate_y = Vilib.detect_obj_parameter['human_y']

 # change the pan-tilt angle for track the object
 x_angle +=(coordinate_x*10/640)-5
 x_angle = clamp_number(x_angle,-35,35)
 px.set_cam_pan_angle(x_angle)

 y_angle -=(coordinate_y*10/480)-5
 y_angle = clamp_number(y_angle,-35,35)
 px.set_cam_tilt_angle(y_angle)

	Check if there is a detected human face

Vilib.detect_obj_parameter['human_n'] != 0

	If a human face is detected, obtain the coordinates (coordinate_x and coordinate_y) of the detected face.

	Calculate new pan and tilt angles (x_angle and y_angle) based on the detected face’s position and adjust them to follow the face.

	Limit the pan and tilt angles within the specified range using the clamp_number function.

	Set the camera’s pan and tilt angles using px.set_cam_pan_angle() and px.set_cam_tilt_angle() .

 9. Record Video

9. Record Video

This example will guide you how to use the recording function.

Run the Code

cd ~/picar-x/example
sudo python3 9.record_video.py

After the code runs, you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: http://192.168.18.113:9000/mjpg

[image: ../_images/display.png]
Recording can be stopped or started by pressing the keys on the keyboard.

	Press q to begin recording or pause/continue, e to stop recording or save.

	If you want to exit the program, press ctrl+c.

Code

from time import sleep,strftime,localtime
from vilib import Vilib
import readchar
import os

manual = '''
Press keys on keyboard to control recording:
 Q: record/pause/continue
 E: stop
 Ctrl + C: Quit
'''

def print_overwrite(msg, end='', flush=True):
 print('\r\033[2K', end='',flush=True)
 print(msg, end=end, flush=True)

def main():
 rec_flag = 'stop' # start,pause,stop
 vname = None
 username = os.getlogin()

 Vilib.rec_video_set["path"] = f"/home/{username}/Videos/" # set path

 Vilib.camera_start(vflip=False,hflip=False)
 Vilib.display(local=True,web=True)
 sleep(0.8) # wait for startup

 print(manual)
 while True:
 # read keyboard
 key = readchar.readkey()
 key = key.lower()
 # start,pause
 if key == 'q':
 key = None
 if rec_flag == 'stop':
 rec_flag = 'start'
 # set name
 vname = strftime("%Y-%m-%d-%H.%M.%S", localtime())
 Vilib.rec_video_set["name"] = vname
 # start record
 Vilib.rec_video_run()
 Vilib.rec_video_start()
 print_overwrite('rec start ...')
 elif rec_flag == 'start':
 rec_flag = 'pause'
 Vilib.rec_video_pause()
 print_overwrite('pause')
 elif rec_flag == 'pause':
 rec_flag = 'start'
 Vilib.rec_video_start()
 print_overwrite('continue')
 # stop
 elif key == 'e' and rec_flag != 'stop':
 key = None
 rec_flag = 'stop'
 Vilib.rec_video_stop()
 print_overwrite("The video saved as %s%s.avi"%(Vilib.rec_video_set["path"],vname),end='\n')
 # quit
 elif key == readchar.key.CTRL_C:
 Vilib.camera_close()
 print('\nquit')
 break

 sleep(0.1)

if __name__ == "__main__":
 main()

How it works?

Functions related to recording include the following:

	Vilib.rec_video_run(video_name) : Started the thread to record the video. video_name is the name of the video file, it should be a string.

	Vilib.rec_video_start(): Start or continue video recording.

	Vilib.rec_video_pause(): Pause recording.

	Vilib.rec_video_stop(): Stop recording.

Vilib.rec_video_set["path"] = f"/home/{username}/Videos/" sets the storage location of video files.

 10. Bull Fight

10. Bull Fight

Make PiCar-X an angry bull! Use its camera to track and rush the red cloth!

