

SunFounder 3 in 1 Starter Kit

Thanks for choosing our 3 in 1 Starter Kit.

Note

This document is available in the following languages.

	Deutsch Online-Kurs

	日本語オンライン教材

	English Online-tutorials

Please click on the respective links to access the document in your preferred language.

[image: _images/3in_kit_r4.png]
When you bought a learning kit online, did it come with a simple PDF or booklet with only the steps to build the project?

Or maybe you want to build your own smart car, but the ones you find online are pricey and complicated？

Or have you seen useful and interesting IoT projects made by others, but have no idea where to start?

All these problems can be solved with our 3 in 1 starter kit.

In the 3-in-1 starter kit, you will find a complete Arduino course to help beginners learn Arduino, as well as a wide variety of interesting projects that other learning kits do not offer, such as smart car projects and IoT projects. You will master Arduino as long as you follow the kit’s course step by step, instead of just copying and pasting code, you will write your own code and implement your Arduino project however you like.

Come on! Start programing Arduino with confidence from zero to hero!

If you have any questions or other interesting ideas, feel free to send an email to service@sunfounder.com.

	About this Kit

	Learn about the Components in Your Kit
	Arduino Uno R4 Minima

	ESP8266 Module

	Breadboard

	Resistor

	Capacitor

	Jumper Wires

	74HC595

	LED

	RGB LED

	7-segment Display

	I2C LCD1602

	Buzzer

	TT Motor

	Servo

	Centrifugal Pump

	L9110 Motor Driver Module

	Button

	Reed Switch

	Potentiometer

	Joystick Module

	IR Receiver

	Photoresistor

	Thermistor

	DHT11 Humiture Sensor

	Line Tracking Module

	Soil Moisture Module

	Obstacle Avoidance Module

	Ultrasonic Module

	Get Started with Arduino
	What is Arduino?

	What can Arduino do?

	How to build an Arduino Project

	Download the Code

	Basic Projects
	1. Digital Write

	2. Analog Write

	3. Digital Read

	4. Analog Read

	5. More Syntax

	6. Funny Project

	Car Projects
	Assemble the Car

	1. Move

	2. Move by Code

	3. Speed Up

	4. Follow the line

	5. Play with Obstacle Avoidance Module

	6. Play with Ultrasonic Module

	7. Follow Your Hand

	8. Self-Driving Car

	9. Remote Control

	10. One Touch Start

	11. Speed Calibration

	IoT Projects
	1. Get Started with Blynk

	2. Get Data from Blynk

	3. Push Data to Blynk

	4. Cloud Music Player

	5. Home Environment Monitoring

	6. Plant Monitor

	7. Current Limiting Gate

	8. IoT Car

	FAQ
	How to use Blynk on mobile device?

	How to re-burn the firmware for ESP8266 module?

	Thank You

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study, investigation, enjoyment, or other non-commercial or nonprofit purposes, under the related regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.

Learn about the Components in Your Kit

After opening the package, please check whether the quantity of components is compliance with product description and whether all components are in good condition.

[image: ../_images/components_list.jpg]
Below is the introduction to each component, which contains the operating principle of the component and the corresponding projects.

Control Board

	Arduino Uno R4 Minima

	ESP8266 Module

Basic

	Breadboard

	Resistor

	Capacitor

	Jumper Wires

Chip

	74HC595

Display

	LED

	RGB LED

	7-segment Display

	I2C LCD1602

Sound

	Buzzer

Driver

	TT Motor

	Servo

	Centrifugal Pump

	L9110 Motor Driver Module

Controller

	Button

	Reed Switch

	Potentiometer

	Joystick Module

	IR Receiver

Sensor

	Photoresistor

	Thermistor

	DHT11 Humiture Sensor

	Line Tracking Module

	Soil Moisture Module

	Obstacle Avoidance Module

	Ultrasonic Module

Arduino Uno R4 Minima

Overview

Enhanced and improved, the Arduino UNO R4 Minima is armed with a powerful 32-bit microcontroller courtesy of Renesas. Brace yourself for increased processing power, expanded memory, and a whole new level of on-board peripherals. The best part? Compatibility with existing shields and accessories remains intact, and there’s no need to make any changes to the standard form factor or 5 V operating voltage.

Joining the Arduino ecosystem, the UNO R4 is a trusty addition suitable for both beginners and seasoned electronics enthusiasts. Whether you’re just starting out or looking to push the boundaries of your projects, this robust board delivers reliable performance every time.

[image: ../_images/uno_r4.png]
Here’s what the UNO R4 Minima brings to the table:

	Hardware compatibility with UNO form factor: The UNO R4 Minima maintains the same form factor, pinout, and 5 V operating voltage as its predecessor, the UNO R3. This ensures a seamless transition for existing shields and projects, leveraging the extensive and unique ecosystem already established for the Arduino UNO.

