
SunFounder PiCrawler Kit

www.sunfounder.com

Aug 02, 2022

CONTENTS

1 Component List and Assembly Instructions 3

2 Play with Python 5
2.1 Quick Guide on Python . 5
2.2 Take Photo . 22
2.3 Check Photos . 23
2.4 Continuous Shooting . 28
2.5 Time Lapse Photography . 33
2.6 Record Video . 43
2.7 Panorama . 47
2.8 Image Classification . 51
2.9 Color Detection . 56
2.10 Face Detection . 59
2.11 Hands Detection . 61
2.12 Pose Detection . 64

3 Play with Ezblock 67
3.1 Quick Guide on Ezblock . 67
3.2 Traffic Sign Detection - Ezblock . 69
3.3 Face Detection - Ezblock . 71
3.4 Gesture Calibration - Ezblock . 74
3.5 Gesture Detection - Ezblock . 77
3.6 Color Detection - Ezblock . 79
3.7 Take Photo - Ezblock . 82
3.8 Say Cheese . 85
3.9 Get Order - Ezblock . 87
3.10 Play Rock-paper-scissor . 90
3.11 Color Tracking . 93

4 Appendix 99
4.1 Filezilla Software . 99
4.2 I2C Configuration . 101
4.3 Remote Desktop . 103

5 Copyright Notice 113

i

ii

SunFounder PiCrawler Kit

Thank you for choosing our Pan-tilt HAT.

Pan-Tilt HAT is a 2-axis Pan-Tilt kit for intelligent detection and free movement based on the Raspberry Pi. Built
in a 5 megapixel camera and the Raspberry Pi extension board with 14 external interfaces, Pan-Tilt HAT can realize
functions such as color detection, face detection, gesture detection and traffic sign detection, and can freely control the
camera’s turning around. The free turning of the Pan-Tilt is mainly realized by two servos. The movable angle ranges
0~180° from left to right, and 0~90° from up to down. Pan-Tilt HAT has 14 external interfaces, including 4 Analog
ports, 4 PWM ports, 4 Digital ports, 2 I2C ports, etc.

This document includes the list and assembly pdf and programming.

The programming part is divided into two chapters: Play with Ezblock & Play with Python, each chapter allows you
to explain how to make Pan-tilt HAT work the way you want.

Ezblock Studio is a development platform developed by SunFounder for beginners, aiming to lower the barriers to
entry for Raspberry Pi. It has two programming languages: Graphical and Python, which can be used on almost
all different types of devices. With Bluetooth and Wi-Fi support, you can download codes on Ezblock Studio and
remotely control Raspberry Pi.

More experienced makers can use the popular programming language-Python.

Content

CONTENTS 1

SunFounder PiCrawler Kit

2 CONTENTS

CHAPTER

ONE

COMPONENT LIST AND ASSEMBLY INSTRUCTIONS

You need to check whether there are missing or damaged components according to the list first. If there are any
problems, please contact us and we will solve them as soon as possible.

Please follow the steps on the PDF to assemble.

If the servo has been powered on, please do not turn the Servo shaft to avoid damage.

• Component List and Assembly Instructions.

3

SunFounder PiCrawler Kit

4 Chapter 1. Component List and Assembly Instructions

CHAPTER

TWO

PLAY WITH PYTHON

If you want to program in python, then you will need to learn some basic Python programming skills and basic
knowledge of Raspberry Pi, please configure the Raspberry Pi first according to Quick Guide on Python.

2.1 Quick Guide on Python

This section is to teach you how to install Raspberry Pi OS, configure wifi to Raspberry Pi, remote access to Raspberry
Pi to run the corresponding code.

If you are familiar with Raspberry Pi and can open the command line successfully, then you can skip the first 3 parts
and then complete the last part.

2.1.1 What Do We Need?

Required Components

Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer monitor or TV, and uses a
standard keyboard and mouse. It is a capable little device that enables people of all ages to explore computing, and to
learn how to program in languages like Scratch and Python.

Our kit applies to the following versions of the product of Raspberry Pi

5

SunFounder PiCrawler Kit

Power Adapter

To connect to a power socket, the Raspberry Pi has a micro USB port (the same found on many mobile phones). You
will need a power supply which provides at least 2.5 amps.

Micro SD Card

Your Raspberry Pi needs an Micro SD card to store all its files and the Raspberry Pi OS. You will need a micro SD
card with a capacity of at least 8 GB

Optional Components

Screen

To view the desktop environment of Raspberry Pi, you need to use the screen that can be a TV screen or a computer
monitor. If the screen has built-in speakers, the Pi plays sounds via them.

Mouse & Keyboard

When you use a screen , a USB keyboard and a USB mouse are also needed.

HDMI

The Raspberry Pi has a HDMI output port that is compatible with the HDMI ports of most modern TV and computer
monitors. If your screen has only DVI or VGA ports, you will need to use the appropriate conversion line.

Case

You can put the Raspberry Pi in a case; by this means, you can protect your device.

6 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Sound or Earphone

The Raspberry Pi is equipped with an audio port about 3.5 mm that can be used when your screen has no built-in
speakers or when there is no screen operation.

2.1.2 Installing the OS

Required Components

Any Raspberry Pi 1 * Personal Computer
1 * Micro SD card

Step 1

Raspberry Pi have developed a graphical SD card writing tool that works on Mac OS, Ubuntu 18.04 and Windows,
and is the easiest option for most users as it will download the image and install it automatically to the SD card.

Visit the download page: https://www.raspberrypi.org/software/. Click on the link for the Raspberry Pi Imager that
matches your operating system, when the download finishes, click it to launch the installer.

Step 2

When you launch the installer, your operating system may try to block you from running it. For example, on Windows
I receive the following message:

If this pops up, click on More info and then Run anyway, then follow the instructions to install the Raspberry Pi
Imager.

Step 3

Insert your SD card into the computer or laptop SD card slot.

Step 4

2.1. Quick Guide on Python 7

https://www.raspberrypi.org/software/

SunFounder PiCrawler Kit

Warning: Upgrading the Raspberry Pi OS to Debian Bullseye will cause some features to not work, so it is
recommended to continue using the Debian Buster version.

In the Raspberry Pi Imager, click CHOOSE OS -> Raspberry Pi OS(other).

Scroll down to the end of the newly opened page and you will see Raspberry Pi OS(Legacy) and Raspberry Pi
OS Lite(Legacy), these are security updates for Debian Buster, the difference between them is with or without the
desktop. It is recommended to install Raspberry Pi OS(Legacy), the system with the desktop.

8 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Step 5

Select the SD card you are using.

Step 6

Press Ctrl+Shift+X to open the Advanced options page to enable SSH and configure wifi, these 2 items must be set,
the others depend on your choice . You can choose to always use this image customization options.

2.1. Quick Guide on Python 9

SunFounder PiCrawler Kit

Then scroll down to complete the wifi configuration and click SAVE.

Note: wifi country should be set the two-letter ISO/IEC alpha2 code for the country in which you are using
your Raspberry Pi, please refer to the following link: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_
assigned_code_elements

10 Chapter 2. Play with Python

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements

SunFounder PiCrawler Kit

Step 7

Click the WRITE button.

2.1. Quick Guide on Python 11

SunFounder PiCrawler Kit

Step 8

If your SD card currently has any files on it, you may wish to back up these files first to prevent you from permanently
losing them. If there is no file to be backed up, click Yes.

12 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Step 9

After waiting for a period of time, the following window will appear to represent the completion of writing.

2.1. Quick Guide on Python 13

SunFounder PiCrawler Kit

2.1.3 Set up Your Raspberry Pi

If You Have a Screen

If you have a screen, it will be easy for you to operate on the Raspberry Pi.

Required Components

Any Raspberry Pi 1 * Power Adapter
1 * Micro SD card 1 * Screen Power Adapter
1 * HDMI cable 1 * Screen
1 * Mouse 1 * Keyboard

1. Insert the SD card you’ve set up with Raspberry Pi OS into the micro SD card slot on the underside of your
Raspberry Pi.

2. Plug in the Mouse and Keyboard.

3. Connect the screen to Raspberry Pi’s HDMI port and make sure your screen is plugged into a wall socket and
switched on.

Note: If you use a Raspberry Pi 4, you need to connect the screen to the HDMI0 (nearest the power
in port).

4. Use the power adapter to power the Raspberry Pi. After a few seconds, the Raspberry Pi OS desktop will be
displayed.

14 Chapter 2. Play with Python

SunFounder PiCrawler Kit

If You Have No Screen

If you don’t have a display, you can log in to the Raspberry Pi remotely, but before that, you need to get the IP of the
Raspberry Pi.

Get the IP Address

After the Raspberry Pi is connected to WIFI, we need to get the IP address of it. There are many ways to know the IP
address, and two of them are listed as follows.

1. Checking via the router

If you have permission to log in the router(such as a home network), you can check the addresses assigned to Raspberry
Pi on the admin interface of router.

The default hostname of the Raspberry Pi OS is raspberrypi, and you need to find it. (If you are using ArchLinuxARM
system, please find alarmpi.)

2. Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry Pi. You can apply the software, Advanced
IP scanner and so on.

Scan the IP range set, and the name of all connected devices will be displayed. Similarly, the default hostname of the
Raspberry Pi OS is raspberrypi, if you haven’t modified it.

2.1. Quick Guide on Python 15

SunFounder PiCrawler Kit

Use the SSH Remote Control

We can open the Bash Shell of Raspberry Pi by applying SSH. Bash is the standard default shell of Linux. The Shell
itself is a program written in C that is the bridge linking the customers and Unix/Linux. Moreover, it can help to
complete most of the work needed.