Run the Code

cd ~/picar-x/example
sudo python3 10.bull_fight.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !
* Serving Flask app "vilib.vilib" (lazy loading)
* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.
* Debug mode: off
* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: https://192.168.18.113:9000/mjpg

[image: ../_images/display.png]
Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like picar-x\examples. After modifying the code, you can run it directly to see the effect.

from picarx import Picarx
from time import sleep
from vilib import Vilib

px = Picarx()

def clamp_number(num,a,b):
return max(min(num, max(a, b)), min(a, b))

def main():
 Vilib.camera_start()
 Vilib.display()
 Vilib.color_detect("red")
 speed = 50
 dir_angle=0
 x_angle =0
 y_angle =0
 while True:
 if Vilib.detect_obj_parameter['color_n']!=0:
 coordinate_x = Vilib.detect_obj_parameter['color_x']
 coordinate_y = Vilib.detect_obj_parameter['color_y']

 # change the pan-tilt angle for track the object
 x_angle +=(coordinate_x*10/640)-5
 x_angle = clamp_number(x_angle,-35,35)
 px.set_cam_pan_angle(x_angle)

 y_angle -=(coordinate_y*10/480)-5
 y_angle = clamp_number(y_angle,-35,35)
 px.set_cam_tilt_angle(y_angle)

 # move
 # The movement direction will change slower than the pan/tilt direction
 # change to avoid confusion when the picture changes at high speed.
 if dir_angle > x_angle:
 dir_angle -= 1
 elif dir_angle < x_angle:
 dir_angle += 1
 px.set_dir_servo_angle(x_angle)
 px.forward(speed)
 sleep(0.05)

 else :
 px.forward(0)
 sleep(0.05)

if __name__ == "__main__":
 try:
 main()

 finally:
 px.stop()
 print("stop and exit")
 sleep(0.1)

How it works?

You need to pay attention to the following three parts of this example:

	Define the main function:

	Start the camera using Vilib.camera_start().

	Display the camera feed using Vilib.display().

	Enable color detection and specify the target color as “red” using Vilib.color_detect("red").

	Initialize variables: speed for car movement speed, dir_angle for the direction angle of the car’s movement, x_angle for the camera’s pan angle, and y_angle for the camera’s tilt angle.

	Enter a continuous loop (while True) to track the red-colored object:

	Check if there is a detected red-colored object (Vilib.detect_obj_parameter['color_n'] != 0).

	If a red-colored object is detected, obtain its coordinates (coordinate_x and coordinate_y).

	Calculate new pan and tilt angles (x_angle and y_angle) based on the detected object’s position and adjust them to track the object.

	Limit the pan and tilt angles within the specified range using the clamp_number function.

	Set the camera’s pan and tilt angles using px.set_cam_pan_angle() and px.set_cam_tilt_angle() to keep the object in view.

	Control the car’s movement based on the difference between dir_angle and x_angle:

	If dir_angle is greater than x_angle, decrement dir_angle by 1 to gradually change the direction angle.

	If dir_angle is less than x_angle, increment dir_angle by 1.

	Set the direction servo angle using px.set_dir_servo_angle() to steer the car’s wheels accordingly.

	Move the car forward at the specified speed using px.forward(speed).

 11. Video Car

11. Video Car

This program will provide a First Person View from the PiCar-X!
Use the keyboards WSAD keys to control the direction of movement,
and the O and P to adjust the speed.

Run the Code

cd ~/picar-x/example
sudo python3 11.video_car.py

Once the code is running, you can see what PiCar-X is shooting and control it by pressing the following keys.

	O: speed up

	P: speed down

	W: forward

	S: backward

	A: turn left

	D: turn right

	F: stop

	T: take photo

	Ctrl+C: quit

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !
* Serving Flask app "vilib.vilib" (lazy loading)
* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.
* Debug mode: off
* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: https://192.168.18.113:9000/mjpg

[image: ../_images/display.png]
code

#!/usr/bin/env python3

from robot_hat.utils import reset_mcu
from picarx import Picarx
from vilib import Vilib
from time import sleep, time, strftime, localtime
import readchar

import os
user = os.getlogin()
user_home = os.path.expanduser(f'~{user}')

reset_mcu()
sleep(0.2)

manual = '''
Press key to call the function(non-case sensitive):

 O: speed up
 P: speed down
 W: forward
 S: backward
 A: turn left
 D: turn right
 F: stop
 T: take photo