	Expanded memory and faster clock: Prepare for more precise calculations and the ability to handle complex projects with ease. The UNO R4 Minima boasts increased memory and a faster clock speed, empowering you to tackle demanding tasks effortlessly.

	Extra on-board peripherals: The UNO R4 Minima introduces a range of on-board peripherals, including a 12-bit DAC, CAN BUS, and OP AMP. These additional components provide you with expanded capabilities and flexibility in your designs.

	Extended 24 V tolerance: The UNO R4 Minima now supports a wider input voltage range, allowing power supplies up to 24 V. This enables seamless integration with motors, LED strips, and other actuators, simplifying your projects by utilizing a single power source.

	SWD connector: Debugging is a critical aspect of any project. Simply connect an external debugger to the UNO R4 Minima and effortlessly monitor the inner workings of your system. Stay in control and gain valuable insights.

	HID support: The UNO R4 Minima comes with built-in HID (Human Interface Device) support, enabling it to simulate a mouse or keyboard when connected to a computer via a USB cable. This convenient feature makes it a breeze to send keystrokes and mouse movements to a computer, enhancing usability and functionality.

Tech specs

	
	Board:
	
	Name: Arduino® UNO R4 Minima

	SKU: ABX00080

	Microcontroller: Renesas RA4M1 (Arm® Cortex®-M4)

	USB: USB-C® Programming Port

	
	Pins:
	
	Digital I/O Pins: 14

	Analog input pin: 6

	DAC: 1

	PWM pins: 6

	
	Communication
	
	UART: Yes, 1x

	I2C: Yes, 1x

	SPI: Yes, 1x

	CAN: Yes 1 CAN Bus

	
	Power
	
	Circuit operating voltage: 5 V

	Input voltage (VIN): 6-24 V

	DC Current per I/O Pin: 8 mA

	Clock speed Main core 48 MHz

	Memory RA4M1 256 kB Flash, 32 kB RAM

	
	Dimensions
	
	Width: 68.85 mm

	Length: 53.34 mm

Pinout

[image: ../_images/uno_r4_pinsout.png]

	Datasheet

	Schematic

	Full Technical Documentation

ESP8266 Module

[image: ../_images/esp8266.jpg]
The ESP8266 is a low-cost Wi-Fi microchip,
with built-in TCP/IP networking software,
and microcontroller capability, produced by Espressif Systems in Shanghai, China.

The chip first came to the attention of Western makers in August 2014 with the ESP-01 module,
made by a third-party manufacturer Ai-Thinker.
This small module allows microcontrollers to connect to a Wi-Fi network and make simple TCP/IP connections using Hayes-style commands.
However, at first, there was almost no English-language documentation on the chip and the commands it accepted.
The very low price and the fact that there were very few external components on the module,
which suggested that it could eventually be very inexpensive in volume,
attracted many hackers to explore the module,
the chip, and the software on it, as well as to translate the Chinese documentation.

Pins of ESP8266 and their functions:

[image: ../_images/ESP8266_pinout.png]

ESP8266-01 Pins

	Pin

	Name

	Description

	1

	TXD

	UART_TXD, sending; General Purpose Input/Outpu: GPIO1; Pull-down is not allowed when startup.

	2

	GND

	GND

	3

	CU_PD

	Working at high level; Power off when low level is supplied.

	4

	GPIO2

	It should be high level when power on, hardware pull-down is not allowed; Pull-up by default;

	5

	RST

	External Reset signal, reset when low level is supplied; work when high level is supplied (high level by default);

	6

	GPIO0

	WiFi Status indicator; Operation mode selection: Pull-up: Flash Boot, operation mode; Pull-down: UART Download, download mode

	7

	VCC

	Power Supply(3.3V)

	8

	RXD

	UART_RXD，Receiving; General Purpose Input/Output: GPIO3;

	ESP8266 - Espressif [https://www.espressif.com/en/products/socs/esp8266]

	ESP8266 AT Instruction Set [https://github.com/sunfounder/3in1-kit/blob/main/iot_project/esp8266_at_instruction_set_en.pdf]

ESP8266 Adapter

[image: ../_images/esp8266_adapter.png]
The ESP8266 adapter is an expansion board that allows the ESP8266 module to be used on a breadboard.

It perfectly matches the pins of the ESP8266 itself, and also adds a 5V pin to receive the voltage from the Arduino board. The integrated AMS1117 chip is used to drive the ESP8266 module after dropping the voltage to 3.3V.