For Linux or/Mac OS X Users

Step 1

Go to Applications->Utilities, find the Terminal, and open it.

Step 2

Type in ssh pi@ip_address . “pi”is your username and “ip_address” is your IP address. For example:

ssh pi@192.168.18.197

Step 3

Input”yes”.

16 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Step 4

Input the passcode and the default password is raspberry.

Step 5

We now get the Raspberry Pi connected and are ready to go to the next step.

2.1. Quick Guide on Python 17

SunFounder PiCrawler Kit

Note: When you input the password, the characters do not display on window accordingly, which is normal. What
you need is to input the correct password.

For Windows Users

If you’re a Windows user, you can use SSH with the application of some software. Here, we recommend PuTTY.

Step 1

Download PuTTY.

Step 2

Open PuTTY and click Session on the left tree-alike structure. Enter the IP address of the RPi in the text box under
Host Name (or IP address) and 22 under Port (by default it is 22).

18 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Step 3

Click Open. Note that when you first log in to the Raspberry Pi with the IP address, there prompts a security reminder.
Just click Yes.

Step 4

When the PuTTY window prompts “login as:”, type in “pi”(the user name of the RPi), and password: “raspberry”
(the default one, if you haven’t changed it).

Note: When you input the password, the characters do not display on window accordingly, which is normal. What
you need is to input the correct password.

If inactive appears next to PuTTY, it means that the connection has been broken and needs to be reconnected.

2.1. Quick Guide on Python 19

SunFounder PiCrawler Kit

Step 5

Here, we get the Raspberry Pi connected and it is time to conduct the next steps.

Note: If you are not satisfied with using the command window to control the Raspberry Pi, you can also use the
remote desktop function, which can help us manage the files in the Raspberry Pi easily.

For details on how to do this, please refer to Remote Desktop.

2.1.4 Download and Run the Code

Download the Code Install Libraries

We can download the files by using git clone in the command line.

cd /home/pi/
git clone https://github.com/sunfounder/pan-tilt-hat.git
cd pan-tilt-hat
sudo python3 install.py

Note: Running install.py will download some necessary components. You may fail to download due to network
problems. You may need to download again at this time.

Run servo_zeroing.py

Run the servo_zeroing.py in the examples/ folder.

cd /home/pi/pan-tilt-hat/examples
sudo python3 servo_zeroing.py

To make sure you can see that the servo has been set to 0°, you can insert a rocker arm in the servo shaft first and then
turn the servo to another angle.

20 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Now follow the diagram below and insert the servo to the P0/P1 position.

Now if the servo arm shifts and stops at a specific position, the function will take effect. If it is not, please check the
insertion direction of the servo cable and re-run the code.

2.1. Quick Guide on Python 21

SunFounder PiCrawler Kit

After the assembly is complete, you can try to run the projects below.

2.2 Take Photo

This is the first python example of Pan-tilt HAT.

After the program runs: 1. You can enter http://<Your Raspberry Pi IP>:9000/mjpg in the browser
(such as chrome) to view the viewfinder screen. 2. Type q in Terminal and press Enter to take a photo.

Run the Code

cd /home/pi/pan-tilt-hat/examples
sudo python3 take_photo.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !

* Serving Flask app "vilib.vilib" (lazy loading)

* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: http:/
/192.168.18.113:9000/mjpg

Code

from vilib import Vilib

def main():
Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)

path = "/home/pi/Pictures/"

while True:
key = input()
if key == "q":

Vilib.take_photo(photo_name="new_photo",path=path)
print("Take Photo")

if key == "g":
Vilib.camera_close()
break

if __name__ == "__main__":
main()

22 Chapter 2. Play with Python

SunFounder PiCrawler Kit

How it works?

The content involved in this article is exactly the basic function of the vilib library. We have already installed this
library in Download and Run the Code.

What you need to focus on is the following:

from vilib import Vilib

All functions related to computer vision are encapsulated in this library.

Vilib.camera_start(vflip=True,hflip=True)

Let the camera module enter the working state. If you modify the two parameters of this function to False, the screen
will be flipped horizontally/vertically.

Vilib.camera_close()

Stop the camera module.

Vilib.display(local=True,web=True)

Allows you to see the picture taken by the camera module. Its parameter local=True is used to open the viewfinder
in the Raspberry Pi desktop, which is suitable for Remote Desktop or the situation where a screen is provided for the
Raspberry Pi. The parameter web=True allows you to view the image through the browser, which is the method
suggested in this article. It is suitable for the situation where your PC and Raspberry Pi are connected to the same
local area network.

Vilib.take_photo(photo_name="new_photo",path="/home/pi/Pictures/")

As the name suggests, this function takes pictures. The first parameter is the name of the generated image file, and the
second parameter is the path where the file is located. They can all be customized.

Please see the next chapter for how to move and view the photos you have taken.

2.3 Check Photos

An easy way is to use Filezilla Software to drag and drop the photo files to the PC. However, its viewing experience
is not very good. We recommend that you use Samba to turn the picture folder into an album that can be used in the
local area network.

Install Samba

1. Run the command to set up Samba service.

sudo apt-get update
sudo apt-get install samba samba-common-bin

2. Configure Samba typing.

sudo nano /etc/samba/smb.conf

Note: Press ctrl+o to save what you modify in nano editor, ctrl+x to to exit.

Input the following content at the end of the file:

2.3. Check Photos 23

https://www.samba.org/

SunFounder PiCrawler Kit

[share]
path = /home/pi/Pictures/ #This is your album path.
valid users = pi
browseable = yes
public = yes
writable = yes

3. Restart Samba service.

sudo service smbd restart

4. Add sharing account.

sudo smbpasswd -a pi

Note: A sharing account “pi” is created and you need to set your passcode.

Mount Photo Album to Windows

Under This PC, click Map network drive.

Type \\hostname or IP address\the name of the shared files in the path bar.

24 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Type in the username and the password. Click OK button, and you can access the shared files.

The album will appear as a new volume under this PC.

Mount Photo album to iOS

The system newer than iOS 13.0 can directly mount storage in Files. The older versions of iOS can use APPs like DS
File.

1. Open Files.

2.3. Check Photos 25

SunFounder PiCrawler Kit

2. Tap Connect to Server in Menu.

3. Enter your Rascam IP address.

26 Chapter 2. Play with Python

SunFounder PiCrawler Kit

4. Log in.

5. Now, you can directly access the photo album in File.

2.3. Check Photos 27

SunFounder PiCrawler Kit

2.4 Continuous Shooting

This example allows us to use the pan-tilt for shooting/continuous shooting more conveniently.

By the way, a large number of still photos captured in continuous shooting can be used as frames to synthesize videos.
This usage will be later in the chapter Time Lapse Photography.

Here you will use two windows at the same time: One is Terminal, where you will enter wasd to control the camera
orientation, enter q to shoot, and enter g to exit shooting. If the program has not been terminated after exiting the
shooting, please press ctrl+c. Another browser interface, after the program runs, you will need to enter http://
<Your Raspberry Pi IP>:9000/mjpg in the PC browser (such as chrome) to view the viewfinder screen.

Run the Code

cd /home/pi/pan-tilt-hat/examples
sudo python3 continuous_shooting.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !

* Serving Flask app "vilib.vilib" (lazy loading)

* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: http:/
/192.168.18.113:9000/mjpg

28 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Code

from time import sleep,strftime,localtime
from vilib import Vilib
from sunfounder_io import PWM,Servo,I2C

import sys
import tty
import termios

region read keyboard
def readchar():

fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:

tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)

return ch

manual = '''
Press keys on keyboard to record value!

W: up
A: left
S: right
D: down
Q: continuous_shooting

G: Quit
'''
endregion

region init
I2C().reset_mcu()
sleep(0.01)

pan = Servo(PWM("P1"))
tilt = Servo(PWM("P0"))
panAngle = 0
tiltAngle = 0
pan.angle(panAngle)
tilt.angle(tiltAngle)

#endregion init

region servo control
def limit(x,min,max):

if x > max:
return max

elif x < min:
return min

(continues on next page)

2.4. Continuous Shooting 29

SunFounder PiCrawler Kit

(continued from previous page)

else:
return x

def servo_control(key):
global panAngle,tiltAngle
if key == 'w':

tiltAngle -= 1
tiltAngle = limit(tiltAngle, -90, 90)
tilt.angle(tiltAngle)

if key == 's':
tiltAngle += 1
tiltAngle = limit(tiltAngle, -90, 90)
tilt.angle(tiltAngle)

if key == 'a':
panAngle += 1
panAngle = limit(panAngle, -90, 90)
pan.angle(panAngle)

if key == 'd':
panAngle -= 1
panAngle = limit(panAngle, -90, 90)
pan.angle(panAngle)

endregion

continuous shooting
def continuous_shooting(path,interval_ms:int=50,number=10):

print("continuous_shooting .. ")
path=path+'/'+strftime("%Y-%m-%d-%H.%M.%S", localtime())
for i in range(number):

Vilib.take_photo(photo_name='%03d'%i,path=path)
print("take_photo: %s"%i)
sleep(interval_ms/1000)

print("continuous_shooting done ")

def main():

Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)

path = "/home/pi/Pictures/continuous_shooting"

print(manual)
while True:

key = readchar()
servo_control(key)
if key == 'q':

continuous_shooting(path,interval_ms=50,number=10)
if key == 'g':

Vilib.camera_close()
break

sleep(0.1)

if __name__ == "__main__":
main()

How it works?