 Ctrl+C: quit
'''

px = Picarx()

def take_photo():
 _time = strftime('%Y-%m-%d-%H-%M-%S',localtime(time()))
 name = 'photo_%s'%_time
 path = f"{user_home}/Pictures/picar-x/"
 Vilib.take_photo(name, path)
 print('\nphoto save as %s%s.jpg'%(path,name))

def move(operate:str, speed):

 if operate == 'stop':
 px.stop()
 else:
 if operate == 'forward':
 px.set_dir_servo_angle(0)
 px.forward(speed)
 elif operate == 'backward':
 px.set_dir_servo_angle(0)
 px.backward(speed)
 elif operate == 'turn left':
 px.set_dir_servo_angle(-30)
 px.forward(speed)
 elif operate == 'turn right':
 px.set_dir_servo_angle(30)
 px.forward(speed)

def main():
 speed = 0
 status = 'stop'

 Vilib.camera_start(vflip=False,hflip=False)
 Vilib.display(local=True,web=True)
 sleep(2) # wait for startup
 print(manual)

 while True:
 print("\rstatus: %s , speed: %s "%(status, speed), end='', flush=True)
 # readkey
 key = readchar.readkey().lower()
 # operation
 if key in ('wsadfop'):
 # throttle
 if key == 'o':
 if speed <=90:
 speed += 10
 elif key == 'p':
 if speed >=10:
 speed -= 10
 if speed == 0:
 status = 'stop'
 # direction
 elif key in ('wsad'):
 if speed == 0:
 speed = 10
 if key == 'w':
 # Speed limit when reversing,avoid instantaneous current too large
 if status != 'forward' and speed > 60:
 speed = 60
 status = 'forward'
 elif key == 'a':
 status = 'turn left'
 elif key == 's':
 if status != 'backward' and speed > 60: # Speed limit when reversing
 speed = 60
 status = 'backward'
 elif key == 'd':
 status = 'turn right'
 # stop
 elif key == 'f':
 status = 'stop'
 # move
 move(status, speed)
 # take photo
 elif key == 't':
 take_photo()
 # quit
 elif key == readchar.key.CTRL_C:
 print('\nquit ...')
 px.stop()
 Vilib.camera_close()
 break

 sleep(0.1)

if __name__ == "__main__":
 try:
 main()
 except Exception as e:
 print("error:%s"%e)
 finally:
 px.stop()
 Vilib.camera_close()

 12. Treasure Hunt

12. Treasure Hunt

Arrange a maze in your room and place six different color cards in six corners. Then control PiCar-X to search for these color cards one by one!

Note

You can download and print the PDF Color Cards [https://github.com/sunfounder/sf-pdf/raw/master/prop_card/object_detection/color-cards.pdf] for color detection.

Run the Code

cd ~/picar-x/example
sudo python3 12.treasure_hunt.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !
* Serving Flask app "vilib.vilib" (lazy loading)
* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.
* Debug mode: off
* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: http://192.168.18.113:9000/mjpg

[image: ../_images/display.png]
Code

from picarx import Picarx
from time import sleep
from robot_hat import Music,TTS
from vilib import Vilib
import readchar
import random
import threading

px = Picarx()

music = Music()
tts = TTS()

manual = '''
Press keys on keyboard to control Picar-X!
 w: Forward
 a: Turn left
 s: Backward
 d: Turn right
 space: Say the target again
 ctrl+c: Quit
'''

color = "red"
color_list=["red","orange","yellow","green","blue","purple"]

def renew_color_detect():
 global color
 color = random.choice(color_list)
 Vilib.color_detect(color)
 tts.say("Look for " + color)

key = None
lock = threading.Lock()
def key_scan_thread():
 global key
 while True:
 key_temp = readchar.readkey()
 print('\r',end='')
 with lock:
 key = key_temp.lower()
 if key == readchar.key.SPACE:
 key = 'space'
 elif key == readchar.key.CTRL_C:
 key = 'quit'
 break
 sleep(0.01)

def car_move(key):
 if 'w' == key:
 px.set_dir_servo_angle(0)
 px.forward(80)
 elif 's' == key:
 px.set_dir_servo_angle(0)
 px.backward(80)
 elif 'a' == key:
 px.set_dir_servo_angle(-30)
 px.forward(80)
 elif 'd' == key:
 px.set_dir_servo_angle(30)
 px.forward(80)

def main():
 global key
 Vilib.camera_start(vflip=False,hflip=False)
 Vilib.display(local=False,web=True)
 sleep(0.8)
 print(manual)

 sleep(1)
 _key_t = threading.Thread(target=key_scan_thread)
 _key_t.setDaemon(True)
 _key_t.start()