The schematic diagram is as follows:

[image: ../_images/sch_esp8266adapter.png]
Example

	IoT Projects (IoT Project)

Breadboard

[image: ../_images/breadboard.png]
A breadboard is a construction base for prototyping of electronics. Originally the word referred to a literal bread board, a polished piece of wood used for slicing bread.[1] In the 1970s the solderless breadboard (a.k.a. plugboard, a terminal array board) became available and nowadays the term “breadboard” is commonly used to refer to these.

It is used to build and test circuits quickly before finishing any circuit design.
And it has many holes into which components mentioned above can be inserted like ICs and resistors as well as jumper wires.
The breadboard allows you to plug in and remove components easily.

The picture shows the internal structure of a breadboard.
Although these holes on the breadboard appear to be independent of each other, they are actually connected to each other through metal strips internally.

[image: ../_images/breadboard_internal.png]
If you want to know more about breadboard, refer to: How to Use a Breadboard - Science Buddies [https://www.sciencebuddies.org/science-fair-projects/references/how-to-use-a-breadboard#pth-smd]

Resistor

[image: ../_images/resistor.png]
Resistor is an electronic element that can limit the branch current.
A fixed resistor is a kind of resistor whose resistance cannot be changed, while that of a potentiometer or a variable resistor can be adjusted.

Two generally used circuit symbols for resistor. Normally, the resistance is marked on it. So if you see these symbols in a circuit, it stands for a resistor.

[image: ../_images/resistor_symbol.png]
Ω is the unit of resistance and the larger units include KΩ, MΩ, etc.
Their relationship can be shown as follows: 1 MΩ=1000 KΩ, 1 KΩ = 1000 Ω. Normally, the value of resistance is marked on it.

When using a resistor, we need to know its resistance first. Here are two methods: you can observe the bands on the resistor, or use a multimeter to measure the resistance. You are recommended to use the first method as it is more convenient and faster.

[image: ../_images/resistance_card.jpg]
As shown in the card, each color stands for a number.

	Black

	Brown

	Red

	Orange

	Yellow

	Green

	Blue

	Violet

	Grey

	White

	Gold

	Silver

	0

	1

	2

	3

	4

	5

	6

	7

	8

	9

	0.1

	0.01

The 4- and 5-band resistors are frequently used, on which there are 4 and 5 chromatic bands.

Normally, when you get a resistor, you may find it hard to decide which end to start for reading the color.
The tip is that the gap between the 4th and 5th band will be comparatively larger.

Therefore, you can observe the gap between the two chromatic bands at one end of the resistor;
if it’s larger than any other band gaps, then you can read from the opposite side.

Let’s see how to read the resistance value of a 5-band resistor as shown below.

[image: ../_images/220ohm.jpg]
So for this resistor, the resistance should be read from left to right.
The value should be in this format: 1st Band 2nd Band 3rd Band x 10^Multiplier (Ω) and the permissible error is ±Tolerance%.
So the resistance value of this resistor is 2(red) 2(red) 0(black) x 10^0(black) Ω = 220 Ω,
and the permissible error is ± 1% (brown).

You can learn more about resistor from Wiki: Resistor - Wikipedia [https://en.wikipedia.org/wiki/Resistor].

Capacitor

[image: ../_images/103_capacitor.png]
[image: ../_images/10uf_cap.png]
Capacitor, refers to the amount of charge storage under a given potential difference, denoted as C, and the international unit is farad (F).
Generally speaking, electric charges move under force in an electric field. When there is a medium between conductors, the movement of electric charges is hindered and the electric charges accumulate on the conductors, resulting in accumulation of electric charges.

The amount of stored electric charges is called capacitance. Because capacitors are one of the most widely used electronic components in electronic equipment, they are widely used in direct current isolation, coupling, bypass, filtering, tuning loops, energy conversion, and control circuits. Capacitors are divided into electrolytic capacitors, solid capacitors, etc.

According to material characteristics, capacitors can be divided into: aluminum electrolytic capacitors, film capacitors, tantalum capacitors, ceramic capacitors, super capacitors, etc.

In this kit, ceramic capacitors and electrolytic capacitors are used.

	Ceramic Capacitor - Wikipedia [https://en.wikipedia.org/wiki/Ceramic_capacitor]

	Electrolytic Capacitor - Wikipedia [https://en.wikipedia.org/wiki/Electrolytic_capacitor]

There are 103 or 104 label on the ceramic capacitors, which represent the capacitance value, 103=10x10^3pF, 104=10x10^4pF

Unit Conversion

1F=10^3mF=10^6uF=10^9nF=10^12pF

Jumper Wires

Wires that connect two terminals are called jumper wires. There are
various kinds of jumper wires. Here we focus on those used in
breadboard. Among others, they are used to transfer electrical signals
from anywhere on the breadboard to the input/output pins of a
microcontroller.