30 Chapter 2. Play with Python

SunFounder PiCrawler Kit

The code in this article looks slightly complicated, we can split it into three parts:

• Keyboard input

• Servo control

• Take photos

1. First, let’s look at the keyboard control part, which includes the following parts:

import sys
import tty
import termios

region read keyboard
def readchar():

fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:

tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)

return ch
endregion

def main():
while True:

key = readchar()
sleep(0.1)

if __name__ == "__main__":
main()

Its function is to make the terminal can obtain the keyboard input value in real time (without pressing
enter), which is more convenient for practical operation.

2. Secondly, let’s look at the steering gear control part, which consists of the following code:

from time import sleep
from sunfounder_io import PWM,Servo,I2C

The readchar part is omitted here

region init
I2C().reset_mcu()
sleep(0.01)

pan = Servo(PWM("P1"))
tilt = Servo(PWM("P0"))
panAngle = 0
tiltAngle = 0
pan.angle(panAngle)
tilt.angle(tiltAngle)
#endregion init

region servo control
def limit(x,min,max):

if x > max:
return max

(continues on next page)

2.4. Continuous Shooting 31

SunFounder PiCrawler Kit

(continued from previous page)

elif x < min:
return min

else:
return x

def servo_control(key):
global panAngle,tiltAngle
if key == 'w':

tiltAngle -= 1
tiltAngle = limit(tiltAngle, -90, 90)
tilt.angle(tiltAngle)

if key == 's':
tiltAngle += 1
tiltAngle = limit(tiltAngle, -90, 90)
tilt.angle(tiltAngle)

if key == 'a':
panAngle += 1
panAngle = limit(panAngle, -90, 90)
pan.angle(panAngle)

if key == 'd':
panAngle -= 1
panAngle = limit(panAngle, -90, 90)
pan.angle(panAngle)

endregion

def main():
while True:

key = readchar()
servo_control(key)

if __name__ == "__main__":
main()

It seems to be a little bit more complicated, but after careful observation, you will find that most of
this is the initialization and restriction of the position of the steering gear, which can be perfected
according to personal preferences. Its main core is nothing more than the following lines:

from time import sleep
from sunfounder_io import PWM,Servo,I2C

I2C().reset_mcu()
sleep(0.01)

pan = Servo(PWM("P1"))
tilt = Servo(PWM("P0"))
panAngle = 0
tiltAngle = 0
pan.angle(panAngle)
tilt.angle(tiltAngle)

• Among them, I2C().reset_mcu() is used to reset Pan-tilt HAT, which can help you reduce
many accidents. It is recommended to add it in every example of using a steering gear.

• And tilt = Servo(PWM("P0")) is used to init the servo object. Here, the servo connected
to P0 is declared as an object named tilt .

• As for tilt.angle(angle) , it directly controls the tiltServo, which is the angle of the

32 Chapter 2. Play with Python

SunFounder PiCrawler Kit

servo connected to P0.

3. Finally, let’s take a look at the photo section, which is roughly similar to Take Photo, but with the addition of
continuous shooting.

from time import sleep,strftime,localtime
from vilib import Vilib

The readchar part & servo part is omitted here

continuous shooting
def continuous_shooting(path,interval_ms:int=50,number=10):

print("continuous_shooting .. ")
path=path+'/'+strftime("%Y-%m-%d-%H.%M.%S", localtime())
for i in range(number):

Vilib.take_photo(photo_name='%03d'%i,path=path)
print("take_photo: %s"%i)
sleep(interval_ms*0.001)

print("continuous_shooting done ")

def main():
Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)

path = "/home/pi/Pictures/continuous_shooting"

while True:
key = readchar()
#servo_control(key)
if key == 'q':

continuous_shooting(path,interval_ms=50,number=10)
if key == 'g':

Vilib.camera_close()
break

sleep(0.1)

if __name__ == "__main__":
main()

We have written a function continuous_shooting(path,interval_ms=50,
number=10), whose function is to execute a for loop and execute Vilib.take_photo() to
achieve continuous shooting.

The photos produced by continuous shooting will be stored in a newly created folder, and the folder
will be named according to the current time. Here you may be curious about the time-related func-
tions strftime() and localtime(), then please see Time-Python Docs.

2.5 Time Lapse Photography

Some things happen too slowly for us to perceive, such as the legend of the flow of people, sunrise and sunset, and the
blooming of flower buds. Time-lapse photography allows you to see these exciting things clearly.

You will use two windows at the same time in this project: One is Terminal, where you will enter wasd to control the
camera orientation, enter q to record, then enter e to stop, and enter g to exit shooting. If the program has not been
terminated after exiting the shooting, please press ctrl+c. Another browser interface, after the program runs, you
will need to enter http://<Your Raspberry Pi IP>:9000/mjpg in the PC browser (such as chrome) to
view the screen.

2.5. Time Lapse Photography 33

https://docs.python.org/3/library/time.html?highlight=strftime#time.strftime

SunFounder PiCrawler Kit

Run the Code

cd /home/pi/pan-tilt-hat/examples
sudo python3 time_lapse_photography

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !

* Serving Flask app "vilib.vilib" (lazy loading)

* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: http:/
/192.168.18.113:9000/mjpg

Code

from time import perf_counter, sleep,strftime,localtime
from vilib import Vilib
from sunfounder_io import PWM,Servo,I2C
import cv2
import os
import sys
import tty
import termios
import threading

region read keyboard
def readchar():

fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:

tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)

return ch

manual = '''
Press keys on keyboard to record value!

W: up
A: left
S: right
D: down
Q: start Time-lapse photography
E: stop
G: Quit

'''
(continues on next page)

34 Chapter 2. Play with Python

SunFounder PiCrawler Kit

(continued from previous page)

endregion

region init
I2C().reset_mcu()
sleep(0.01)

pan = Servo(PWM("P1"))
tilt = Servo(PWM("P0"))
panAngle = 0
tiltAngle = 0
pan.angle(panAngle)
tilt.angle(tiltAngle)
endregion

check dir
def check_dir(dir):

if not os.path.exists(dir):
try:

os.makedirs(dir)
except Exception as e:

print(e)

region servo control
def limit(x,min,max):

if x > max:
return max

elif x < min:
return min

else:
return x

def servo_control(key):
global panAngle,tiltAngle
if key == 'w':

tiltAngle -= 1
tiltAngle = limit(tiltAngle, -90, 90)
tilt.angle(tiltAngle)

if key == 's':
tiltAngle += 1
tiltAngle = limit(tiltAngle, -90, 90)
tilt.angle(tiltAngle)

if key == 'a':
panAngle += 1
panAngle = limit(panAngle, -90, 90)
pan.angle(panAngle)

if key == 'd':
panAngle -= 1
panAngle = limit(panAngle, -90, 90)
pan.angle(panAngle)

endregion servo control

Video synthesis
def video_synthesis(name:str,input:str,output:str,fps=30,format='.jpg',
→˓datetime=False):

print('processing video, please wait')
(continues on next page)

2.5. Time Lapse Photography 35

SunFounder PiCrawler Kit

(continued from previous page)

video parameter
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(output+'/'+name, fourcc, fps, (640,480))
width = 640
height = 480

traverse

for root, dirs, files in os.walk(input):
print('%s pictures be processed'%len(files))
files = sorted(files)
for file in files:

print('Format:',os.path.splitext(file)[1])
if os.path.splitext(file)[1] == format:

imread
frame = cv2.imread(input+'/'+file)
add datetime watermark
if datetime == True:

print('name:',os.path.splitext(file)[1])
time = os.path.splitext(file)[0].split('-')
year = time[0]
month = time[1]
day = time[2]
hour = time[3]
minute = time[4]
second = time[5]
frame = cv2.putText(frame,'%s.%s.%s %s:%s:%s'%(year,month,day,

→˓hour,minute,second),
(width - 180, height - 25),cv2.FONT_HERSHEY_

→˓SIMPLEX, 0.5,
(255, 255, 255),1,cv2.LINE_AA) # anti-

→˓aliasing
write video
out.write(frame)

release the VideoWriter object
out.release()

remove photos
os.system('sudo rm -r %s'%input)
print('Done.The video save as %s/%s'%(output,name))

keyboard scan thread
key = None
breakout_flag=False
def keyboard_scan():

global key
while True:

key = None
key = readchar()
sleep(0.01)
if breakout_flag==True:

break

continuous_shooting
def continuous_shooting(path,interval_ms:int=3000):

(continues on next page)

36 Chapter 2. Play with Python

SunFounder PiCrawler Kit

(continued from previous page)

print('Start time-lapse photography, press the "e" key to stop')

delay = 10 # ms

count = 0
while True:

if count == interval_ms/delay:
count = 0
Vilib.take_photo(photo_name=strftime("%Y-%m-%d-%H-%M-%S", localtime()),

→˓path=path)
if key == 'e':

break
count += 1
sleep(delay/1000) # second

main
def main():

print(manual)

Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)

sleep(1)
t = threading.Thread(target=keyboard_scan)
t.setDaemon(True)
t.start()

while True:
servo_control(key)

time-lapse photography
if key == 'q':

#check path
output = "/home/pi/Pictures/time_lapse" # -o
input = output+'/'+strftime("%Y-%m-%d-%H-%M-%S", localtime())
check_dir(input)
check_dir(output)

take_photo
continuous_shooting(input,interval_ms=3000)

video_synthesis
name=strftime("%Y-%m-%d-%H-%M-%S", localtime())+'.avi'
video_synthesis(name=name,input=input,output=output,fps=30,format='.jpg',

→˓datetime=True)

esc
if key == 'g':

Vilib.camera_close()
global breakout_flag
breakout_flag=True
sleep(0.1)
print('The program ends, please press CTRL+C to exit.')
break

(continues on next page)

2.5. Time Lapse Photography 37

SunFounder PiCrawler Kit

(continued from previous page)

sleep(0.01)

if __name__ == "__main__":
main()

How it works?