 tts.say("game start")
 sleep(0.05)
 renew_color_detect()
 while True:

 if Vilib.detect_obj_parameter['color_n']!=0 and Vilib.detect_obj_parameter['color_w']>100:
 tts.say("will done")
 sleep(0.05)
 renew_color_detect()

 with lock:
 if key != None and key in ('wsad'):
 car_move(key)
 sleep(0.5)
 px.stop()
 key = None
 elif key == 'space':
 tts.say("Look for " + color)
 key = None
 elif key == 'quit':
 _key_t.join()
 print("\n\rQuit")
 break

 sleep(0.05)

if __name__ == "__main__":
 try:
 main()
 except KeyboardInterrupt:
 pass
 except Exception as e:
 print(f"ERROR: {e}")
 finally:
 Vilib.camera_close()
 px.stop()
 sleep(.2)

How it works?

To understand the basic logic of this code, you can focus on the following key parts:

	Initialization and Imports:
Import statements at the beginning of the code to understand the libraries being used.

	Global Variables:
Definitions of global variables, such as color and key, which are used throughout the code to track the target color and keyboard input.

	renew_color_detect() :
This function selects a random color from a list and sets it as the target color for detection. It also uses text-to-speech to announce the selected color.

	key_scan_thread() :
This function runs in a separate thread and continuously scans for keyboard input, updating the key variable with the pressed key. It uses a lock for thread-safe access.

	car_move(key) :
This function controls the movement of the PiCar-X based on the keyboard input (key). It sets the direction and speed of the robot’s movement.

	main() :The primary function that orchestrates the overall logic of the code. It does the following:

	Initializes the camera and starts displaying the camera feed.

	Creates a separate thread to scan for keyboard input.

	Announces the start of the game using text-to-speech.

	Enters a continuous loop to:

	Check for detected colored objects and trigger actions when a valid object is detected.

	Handle keyboard input to control the robot and interact with the game.

	Handles quitting the game and exceptions like KeyboardInterrupt.

	Ensures that the camera is closed and the PiCar-X is stopped when exiting.

By understanding these key parts of the code,
you can grasp the fundamental logic of how the PiCar-X robot responds to keyboard
input and detects and interacts with objects of a
specific color using the camera and audio output capabilities.

 13. Controlled by the APP

13. Controlled by the APP

The SunFounder controller is used to control Raspberry Pi/Pico based robots.

The APP integrates Button, Switch, Joystick, D-pad, Slider and Throttle Slider widgets; Digital Display, Ultrasonic Radar, Grayscale Detection and Speedometer input widgets.

There are 17 areas A-Q , where you can place different widgets to customize your own controller.

In addition, this application provides a live video streaming service.

Let’s customize a PiCar-X controller using this app.

How to do?

	Install the sunfounder-controller module.

The robot-hat, vilib, and picar-x modules need to be installed first, for details see: Install All the Modules(Important).

cd ~
git clone https://github.com/sunfounder/sunfounder-controller.git
cd ~/sunfounder-controller
sudo python3 setup.py install

	Run the code.

cd ~/picar-x/example
sudo python3 13.app_control.py

	Install SunFounder Controller [https://docs.sunfounder.com/projects/sf-controller/en/latest/] from APP Store(iOS) or Google Play(Android).

	Open and create a new controller.

Create a new controller by clicking on the + sign in the SunFounder Controller APP.

[image: ../_images/app1.PNG]
There are preset controllers for some products in the Preset section, which you can use as needed. Here, we select PiCar-X.

[image: ../_images/app_control_preset.jpg]

	Connect to PiCar-x.

When you click the Connect button, it will automatically search for robots nearby. Its name is defined in picarx_control.py and it must be running at all times.

[image: ../_images/app9.PNG]
Once you click on the product name, the message “Connected Successfully” will appear and the product name will appear in the upper right corner.

[image: ../_images/app10.PNG]

Note

	You need to make sure that your mobile device is connected to the same LAN as PiCar-X.

	If it doesn’t search automatically, you can also manually enter the IP to connect.

[image: ../_images/app11.PNG]

	Run this controller.

Click the Run button to start the controller, you will see the footage of the car shooting, and now you can control your PiCar-X with these widgets.

[image: ../_images/app12.PNG]
Here are the functions of the widgets.

	A: Show the current speed of the car.

	E: turn on the obstacle avoidance function.

	I: turn on the line following function.

	J: voice recognition, press and hold this widget to start speaking, and it will show the recognized voice when you release it. We have set forward, backard, left and right 4 commands in the code to control the car.

	K: Control forward, backward, left, and right motions of the car.

	Q: turn the head(Camera) up, down, left and right.

	N: Turn on the color recognition function.

	O: Turn on the face recognition function.

	P: Turn on the object recognition function, it can recognize nearly 90 kinds of objects, for the list of models, please refer to: https://github.com/sunfounder/vilib/blob/master/workspace/coco_labels.txt.

 Python Video Course

Python Video Course

This video course is an online Python tutorial specifically designed for interactive learning. It includes three introductory videos that cover the essential foundations: starting with setting up the Raspberry Pi, assembling the PiCar-X, and then installing the necessary robot modules. This initial phase ensures that everything is prepared before beginning the various projects with the PiCar-X.

Following the introductory section, the course features 12 project videos. These projects progressively develop skills starting from basic movement of the PiCar-X, keyboard control, Text-to-Speech (TTS), obstacle avoidance, line tracking, to applications in computer vision. The course then advances to more complex projects that combine multiple functionalities. Besides teaching you to run examples from the online tutorial, the videos also provide additional extensions to each topic, allowing for a deeper understanding of each feature.

Get Started

The course begins with three introductory videos that lay the foundation for working with the PiCar-X. These videos cover:

	Video A1: Starting with Raspbrry Pi

	Video A2: Assembly of the PICAR-X

	Video A3: Calibrate the PiCar-X

Projects

Following the setup, the course dives into twelve project-based videos. These videos progressively enhance the capabilities of the PiCar-X, starting from basic movements to more complex tasks, including:

	Video 1: Motor Move and Steering Control

	Video 2: Controlling the PiCar-X using keyboard

	Video 3: Text to Speech

	Video 4: Obstacle Avoidance with Ultrasonic

	Video 5: Greyscale Line Tracking

	Video 6: Cliff Detection

	Video 7: PiCar-X Computer Vision

	Video 8: PiCar-X Stares at You

	Video 9: Recording Video

	Video 10: Bull Fight with PiCar-X

	Video 11: PiCar-X as Video Car

	Video 12: Treasure Hunt Game

 Video A1: Starting with Raspbrry Pi

Video A1: Starting with Raspbrry Pi

This is the first video for the PiCar-X.

This video provides a comprehensive tutorial on setting up a Raspberry Pi for use with the PiCar-X robot car. It covers:

	The features of the PiCar-X.

	How to image the Raspberry Pi OS.

	Various programming methods including using HDMI, PowerShell, Remote Desktop, and SunFounder Create Agent.

	Installing necessary robot modules.

If you are a beginner, it is suggested to follow the steps one by one. If you are more familiar with Raspberry Pi, then you can directly follow the latter part of the video to install the necessary modules.

Video

 Video A2: Assembly of the PICAR-X

Video A2: Assembly of the PICAR-X

In this video, the focus is on assembling the PICAR-X.

Key aspects of the tutorial include:

	Unboxing: Introduction of the kit components, including the assembly instruction sheet, tools, modules, and motors.

	Assembly Guide: Detailed steps for assembling the PICAR-X, starting from attaching screws to the Raspberry Pi, connecting cables, and setting up the robot hat.

	Servo Calibration: Using SunFounder’s Create Agent for zeroing the servos.

	Motor and Battery Installation: Attaching motors to the frame and securing the battery.

	Sensor and Camera Installation: Installing and connecting the grayscale sensor, ultrasonic sensor, and camera.

	Wiring and Final Setup: Organizing and connecting wires for various components, followed by final checks and tidy wire management.

The video is designed to guide you through each step of the assembly process, ensuring a thorough understanding of how each component fits together.

Video

 Video A3: Calibrate the PiCar-X

Video A3: Calibrate the PiCar-X

This third video in the series focuses on calibrating the PiCar-X and introducing the Robot HAT. The tutorial is divided into several key sections:

	Greyscale Sensor Calibration: Instructions on accessing and calibrating the greyscale sensor.

	DC Motors and Servo Calibration: Steps for calibrating the DC motors for direction and speed, as well as the steering and camera pan/tilt servos.