Similar to Continuous Shooting, this example also needs to be split for analysis. It includes the following parts:

• Servo control

• Key input

• Path management

• Shooting

• Video synthesis

1. Servo Control: It is exactly the same as Continuous Shooting, no need to repeat it.

2. Key input: Its implementation is consistent with Continuous Shooting (ie readchar()), but it is called by a
separate thread. We extract the relevant code separately, as follows:

'''
Time-lapse photography based on the Raspistill command
'''
from time import sleep,

import sys
import tty
import termios
import threading

region read keyboard
def readchar():

pass

keyboard scan thread
key = None
breakout_flag=False

def keyboard_scan():
global key
while True:

key = None
key = readchar()
sleep(0.01)
if breakout_flag==True:

break

main
def main():

t = threading.Thread(target=keyboard_scan)
t.setDaemon(True)
t.start()

while True:

(continues on next page)

38 Chapter 2. Play with Python

SunFounder PiCrawler Kit

(continued from previous page)

esc
if key == 'g':

global breakout_flag
breakout_flag=True
sleep(0.1)
print('The program ends, please press CTRL+C to exit.')
break

sleep(0.01)

if __name__ == "__main__":
main()

Simply put, the t = threading.Thread(target=keyboard_scan) line of the main
function generates a thread and calls the keyboard_scan() function. This function calls
readchar() in a loop until the breakout_flag ends after being modified.

For details on the use of threads, please refer to Threading - Python Docs.

3. Route Management: Used to ensure that the file read and write path during shooting is correct. It includes the
following:

import os

check dir
def check_dir(dir):

if not os.path.exists(dir):
try:

os.makedirs(dir)
except Exception as e:

print(e)

main
def main():

while True:
if key == 'q':

#check path
output = "/home/pi/Pictures/time_lapse" # -o
input = output+'/'+strftime("%Y-%m-%d-%H-%M-%S", localtime())
check_dir(input)
check_dir(output)

take_photo
video_synthesis

if __name__ == "__main__":
main()

The target directory for our output videos is output. And generating video requires a large number
of temporary still photos, which are stored in input. The function of check_dir() is to check
whether the target folder exists, and create it if it does not exist.

An os library is imported here, which allows python to use related functions of the operating system.
Such as reading and writing files, creating files and directories, and manipulate paths. For details,
please see OS - Python Docs.

4. Shooting: Similar to Continuous Shooting, the difference is that instead of writing a specific number of photos,

2.5. Time Lapse Photography 39

https://docs.python.org/3/library/threading.html?thread#threading.Thread
https://docs.python.org/3/library/os.html

SunFounder PiCrawler Kit

you manually press e to stop. This is achieved because the keyboard input is separated from the main program
and runs on the thread separately.

from time import perf_counter, sleep,strftime,localtime
from vilib import Vilib

continuous_shooting
def continuous_shooting(path,interval_ms:int=3000):

print('Start time-lapse photography, press the "e" key to stop')

delay = 10 # ms
count = 0
while True:

if count == interval_ms/delay:
count = 0
Vilib.take_photo(photo_name=strftime("%Y-%m-%d-%H-%M-%S",

→˓localtime()),path=path)
if key == 'e':

break
count += 1
sleep(delay/1000) # second

main
def main():

Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)

while True:
time-lapse photography
if key == 'q':

#check path

take_photo
continuous_shooting(input,interval_ms=3000)

video_synthesis

esc
if key == 'g':

Vilib.camera_close()
break

sleep(0.01)

if __name__ == "__main__":
main()

5. Video synthesis: It uses the photos stored in the input path as frames, and generates a video output to the
output path.

from time import perf_counter, sleep,strftime,localtime
from vilib import Vilib
import cv2
import os

Video synthesis
def video_synthesis(name:str,input:str,output:str,fps=30,format='.jpg',
→˓datetime=False): (continues on next page)

40 Chapter 2. Play with Python

SunFounder PiCrawler Kit

(continued from previous page)

print('processing video, please wait')

video parameter
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(output+'/'+name, fourcc, fps, (640,480))
width = 640
height = 480

traverse

for root, dirs, files in os.walk(input):
print('%s pictures be processed'%len(files))
file = sorted(files)
for file in files:

print('Format:',os.path.splitext(file)[1])
if os.path.splitext(file)[1] == format:

imread
frame = cv2.imread(input+'/'+file)
add datetime watermark
if datetime == True:

print('name:',os.path.splitext(file)[1])
time = os.path.splitext(file)[0].split('-')
year = time[0]
month = time[1]
day = time[2]
hour = time[3]
minute = time[4]
second = time[5]
frame = cv2.putText(frame, '%s.%s.%s %s:%s:%s'%(year,

→˓month,day,hour,minute,second),
(width - 180, height - 25), cv2.

→˓FONT_HERSHEY_SIMPLEX, 0.5,
(255, 255, 255),1,cv2.LINE_AA)

→˓# anti-aliasing
write video
out.write(frame)

release the VideoWriter object
out.release()

remove photos
os.system('sudo rm -r %s'%input)
print('Done.The video save as %s/%s'%(output,name))

main
def main()

while True:
if key == 'q':

#check path
take_photo

video_synthesis
name=strftime("%Y-%m-%d-%H-%M-%S", localtime())+'.avi'
video_synthesis(name=name,input=input,output=output,fps=30,

→˓format='.jpg',datetime=True)

(continues on next page)

2.5. Time Lapse Photography 41

SunFounder PiCrawler Kit

(continued from previous page)

if __name__ == "__main__":
main()

Here, the video writer object is initialized first. The code show as below:

fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(output+'/'+name, fourcc, fps, (640,480))

This module is derived from OpenCV, please refer to VideoWriter-OpenCV Docs for details.

Then, loop through each frame to form a video:

for root, dirs, files in os.walk(input):
print('%s pictures be processed'%len(files))
files = sorted(files)
for file in files:

if os.path.splitext(file)[1] == format:
imread
frame = cv2.imread(input+'/'+file)
add datetime watermark
if datetime == True:

time = os.path.splitext(file)[0].split('-')
year = time[0]
month = time[1]
day = time[2]
hour = time[3]
minute = time[4]
second = time[5]
frame = cv2.putText(frame, '%s.%s.%s %s:%s:%s'%(year,

→˓month,day,hour,minute,second),
(width - 180, height - 25), cv2.FONT_

→˓HERSHEY_SIMPLEX, 0.5,
(255, 255, 255),1,cv2.LINE_AA) #

→˓anti-aliasing
write video
out.write(frame)

After the video is processed, release the VideoWriter.

release the VideoWriter object
out.release()

Finally delete the input folder. Of course, if you have enough space, comment out this line of code
to keep the original picture.

remove photos
os.system('sudo rm -r %s'%input)

42 Chapter 2. Play with Python

https://docs.opencv.org/4.0.0/dd/d9e/classcv_1_1VideoWriter.html

SunFounder PiCrawler Kit

2.6 Record Video

This example allows us to record a video.

Here you will use two windows at the same time: One is Terminal, you can type wasd here to control the orientation
of the camera, type q to record/pause/continue recording, type e to stop recording, and type g to exit shooting . If
the program has not been terminated after exiting the shooting, please type ctrl+c. Another browser interface, after
the program runs, you will need to enter http://<Your Raspberry Pi IP>:9000/mjpg in the PC browser
(such as chrome) to view the viewfinder screen.

Run the Code

cd /home/pi/pan-tilt-hat/examples
sudo python3 record_video.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !

* Serving Flask app "vilib.vilib" (lazy loading)

* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: http:/
/192.168.18.113:9000/mjpg

Code

from time import sleep,strftime,localtime
from vilib import Vilib
from sunfounder_io import PWM,Servo,I2C

import sys
import tty
import termios

region read keyboard
def readchar():

fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:

tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)

return ch

manual = '''

(continues on next page)

2.6. Record Video 43

SunFounder PiCrawler Kit

(continued from previous page)

Press keys on keyboard to record value!
W: up
A: left
S: right
D: down
Q: record/pause/continue
E: stop

G: Quit
'''
endregion

region init
I2C().reset_mcu()
sleep(0.01)

pan = Servo(PWM("P1"))
tilt = Servo(PWM("P0"))
panAngle = 0
tiltAngle = 0
pan.angle(0)
tilt.angle(0)

Vilib.rec_video_set["path"] = "/home/pi/Pictures/"
vname = strftime("%Y-%m-%d-%H.%M.%S", localtime())
Vilib.rec_video_set["name"] = vname

rec_flag = 'stop' # start,pause,stop
endregion init

rec control
def rec_control(key):

global rec_flag

if key == 'q' and rec_flag == 'stop':
key = None
rec_flag = 'start'
Vilib.rec_video_run()
print('rec start ...')

if key == 'q' and rec_flag == 'start':
key = None
rec_flag = 'pause'
Vilib.rec_video_pause()
print('pause')

if key == 'q' and rec_flag == 'pause':
key = None
rec_flag = 'start'
Vilib.rec_video_start()
print('continue')

if key == 'e' and rec_flag != 'stop':
Vilib.rec_video_stop()
print('stop')
print("The video saved as %s%s.avi"%(Vilib.rec_video_set["path"],vname))

region servo control
def limit(x,min,max):

(continues on next page)

44 Chapter 2. Play with Python

SunFounder PiCrawler Kit

(continued from previous page)

if x > max:
return max

elif x < min:
return min

else:
return x

def servo_control(key):
global panAngle,tiltAngle
if key == 'w':

tiltAngle -= 1
tiltAngle = limit(tiltAngle, -90, 90)
tilt.angle(tiltAngle)

if key == 's':
tiltAngle += 1
tiltAngle = limit(tiltAngle, -90, 90)
tilt.angle(tiltAngle)

if key == 'a':
panAngle += 1
panAngle = limit(panAngle, -90, 90)
pan.angle(panAngle)

if key == 'd':
panAngle -= 1
panAngle = limit(panAngle, -90, 90)
pan.angle(panAngle)

endregion servo control

def main():

Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)

print(manual)
while True:

key = readchar()
rec control
rec_control(key)
servo control
servo_control(key)
esc
if key == 'g':

Vilib.camera_close()
break

sleep(0.1)

if __name__ == "__main__":
main()

How it works?