	Script Automation at Startup: How to set scripts to run automatically at the Raspberry Pi’s startup.

	Robot HAT Overview: Detailed overview of the Robot HAT, including its features and functionalities.

This tutorial is crucial for those looking to fine-tune their PiCar-X and understand the technical aspects of the Robot HAT.

Video

 Video 1: Motor Move and Steering Control

Video 1: Motor Move and Steering Control

This video serves as the first project tutorial in the PiCar-X series, focusing on how to control the motors and steering servo of the PiCar-X. The key contents include:

	Starting and Stopping Motors: Demonstrates how to control the movement of the PiCar-X, including moving forward and backward.

	Motor Speed Control: Shows how to increase and decrease the speed of the motors.

	Steering Control: Teaches how to turn left and right by controlling the front steering servo.

	Script Execution: Illustrates how to run a program automatically when the Raspberry Pi starts.

	Move.py Code Analysis: Offers an in-depth explanation of the Move.py script, detailing the logic behind controlling motors and steering.

	Testing and Debugging: Practical testing to ensure both the code and hardware function correctly.

This video is an excellent practical guide for beginners to PiCar-X, providing detailed instructions on controlling motors and steering, laying a solid foundation for further project development.

Video

 Video 2: Controlling the PiCar-X using keyboard

Video 2: Controlling the PiCar-X using keyboard

In this video tutorial, you’ll learn how to control the PiCar-X robot using a keyboard. It covers:

	Basic Control: Demonstrates controlling the PiCar-X with keyboard commands - “W” for forward, “S” for backward, “A” for left turns, and “D” for right turns.

	Tilt and Pan of Camera: Teaches controlling the mounted camera’s tilt and pan using “I” (up), “K” (down), “J” (left), and “L” (right).

	Code Explanation: Provides a detailed explanation of the Python code for keyboard control, including library imports and control logic.

	Running the Code: Shows how to execute the Python code for keyboard control, including connecting to the PiCar-X.

	Exiting Control: Explains exiting keyboard control by pressing “Ctrl + C”, returning the robot to its default state.

This tutorial is ideal for beginners and robotics enthusiasts, offering clear instructions and a hands-on demonstration for controlling the PiCar-X robot with a keyboard.

Video

 Video 3: Text to Speech

Video 3: Text to Speech

This tutorial covers the text-to-speech features of the PiCar-X robot:

	Robot Setup and Initial Movement: Demonstrates the robot’s readiness and initial movement, including stopping and obstacle detection.

	Text-to-Speech Capabilities: Shows how the robot can speak predefined phrases and count down using text-to-speech technology.

	Custom Script Demonstration: Runs a custom script where the robot talks, moves, reacts to obstacles, and makes U-turns.

	Playing Music: Teaches how to play music files on the robot using Python scripts.

The lesson offers an in-depth tutorial on integrating text-to-speech functionality into the PiCar-X robot, including practical demonstrations and code details.

Video

 Video 4: Obstacle Avoidance with Ultrasonic

Video 4: Obstacle Avoidance with Ultrasonic

This video tutorial covers obstacle avoidance using an ultrasonic sensor in the PiCar-X robot:

	Introduction to Ultrasonic Sensor: Explains how to use the ultrasonic sensor for measuring distance and controlling the car’s movement.

	Python Code Walkthrough: Details the Python code for obstacle avoidance, including variable definitions and conditional movement logic.

	Creating and Running Custom Scripts: Shows how to write and execute custom scripts for U-turns and obstacle reactions.

	Practical Demonstrations: Provides demonstrations of the robot’s obstacle avoidance capabilities on different surfaces.

	Code Saving and Updating: Explains how to save and update scripts on the robot.

This lesson offers an essential guide to implementing ultrasonic sensor-based obstacle avoidance in the PiCar-X robot.

Video

 Video 5: Greyscale Line Tracking

Video 5: Greyscale Line Tracking

This video tutorial explores greyscale line tracking using the PiCar-X robot:

	Line Detection: Demonstrates how the robot detects a black line on a white surface using a greyscale sensor, allowing it to track or drive over the line.

	Python Code Explanation: Explains the Python code involved in line tracking, detailing the import of modules, creation of objects, and logic for responding to line detection.

	Practical Demonstrations: Provides demonstrations of the robot detecting and following lines on different surfaces.

	Troubleshooting and Tweaking: Discusses the need for tweaking and fixing the code for better line tracking performance.

This lesson offers a comprehensive guide on implementing greyscale line tracking in the PiCar-X, including practical demonstrations, code walkthroughs, and troubleshooting tips.

Video

 Video 6: Cliff Detection

Video 6: Cliff Detection

This tutorial provides essential insights into programming and utilizing cliff detection in the PiCar-X robot.

	Introduction: Explains the use of a grayscale sensor in PiCar-X for cliff detection by measuring surface reflections.

	Python Code Walkthrough: Covers the code for cliff detection, detailing sensor setup, and program logic.

	Demonstration and Testing: Shows the robot detecting cliffs and reacting, with steps on running and testing the code.

	Auto-Start Setup: Guides on configuring the Raspberry Pi to run the cliff detection script on boot.

	Practical Application: Demonstrates the robot’s response to different surfaces and edges, highlighting its cliff detection capability.

Video

 Video 7: PiCar-X Computer Vision

Video 7: PiCar-X Computer Vision

This video tutorial focuses on computer vision capabilities in the PiCar-X:

	Introduction to Computer Vision: Teaches how to detect hand movement, fingers, colors, faces, and read QR codes using the PiCar-X equipped with a camera.

	Remote Desktop and Python Code Execution: Demonstrates using VNC for remote desktop access to the Raspberry Pi and running Python code for computer vision tasks.

	Color Detection and Photo Taking: Shows how to detect different colors and take photos using camera controls.

	QR Code and Face Detection: Explains how to switch between QR code reading and face detection features.

	Object Detection: Discusses the use of built-in functions from SunFounder’s VI library for object detection.

	Viewing Video on Browser and Mobile: Teaches how to stream the camera feed to a browser or mobile phone, ensuring they are connected to the same network as the PiCar-X.

	Hand Detection: Covers the use of hand detection feature from the VI library and running corresponding Python code.

	Code Editing and Running: Demonstrates creating, editing, and running Python scripts for various computer vision tasks.

This lesson offers a comprehensive guide to exploring computer vision features in the PiCar-X, including practical demonstrations of color detection, QR code reading, face detection, and hand movement tracking.

Video

 Video 8: PiCar-X Stares at You

Video 8: PiCar-X Stares at You

This tutorial teaches how to use a camera and servo on the PiCar-X robot for object tracking:

	Camera-Servo Integration: Demonstrates connecting a camera with a servo for movement tracking.

	Python Code Overview: Explains the code for controlling the PiCar-X’s camera movements.

	Starting Camera & Video Display: Shows starting the camera and displaying the video feed.

	Face Tracking: Details how the robot tracks a human face, adjusting its camera angles.

	Demonstrations: Includes demonstrations of the robot’s camera following and adjusting to movements.

	Video Streaming: Covers streaming the camera feed to a browser or mobile phone.

This lesson provides a succinct guide on enabling the PiCar-X to track and focus on objects or faces using its camera.

Video

 Video 9: Recording Video

Video 9: Recording Video

This tutorial offers a concise yet detailed guide on recording and managing videos using the PiCar-X robot.

	Overview: Teaches how to record HD 1080p videos using the PiCar-X, a Raspberry Pi self-driving robot car kit.

	Documentation and Code: Guides through the PiCar-X documentation for video recording and explains the Python script for recording control (start, pause, continue, stop).

	Remote Desktop Connection: Demonstrates how to connect remotely to the Raspberry Pi for video recording.

	Practical Recording Demonstration: Shows running the video recording script and operating it through a remote desktop.

	Video Playback: Illustrates locating and playing back recorded videos to check quality.

	Additional Features: Introduces PiCamera2 GitHub Repository for more recording options like time-lapse and easy capture.

	Simple Video Scripting: Highlights creating and running basic video recording scripts with different formats and configurations.

Video

 Video 10: Bull Fight with PiCar-X

Video 10: Bull Fight with PiCar-X

This tutorial covers using the PiCar-X Robot for a “bullfight” game, focusing on color detection and movement:

	Bull Fight Concept: Uses PiCar-X’s camera to track and follow red color, with pan and tilt control.

	Python Code Overview: Details the programming behind color detection and robotic movements.

	Remote Desktop Access: Demonstrates managing the PiCar-X’s code via remote desktop.

	Color Trac