This article can be divided into three parts to analyze:

• Keyboard input

• Servo control

2.6. Record Video 45

SunFounder PiCrawler Kit

• Record video

The first two parts are consistent with Continuous Shooting. The record video function code is as follows:

from time import sleep,strftime,localtime
from vilib import Vilib

region init
Vilib.rec_video_set["path"] = "/home/pi/Pictures/"
vname = strftime("%Y-%m-%d-%H.%M.%S", localtime())
Vilib.rec_video_set["name"] = vname

rec_flag = 'stop' # start,pause,stop
endregion init

rec control
def rec_control(key):

global rec_flag

if key == 'q' and rec_flag == 'stop':
key = None
rec_flag = 'start'
Vilib.rec_video_run()
print('rec start ...')

if key == 'q' and rec_flag == 'start':
key = None
rec_flag = 'pause'
Vilib.rec_video_pause()
print('pause')

if key == 'q' and rec_flag == 'pause':
key = None
rec_flag = 'start'
Vilib.rec_video_start()
print('continue')

if key == 'e' and rec_flag != 'stop':
Vilib.rec_video_stop()
print('stop')
print("The video saved as %s%s.avi"%(Vilib.rec_video_set["path"],vname))

def main():

Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)

while True:
rec_control(key)
if key == 'g':

Vilib.camera_close()
break

if __name__ == "__main__":
main()

Parameters related to recording include the following:

• Vilib.rec_video_set["path"] The address where the video is saved

• Vilib.rec_video_set["name"] The name of the saved video

46 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Functions related to recording include the following:

• Vilib.rec_video_run() Start recording

• Vilib.rec_video_pause() Pause recording

• Vilib.rec_video_start() Continue recording

• Vilib.rec_video_stop() Stop recording

2.7 Panorama

A panorama is a wide-angle view or representation of the physical space, which is composed of multiple standard
photos stitched together to bring a visual wonder with a field of view far beyond the human eye.

In this article, you will use the slow rotation of the pan-tilt to obtain multiple photos to combine a long panorama
picture.

Run the Code

cd /home/pi/pan-tilt-hat/examples
sudo python3 panorama.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !

* Serving Flask app "vilib.vilib" (lazy loading)

* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: http:/
/192.168.18.113:9000/mjpg

Code

2.7. Panorama 47

SunFounder PiCrawler Kit

from time import perf_counter, sleep,strftime,localtime
from vilib import Vilib
from sunfounder_io import PWM,Servo,I2C
import cv2
import os

import sys
import tty
import termios

region read keyboard
def readchar():

fd = sys.stdin.fileno()
old_settings = termios.tcgetattr(fd)
try:

tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)

return ch

manual = '''
Press keys on keyboard to record value!

Q: take photo
G: Quit

'''
endregion

check dir
def check_dir(dir):

if not os.path.exists(dir):
try:

os.makedirs(dir)
except Exception as e:

print(e)

region init
I2C().reset_mcu()
sleep(0.01)

pan = Servo(PWM("P1"))
tilt = Servo(PWM("P0"))
panAngle = 0
tiltAngle = 0
pan.angle(panAngle)
tilt.angle(tiltAngle)
endregion

Status_info = {
0: 'OK',
1: 'ERR_NEED_MORE_IMGS',
2: 'ERR_HOMOGRAPHY_EST_FAIL',
3: 'ERR_CAMERA_PARAMS_ADJUST_FAIL',

}

def panorama_shooting(path):
global panAngle,tiltAngle

(continues on next page)

48 Chapter 2. Play with Python

SunFounder PiCrawler Kit

(continued from previous page)

temp_path = "/home/pi/picture/.temp/panorama"
imgs =[]

check path
check_dir(path)

take photo
for a in range(panAngle,-81,-5):

panAngle = a
pan.angle(panAngle)
sleep(0.1)

num = 0
for angle in range(-80,81,20):

for a in range(panAngle,angle,1):
panAngle = a
pan.angle(a)
sleep(0.1)

sleep(0.5)
sleep(0.5)
print(num,angle)
Vilib.take_photo(photo_name='%s'%num,path=temp_path)
sleep(0.2)
num += 1

stitch image
stitcher = cv2.Stitcher_create(cv2.Stitcher_SCANS)

for index in range(num):
imgs.append(cv2.imread('%s/%s.jpg'%(temp_path,index)))

print('imgs num: %s'%len(imgs))

status,pano = stitcher.stitch(imgs)

imwrite and imshow
print('status: %s , %s'%(status,Status_info[status]))
if status == 0:

cv2.imwrite('%s/%s.jpg'%(path,strftime("%Y-%m-%d-%H.%M.%S", localtime())),
→˓pano)

cv2.imshow('panorama',pano)

os.system('sudo rm -r %s'%temp_path)

main

def main():

print(manual)

Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)
sleep(0.1)

path = "/home/pi/Pictures/panorama"
while True:

key = readchar()
(continues on next page)

2.7. Panorama 49

SunFounder PiCrawler Kit

(continued from previous page)

take photo
if key == 'q':

print("panorama shooting ...")
panorama_shooting(path)

esc
if key == 'g':

print('Quit')
Vilib.camera_close()
break

sleep(0.01)

if __name__ == "__main__":
main()

How it works?

The core functions of this example are placed in the panorama_shooting(path) function. This function in-
cludes the following parts:

1. Path management: that is, checkdir() , I won’t repeat it.

2. Photograph:

take photo
for a in range(panAngle,-81,-5):

panAngle = a
pan.angle(panAngle)
sleep(0.1)

num = 0
for angle in range(-80,81,20):

for a in range(panAngle,angle,1):
panAngle = a
pan.angle(a)
sleep(0.1)

sleep(0.5)

print(num,angle)
Vilib.take_photo(photo_name='%s'%num,path=temp_path)
sleep(0.2)
num += 1

Here, the two functions of taking pictures and steering gear control are put together. The pan servo
starts to deflection slowly counterclockwise from the -80° position, and takes a picture every 20°
deflection, until the 80° position ends. After execution, you will get 9 temporary photos, which are
stored in the path temp_path.

3. Stitching photos:

stitch image
stitcher = cv2.Stitcher_create(cv2.Stitcher_SCANS)

for index in range(num):
imgs.append(cv2.imread('%s/%s.jpg'%(temp_path,index)))

print('imgs num: %s'%len(imgs))

(continues on next page)

50 Chapter 2. Play with Python

SunFounder PiCrawler Kit

(continued from previous page)

status,pano = stitcher.stitch(imgs)

imwrite and imshow
print('status: %s , %s'%(status,Status_info[status]))
if status == 0:

cv2.imwrite('%s/%s.jpg'%(path,strftime("%Y-%m-%d-%H.%M.%S",
→˓localtime())),pano)

cv2.imshow('panorama',pano)

os.system('sudo rm -r %s'%temp_path)

These photos are added to an array imgs, and then call OpenCV’s Stitcher module (ie status,
pano = stitcher.stitch(imgs)) to merge them into a panorama pano. Finally, use cv2.
imwrite() to write pano into the storage space, and delete the temporary photos and their paths.

For more details, please see Stitcher-Docs and Image file reading and writing-OpenCV.

2.8 Image Classification

When you see a rabbit, you will directly say its name. The computer will tell you that 91% of it may be a rabbit, 4%
of it may be a cat, 3% of it may be a dog, and 2% of it may be something else.

We use image classification to reveal the cognitive model of computer vision. Image classification is a basic task. A
trained model is used to identify images representing various objects, and then the images are assigned to specific tags
to classify the images.

2.8. Image Classification 51

https://docs.opencv.org/3.4.15/d2/d8d/classcv_1_1Stitcher.html#a34152e67e9b04306236b6d570e9adf30
https://docs.opencv.org/3.4.15/d4/da8/group__imgcodecs.html#gabbc7ef1aa2edfaa87772f1202d67e0ce

SunFounder PiCrawler Kit

Run the Code

cd /home/pi/pan-tilt-hat/examples
sudo python3 image_classification.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !

* Serving Flask app "vilib.vilib" (lazy loading)

* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: https:/
/192.168.18.113:9000/mjpg

52 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Code

from vilib import Vilib

def main():
Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)
Vilib.image_classify_set_model(path='/home/pi/pan-tilt-hat/models/mobilenet_v1_0.

→˓25_224_quant.tflite')
Vilib.image_classify_set_labels(path='/home/pi/pan-tilt-hat/models/labels_

→˓mobilenet_quant_v1_224.txt')
Vilib.image_classify_switch(True)

if __name__ == "__main__":
main()

How it works?

The use of this feature is very simple. You only need to pay attention to the following three lines of code:

• Vilib.image_classify_set_model(path) : Load the trained model file.

• Vilib.image_classify_set_labels(path) : Load the corresponding label file.

• Vilib.image_classify_switch(True) : Start the image classifier.

Here, we directly use Tensorflow pre-trained model, which is an image classification model that in-
cludes thousands of objects. You can open the label file (/home/pi/pan-tilt-hat/models/
labels_mobilenet_quant_v1_224.txt) to see which objects are included.

In addition to the built-in models in this article, you can also download the pre-trained image classification model
on TensorFlow Hub. It should be noted that these models may not be suitable for your project, please use them as
appropriate.

If you want to try to create your own model. We strongly recommend that you use Teachable Machine. It is a web-
based tool that allows everyone to create machine learning models quickly, easily, and accessible. Please click Get
start on the webpage to start training your model.

Note: Raspberry Pi may not be able to use Teachable Machine smoothly. You will need to prepare a PC or laptop
equipped with a camera.

Model Training

1. Open Teachable Machine, you will see an obvious Get Start on the web page, click on it.

2.8. Image Classification 53

https://www.tensorflow.org/lite/guide/hosted_models#image_classification
https://tfhub.dev/tensorflow/collections/lite/task-library/image-classifier/1
https://teachablemachine.withgoogle.com/
https://teachablemachine.withgoogle.com/

SunFounder PiCrawler Kit

2. Select Image Project (Audio Project and Pose Project are not applicable here). You will be prompted to choose
Standard image model or Embedded image model. The former has a higher accuracy rate and the latter has a
faster speed. We recommend choosing the first one.

54 Chapter 2. Play with Python

SunFounder PiCrawler Kit

3. Train the model. Teachable Machine provides a detailed video step-by-step explanation, please see:

Note: The video after 0:55 is the content of the other two projects and is not applicable here.

Note: The export settings applicable to this project are shown in the figure:

4. Unzip the downloaded zip file, you will be able to see the model file and label file, their formats are .tflite
and .txt respectively. Use Filezilla Software to copy them to the /home/pi/pan-tilt-hat/models/
directory of the Raspberry Pi.

5. Modify the two lines of the sample code in this article, and change them to your model and label.

Vilib.image_classify_set_model(path='/home/pi/pan-tilt-hat/models/your_
→˓model.tflite')
Vilib.image_classify_set_labels(path='/home/pi/pan-tilt-hat/models/your_
→˓label.txt')

6. Re-run the example. It will recognize the objects in your training model.

2.8. Image Classification 55

SunFounder PiCrawler Kit

2.9 Color Detection

Say a color and mark it in the field of view. This is not difficult for most humans, because we have been trained in this
way since we were young.

For computers, thanks to deep learning, such tasks can also be accomplished. In this project, there is an algorithm that
can find a certain color (6 kinds in total), such as finding “orange”.

Run the Code

cd /home/pi/pan-tilt-hat/examples
sudo python3 color_detection.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !

* Serving Flask app "vilib.vilib" (lazy loading)

* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

56 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: https:/
/192.168.18.113:9000/mjpg

Call the Function

After the program runs, you will see the following information in the final:

Input key to call the function!
q: Take photo
1: Color detect : red
2: Color detect : orange
3: Color detect : yellow
4: Color detect : green
5: Color detect : blue
6: Color detect : purple
0: Switch off Color detect
s: Display detected object information

Please follow the prompts to activate the corresponding functions.

• Color Detect

Entering a number between 1~6 will detect one of the colors in “red, orange, yellow, green, blue,
purple”. Enter 0 to turn off color detection.

Note: You can download and print the PDF Color Cards for color detection.

2.9. Color Detection 57

SunFounder PiCrawler Kit

• Display Information

Entering s will print the information of the color detection target in the terminal. Including the center
coordinates (X, Y) and size (Weight, height) of the measured object.

Code

from vilib import Vilib

flag_color = False

manual = '''
Input key to call the function!

q: Take photo
1: Color detect : red
2: Color detect : orange
3: Color detect : yellow
4: Color detect : green
5: Color detect : blue
6: Color detect : purple
0: Switch off Color detect
s: Display detected object information

'''

def color_detect(color):
print("detecting color :" + color)
Vilib.color_detect(color)

def show_info():
if flag_color is True and Vilib.detect_obj_parameter['color_n']!=0:

color_coodinate = (Vilib.detect_obj_parameter['color_x'],Vilib.detect_obj_
→˓parameter['color_y'])

color_size = (Vilib.detect_obj_parameter['color_w'],Vilib.detect_obj_
→˓parameter['color_h'])

print("Coordinate:",color_coodinate,"Size",color_size)

def main():
Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)
print(manual)

global flag_color

while True:
key = input()
if key == "1":

color_detect("red")
flag_color = True

elif key == "2":
color_detect("orange")
flag_color = True

elif key == "3":
color_detect("yellow")
flag_color = True

elif key == "4":
color_detect("green")
flag_color = True

elif key == "5":
color_detect("blue")

(continues on next page)

58 Chapter 2. Play with Python

SunFounder PiCrawler Kit

(continued from previous page)

flag_color = True
elif key == "6":

color_detect("purple")
flag_color = True

elif key =="0":
Vilib.color_detect_switch(False)
flag_color = False

elif key == "s":
show_info()

if __name__ == "__main__":
main()

How it works?

The first thing you need to pay attention to here is the following function. These two functions allow you to start the
camera.

Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)

Functions related to “color detection”:

• Vilib.color_detect(color) : For color detection, only one color detection can be performed at the
same time. The parameters that can be input are: "red", "orange", "yellow", "green", "blue",
"purple"

• Vilib.color_detect_switch(False) : Switch OFF color detection

The information detected by the target will be stored in the detect_obj_parameter = Manager().dict()
dictionary.

In the main program, you can use it like this:

Vilib.detect_obj_parameter['color_x']

The keys of the dictionary and their uses are shown in the following list:

• color_x: the x value of the center coordinate of the detected color block, the range is 0~320

• color_y: the y value of the center coordinate of the detected color block, the range is 0~240

• color_w: the width of the detected color block, the range is 0~320

• color_h: the height of the detected color block, the range is 0~240

• color_n: the number of detected color patches

2.10 Face Detection

Face detection is the first step in building a face recognition system. It will uniformly calibrate the face according to
the key points in the face (such as the position of the eyes, the position of the nose, the position of the mouth, the
contour points of the face, etc.) and mark the area containing the face. This technology is widely used in security and
other scenarios.

2.10. Face Detection 59

SunFounder PiCrawler Kit

Run the Code

cd /home/pi/pan-tilt-hat/examples
sudo python3 face_detection.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !

* Serving Flask app "vilib.vilib" (lazy loading)

* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: https:/
/192.168.18.113:9000/mjpg

Code

60 Chapter 2. Play with Python

SunFounder PiCrawler Kit

from vilib import Vilib
from time import sleep

def object_show():
print("Number: ",Vilib.detect_obj_parameter['human_n'])
human_coodinate = (Vilib.detect_obj_parameter['human_x'],Vilib.detect_obj_

→˓parameter['human_y'])
human_size = (Vilib.detect_obj_parameter['human_w'],Vilib.detect_obj_parameter[

→˓'human_h'])
print("Coordinate:",human_coodinate,"Size",human_size)

def main():
Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)
Vilib.human_detect_switch(True)

while True:
object_show()
sleep(0.2)

if __name__ == "__main__":
main()

How it works?

Functions related to human face detection:

• Vilib.human_detect_switch(True) : Switch ON/OFF face detection

The keys of the dictionary and their uses are shown in the following list:

• human_x: the x value of the center coordinate of the detected human face, the range is 0~320

• human_y: the y value of the center coordinate of the detected face, the range is 0~240

• human_w: the width of the detected human face, the range is 0~320

• human_h: the height of the detected face, the range is 0~240

• human_n: the number of detected faces

2.11 Hands Detection

Hand detection is a research hotspot in the field of human-computer interaction, allowing people to issue instructions
to the computer without the mouse and keyboard. For example, use your fingers to command the robot, or play a
guessing game with the robot, and so on.

In this project, you will see that the hand in front of the camera is recognized and the coordinates of the index finger
will be printed.

2.11. Hands Detection 61

SunFounder PiCrawler Kit

Run the Code

cd /home/pi/pan-tilt-hat/examples
sudo python3 hands_detection.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !

* Serving Flask app "vilib.vilib" (lazy loading)

* Environment: production
WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: https:/
/192.168.18.113:9000/mjpg

62 Chapter 2. Play with Python

SunFounder PiCrawler Kit

Code

from vilib import Vilib
from time import sleep

def main():
Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)
Vilib.hands_detect_switch(True)
joints = []
while True:

joints = Vilib.detect_obj_parameter['hands_joints']

if isinstance(joints,list) and len(joints) == 21:
print(joints[8])

sleep(1)

if __name__ == "__main__":
main()

How it works?

This function has been encapsulated in the vilib library, execute Vilib.hands_detect_switch(True) to
start hand detection.

The information detected by the target will be stored in the Vilib.
detect_obj_parameter['hands_joints'] .

The three-dimensional coordinates of the 21 joints of the hand are stored here, such as the joints[8] printed in this
article, that is, the coordinates of the index finger. The serial numbers of all joints are shown in the figure below.

The coordinates of these joints are composed of [x,y,z]. x and y are normalized to 0.0 ~ 1.0 by the width and height of
the image (rather than the specific pixel position), the upper left corner of the screen is [0.0, 0.0], and the lower right
corner is [1.0, 1.0]. The z coordinate represents the depth, and the wrist depth is the origin. The smaller the value, the
closer the landmark is to the camera. The size of z uses roughly the same ratio as x.

2.11. Hands Detection 63

SunFounder PiCrawler Kit

This feature is based on MediaPipe Google, please see more knowledge in Hands - MediaPipe .

2.12 Pose Detection

Like hand detection, posture detection is also part of the field of human-computer interaction. It can be used to judge
action instructions, identify dances, quantify exercises and other scenes.

In this project, you will see that the human body in front of the camera is recognized and the coordinates of the left
wrist are printed.

Run the Code

cd /home/pi/pan-tilt-hat/examples
sudo python3 pose_detection.py

View the Image

After the code runs, the terminal will display the following prompt:

No desktop !

* Serving Flask app "vilib.vilib" (lazy loading)

* Environment: production

(continues on next page)

64 Chapter 2. Play with Python

https://mediapipe.dev/
https://google.github.io/mediapipe/solutions/hands.html

SunFounder PiCrawler Kit

(continued from previous page)

WARNING: Do not use the development server in a production environment.
Use a production WSGI server instead.

* Debug mode: off

* Running on http://0.0.0.0:9000/ (Press CTRL+C to quit)

Then you can enter http://<your IP>:9000/mjpg in the browser to view the video screen. such as: https:/
/192.168.18.113:9000/mjpg

Code

from time import sleep
from vilib import Vilib

def main():

Vilib.camera_start(vflip=True,hflip=True)
Vilib.display(local=True,web=True)
Vilib.pose_detect_switch(True)

joints = []
while True:

joints = Vilib.detect_obj_parameter['body_joints']

if isinstance(joints,list) and len(joints) == 33:
print(joints[15])

sleep(1)

if __name__ == “__main__”: main()

How it works?

This function has been encapsulated in the vilib library, execute Vilib.pose_detect_switch(True) to
start gesture detection.

The information detected by the target will be stored in the Vilib.
detect_obj_parameter['body_joints'] .

The three-dimensional coordinates of the 33 joints of the hand are stored here, such as the joints[15] printed in
this article, which is the coordinates of the left wrist. The serial numbers of all joints are shown in the figure below.

2.12. Pose Detection 65

SunFounder PiCrawler Kit

The coordinates of these joints are composed of [x,y,z,visiblity]. x and y are normalized to 0.0 ~ 1.0 by the width and
height of the image (rather than the specific pixel position), the upper left corner of the screen is [0.0, 0.0], and the
lower right corner is [1.0, 1.0].

The z coordinate represents the depth, with the crotch (between 23 and 24) depth as the origin. The smaller the value,
the closer the landmark is to the camera. The size of z uses roughly the same ratio as x. visibility is a value indicating
the possibility that the joint is visible (existing and not occluded) in the image, and its range is between 0.0 and 1.0.

This feature is based on MediaPipe Google, please see more knowledge in Pose - MediaPipe .

66 Chapter 2. Play with Python

https://mediapipe.dev/
https://google.github.io/mediapipe/solutions/pose.html

CHAPTER

THREE

PLAY WITH EZBLOCK

Ezblock is a development platform developed by SunFounder designed for beginners to lower the barriers to getting
started with Raspberry Pi. It has two programming languages: Graphical and Python, and available on almost all
different types of devices. With Bluetooth and Wi-Fi support, you can download code, remote control a Raspberry Pi,
on Ezblock Studio.

3.1 Quick Guide on Ezblock

There are 2 parts here:

• Before Programming With Ezblock will guide you to download Ezblock Studio to play with Pan-tilt HAT.

• Before Assembling Pan-tilt HAT allows you to keep all the servos at 0 degrees to complete a proper and safe
assembly (otherwise you will probably damage the servos).

3.1.1 Before Programming With Ezblock

First download Ezblock Studio.

For a detailed installation tutorial, please refer to: Install Ezblock Studio.

Note: After you connect the Pan-tilt HAT, there will be a calibration step. This is because of possible deviations in
the installation process or limitations of the servos themselves, making some servo angles slightly tilted, so you can
calibrate them in this step.

But if you think the assembly is perfect and no calibration is needed, you can also skip this step.

3.1.2 Before Assembling Pan-tilt HAT

Before assembling the Pan-tilt HAT, follow the instructions on how to install the Ezblock OS on an Micro SD card
here: Download and Install Ezblock OS.

Temporarily combine the HAT and Raspberry Pi. Run “Color Detection” Example (This example will put the servo at
the zero position).

67

https://docs.sunfounder.com/projects/ezblock3/en/latest/quick_user_guide_for_ezblock3.html#install-ezblock-studio
https://docs.sunfounder.com/projects/ezblock3/en/latest/quick_user_guide_for_ezblock3.html#download-and-install-ezblock-os

SunFounder PiCrawler Kit

Insert the servo cable into the P0 & P1 port. Now the servo arm should return to the 0° position.

To make sure the servo has been correctly set to 0°, first gently insert a rocker arm in the servo shaft, then slightly
rotate the rocker arm to a different angle.

68 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

Projects

Here, we show you the projects of playing PiSloth on Ezblock Studio. If you are new to these, you can refer to the
code images inside each project to program, and can learn the use of blocks according to TIPS.

If you don’t want to write these projects one by one, we have uploaded them to Ezblock Studio’s Examples page and
you can run them directly or edit them and run them later.

3.2 Traffic Sign Detection - Ezblock

Firstly, we learn how to use Pan-Tilt HAT to detect traffic signs. During this operation, we can master how to enable
and use RPi camera.

TIPS

Click the this icon to enter the Bluetooth control page to enable the camera monitor.

3.2. Traffic Sign Detection - Ezblock 69

SunFounder PiCrawler Kit

Here we drag a Video from the page, and it will generate a monitor.

You need to open the image in Video by turning video monitor to on. Turning it to off will close the image (but not
object detection).

Turn on traffic sign detection.

EXAMPLE

70 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

3.3 Face Detection - Ezblock

Next, it’s time to go in to learn about the face detection of Pan-Tilt HAT. The Pan-Tilt HAT can print the number of
the detected faces on the debug monitor.

TIPS

A print block can be used to print data or text on the debug monitor.

The data printed by the Print block will appear in the Debug Monitor on the left. In other pages, you can also click on
the Debug Monitor in the upper right corner.

3.3. Face Detection - Ezblock 71

SunFounder PiCrawler Kit

You may want to use text block to print the combination of texts and data at once.

You need to turn on face detection.

You can read the results of face detection through this block, modify the drop-down menu options, and choose to read
the coordinates, size or number of the results of face detection.

72 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

EXAMPLE

3.3. Face Detection - Ezblock 73

SunFounder PiCrawler Kit

3.4 Gesture Calibration - Ezblock

Gesture detection is easily influenced by environmental factors, so we need first to calibrate gestures then enable
gesture detection.

TIPS

Here we drag a Switch from the Bluetooth control page. After that a Remote category will appear.

This blocks read the switch state in the Bluetooth control page.

74 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

To achieve conditional judgment of “if” type, you need to use an if do block.

Calibrate your gesture by using this block. In the drop-down menu, choose on, the calibration will be on; otherwise,
the calibration will be off.

EXAMPLE

3.4. Gesture Calibration - Ezblock 75

SunFounder PiCrawler Kit

After the code is uploaded, let the switch “ON” , there will appear a white square in the center of camera monitor. Put
out your hand and place the palm in the square. Let it “OFF” when you finish the calibration.

Note: When the gesture is being calibrated, the camera should avoid being directly radiated by light. After calibration
is complete, you need to press the reset key on the Pan-Tilt HAT to take effect.

76 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

3.5 Gesture Detection - Ezblock

Completed the gesture calibration, we can start using Pan-Tilt HAT to detect our gestures. Now, what can be detected
by our Pan-Tilt HAT includes rock, scissor, paper.

TIPS

You may want to simplify your program with Variable. For example, when you need to use the values of the type of
gesture repeatedly, just assign them to variables for repeated use instead of reading repeatedly.

Click the Create variable button on the Variables category to create a new variable.

3.5. Gesture Detection - Ezblock 77

SunFounder PiCrawler Kit

This block is used to do conditional judgement. Judging conditions can be “=”, “>”, “<”, “”, “”, “”.

This block is used to do “logical judgment” and judging conditions can be “and”, “or” etc.

You need to turn on gesture detection.

You can read the results of the detected gesture through this block. In the drop-down menu, choose to read the
coordinates, size, type or accuracy of the detected gesture.

EXAMPLE

78 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

3.6 Color Detection - Ezblock

Let us learn the color detection of Pan-Tilt HAT. Let’s adjust the direction of the camera with the joystick and check
the color detection results displayed on the camera monitor.

3.6. Color Detection - Ezblock 79

SunFounder PiCrawler Kit

TIPS

Drag the joystick to the center area. When using it, drag the white point in it to generate coordinates (-100~100).

This block reads the Joystick value in the Bluetooth control page. You can click the drop-down menu to switch to the
Y-axis reading.

This block is used to drive the servo arm to rotate in a certain direction.

80 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

The map block can remap a number from one range to another. If a number is 50it is at 50% position of the range of
0~100; then if we map it to the range 0~255 via the map block, the number will be 127.5.

You can use this block to choose the detected color. Only one color can be detected for each detection.

EXAMPLE

3.6. Color Detection - Ezblock 81

SunFounder PiCrawler Kit

3.7 Take Photo - Ezblock

Pan-Tilt HAT can take a photo. We use button to simulate a shutter, and once you press it, you can get a photo. This
method will store the photos in the Raspberry Pi. In some projects that use algorithms to process images, this feature
will be useful.

If you need to store the photos directly on the tablet (or computer), please click the dot on the Video widget.

82 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

TIPS

Drag a Button to the central area.

Judge if the button is pressed.

3.7. Take Photo - Ezblock 83

SunFounder PiCrawler Kit

Use this block to take a photo. In the drop-down menu, choose raw or opencv.

Note: Before you choose opencv, enable at least one kind of detection (color/face/gesture/traffic sign detection).
During your shooting, the information of detected objects appears with a frame; for example, if the color detection
(red) is enabled, on the photo, the red area will be marked with a frame and the information “red” will be indicated.

EXAMPLE

84 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

3.8 Say Cheese

Let’s try to implement a simple project with Pan-Tilt HAT: remotely control Pan-Tilt HAT’s movement. When Pan-Tilt
HAT sees people, it will take a photo then print “OK”.

3.8. Say Cheese 85

SunFounder PiCrawler Kit

EXAMPLE

86 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

3.9 Get Order - Ezblock

Now Pan-Tilt HAT gets orders from traffic signs. when getting order “left”, it turns left.

3.9. Get Order - Ezblock 87

SunFounder PiCrawler Kit

TIPS

You can detect the traffic signs through this block, modify the drop-down menu options, and choose to read the
coordinates, size, type or accuracy of the detected traffic signs.

EXAMPLE

88 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

3.9. Get Order - Ezblock 89

SunFounder PiCrawler Kit

3.10 Play Rock-paper-scissor

Let’s play Rock-Paper-Scissor with Pan-Tilt HAT. Pan-Tilt HAT can judge who is the winner according to your ges-
tures and print the result.

TIPS

You may want to simplify the program with Functions, especially when you perform the same operation multiple
times. Putting these operations into a newly declared function can greatly facilitate your use.

This block produces a random integer in a certain range and you can modify the upper and lower limits.

90 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

EXAMPLE

3.10. Play Rock-paper-scissor 91

SunFounder PiCrawler Kit

92 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

3.11 Color Tracking

Prepare a small red ball and place it directly in front of the camera of Pan-Tilt HAT. The camera can consistently track
the ball. This project may be little harder than the previous projects.

3.11. Color Tracking 93

SunFounder PiCrawler Kit

TIPS

Mathematical operation block can perform “+ , - , x , ÷”.

This block is often used together with variables to limit their ranges.

You can get the information of detected color through this block. Modify the drop-down menu options, and choose to
read the coordinates, size or number.

94 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

The “object detection” can output the detected coordinate value (x, y) based on the center point of the graphic. The
screen is divided into a 3x3 grid, as shown on the left.

The “object detection” can detect the size (Width & Height) of the graphic.

3.11. Color Tracking 95

SunFounder PiCrawler Kit

EXAMPLE

96 Chapter 3. Play with Ezblock

SunFounder PiCrawler Kit

3.11. Color Tracking 97

SunFounder PiCrawler Kit

98 Chapter 3. Play with Ezblock

CHAPTER

FOUR

APPENDIX

4.1 Filezilla Software

The File Transfer Protocol (FTP) is a standard communication protocol used for the transfer of computer files from a
server to a client on a computer network.

Filezilla is an open source software that not only supports FTP, but also FTP over TLS (FTPS) and SFTP. We can
use Filezilla to upload local files (such as pictures and audio, etc.) to the Raspberry Pi, or download files from the
Raspberry Pi to the local.

Step 1: Download Filezilla.

Download the client from Filezilla’s official website, Filezilla has a very good tutorial, please refer to: Documentation
- Filezilla.

Step 2: Connect to Raspberry Pi

After a quick install open it up and now connect it to an FTP server. It has 3 ways to connect, here we use the Quick
Connect bar. Enter the hostname/IP, username, password and port (22), then click Quick Connect or press Enter
to connect to the server.

99

https://filezilla-project.org/
https://wiki.filezilla-project.org/Documentation
https://wiki.filezilla-project.org/Documentation
https://wiki.filezilla-project.org/Using#Connecting_to_an_FTP_server

SunFounder PiCrawler Kit

Note: Quick Connect is a good way to test your login information. If you want to create a permanent entry, you can
select File-> Copy Current Connection to Site Manager after a successful Quick Connect, enter the name and click
OK. Next time you will be able to connect by selecting the previously saved site inside File -> Site Manager.

Step 3: Upload/download files.

You can upload local files to Raspberry Pi by dragging and dropping them, or download the files inside Raspberry Pi
files locally.

100 Chapter 4. Appendix

SunFounder PiCrawler Kit

4.2 I2C Configuration

Enable the I2C port of your Raspberry Pi (If you have enabled it, skip this; if you do not know whether you have done
that or not, please continue).

sudo raspi-config

3 Interfacing options

P5 I2C

4.2. I2C Configuration 101

SunFounder PiCrawler Kit

<Yes>, then <Ok> -> <Finish>.

102 Chapter 4. Appendix

SunFounder PiCrawler Kit

4.3 Remote Desktop

There are two ways to control the desktop of the Raspberry Pi remotely:

VNC and XRDP, you can use any of them.

4.3.1 VNC

You can use the function of remote desktop through VNC.

Enable VNC service

The VNC service has been installed in the system. By default, VNC is disabled. You need to enable it in config.

Step 1

Input the following command:

sudo raspi-config

Step 2

Choose 3 Interfacing Options by press the down arrow key on your keyboard, then press the Enter key.

4.3. Remote Desktop 103

SunFounder PiCrawler Kit

Step 3

P3 VNC

Step 4

Select Yes -> OK -> Finish to exit the configuration.

Login to VNC

Step 1

You need to download and install the VNC Viewer on personal computer. After the installation is done, open it.

104 Chapter 4. Appendix

https://www.realvnc.com/en/connect/download/viewer/

SunFounder PiCrawler Kit

Step 2

Then select “New connection”.

Step 3

Input IP address of Raspberry Pi and any Name.

4.3. Remote Desktop 105

SunFounder PiCrawler Kit

Step 4

Double click the connection just created:

106 Chapter 4. Appendix

SunFounder PiCrawler Kit

Step 5

Enter Username (pi) and Password (raspberry by default).

4.3. Remote Desktop 107

SunFounder PiCrawler Kit

Step 6

Now you can see the desktop of the Raspberry Pi:

108 Chapter 4. Appendix

SunFounder PiCrawler Kit

That’s the end of the VNC part.

4.3.2 XRDP

Another method of remote desktop is XRDP, it provides a graphical login to remote machines using RDP (Microsoft
Remote Desktop Protocol).

Install XRDP

Step 1

Login to Raspberry Pi by using SSH.

Step 2

Input the following instructions to install XRDP.

sudo apt-get update
sudo apt-get install xrdp

Step 3

Later, the installation starts.

Enter “Y”, press key “Enter” to confirm.

4.3. Remote Desktop 109

SunFounder PiCrawler Kit

Step 4

Finished the installation, you should login to your Raspberry Pi by using Windows remote desktop applications.

Login to XRDP

Step 1

If you are a Windows user, you can use the Remote Desktop feature that comes with Windows. If you are a Mac user,
you can download and use Microsoft Remote Desktop from the APP Store, and there is not much difference between
the two. The next example is Windows remote desktop.

Step 2

Type in “mstsc” in Run (WIN+R) to open the Remote Desktop Connection, and input the IP address of Raspberry Pi,
then click on “Connect”.

Step 3

110 Chapter 4. Appendix

SunFounder PiCrawler Kit

Then the xrdp login page pops out. Please type in your username and password. After that, please click “OK”. At the
first time you log in, your username is “pi” and the password is “raspberry”.

Step 4

Here, you successfully login to RPi by using the remote desktop.

4.3. Remote Desktop 111

SunFounder PiCrawler Kit

112 Chapter 4. Appendix

CHAPTER

FIVE

COPYRIGHT NOTICE

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company.
You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes,
under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right
holders. For any individual or organization that uses these for commercial profit without permission, the Company
reserves the right to take legal action.

113

	Component List and Assembly Instructions
	Play with Python
	Quick Guide on Python
	Take Photo
	Check Photos
	Continuous Shooting
	Time Lapse Photography
	Record Video
	Panorama
	Image Classification
	Color Detection
	Face Detection
	Hands Detection
	Pose Detection

	Play with Ezblock
	Quick Guide on Ezblock
	Traffic Sign Detection - Ezblock
	Face Detection - Ezblock
	Gesture Calibration - Ezblock
	Gesture Detection - Ezblock
	Color Detection - Ezblock
	Take Photo - Ezblock
	Say Cheese
	Get Order - Ezblock
	Play Rock-paper-scissor
	Color Tracking

	Appendix
	Filezilla Software
	I2C Configuration
	Remote Desktop

	Copyright Notice