Jump wires are fitted by inserting their “end connectors” into the slots
provided in the breadboard, beneath whose surface there are a few sets
of parallel plates that connect the slots in groups of rows or columns
depending on the area. The “end connectors” are inserted into the
breadboard, without soldering, in the particular slots that need to be
connected in the specific prototype.

There are three types of jumper wire: Female-to-Female, Male-to-Male,
and Male-to-Female. The reason we call it Male-to-Female is because it
has the outstanding tip in one end as well as a sunk female end.
Male-to-Male means both side are male and Female-to-Female means both
ends are female.

[image: ../_images/image414.png]
More than one type of them may be used in a project. The color of the
jump wires is different but it doesn’t mean their function is different
accordingly; it’s just designed so to better identify the connection
between each circuit.

74HC595

[image: ../_images/74HC595.png]
The 74HC595 consists of an 8−bit shift register and a storage register with three−state parallel outputs. It converts serial input into parallel output so you can save IO ports of an MCU.
When MR (pin10) is high level and OE (pin13) is low level, data is input in the rising edge of SHcp and goes to the memory register through the rising edge of SHcp. If the two clocks are connected together, the shift register is always one pulse earlier than the memory register. There is a serial shift input pin (Ds), a serial output pin (Q) and an asynchronous reset button (low level) in the memory register. The memory register outputs a Bus with a parallel 8-bit and in three states. When OE is enabled (low level), the data in memory register is output to the bus.

	74HC595 Datasheet [https://www.ti.com/lit/ds/symlink/cd74hc595.pdf?ts=1617341564801]

[image: ../_images/74hc595_pin.png]
Pins of 74HC595 and their functions:

	Q0-Q7: 8-bit parallel data output pins, able to control 8 LEDs or 8 pins of 7-segment display directly.

	Q7’: Series output pin, connected to DS of another 74HC595 to connect multiple 74HC595s in series

	MR: Reset pin, active at low level;

	SHcp: Time sequence input of shift register. On the rising edge, the data in shift register moves successively one bit, i.e. data in Q1 moves to Q2, and so forth. While on the falling edge, the data in shift register remain unchanged.

	STcp: Time sequence input of storage register. On the rising edge, data in the shift register moves into memory register.

	CE: Output enable pin, active at low level.

	DS: Serial data input pin

	VCC: Positive supply voltage.

	GND: Ground.

Example

	5.9 ShiftOut(LED) (Basic Project)

	5.10 ShiftOut(Segment Display) (Basic Project)

	7. Current Limiting Gate (IoT Project)

LED

[image: ../_images/LED.png]
Semiconductor light-emitting diode is a type of component which can turn electric energy into light energy via PN junctions. By wavelength, it can be categorized into laser diode, infrared light-emitting diode and visible light-emitting diode which is usually known as light-emitting diode (LED).

Diode has unidirectional conductivity, so the current flow will be as the arrow indicates in figure circuit symbol. You can only provide the anode with a positive power and the cathode with a negative. Thus the LED will light up.

[image: ../_images/led_symbol.png]
An LED has two pins. The longer one is the anode, and shorter one, the cathode. Pay attention not to connect them inversely. There is fixed forward voltage drop in the LED, so it cannot be connected with the circuit directly because the supply voltage can outweigh this drop and cause the LED to be burnt. The forward voltage of the red, yellow, and green LED is 1.8 V and that of the white one is 2.6 V. Most LEDs can withstand a maximum current of 20 mA, so we need to connect a current limiting resistor in series.

The formula of the resistance value is as follows:

R = (Vsupply – VD)/I

R stands for the resistance value of the current limiting resistor, Vsupply for voltage supply, VD for voltage drop and I for the working current of the LED.

Here is the detailed introduction for the LED: LED - Wikipedia [https://en.wikipedia.org/wiki/Light-emitting_diode].

Example

	1.1 Hello, LED! (Basic Project)

	2.1 Fading (Basic Project)

	2. Get Data from Blynk (IoT Project)

RGB LED

[image: ../_images/rgb_led.png]
RGB LEDs emit light in various colors. An RGB LED packages three LEDs of red, green, and blue into a transparent or semitransparent plastic shell. It can display various colors by changing the input voltage of the three pins and superimpose them, which, according to statistics, can create 16,777,216 different colors.

[image: ../_images/rgb_light.png]
RGB LEDs can be categorized into common anode and common cathode ones. In this kit, the latter is used. The common cathode, or CC, means to connect the cathodes of the three LEDs. After you connect it with GND and plug in the three pins, the LED will flash the corresponding color.

Its circuit symbol is shown as figure.

[image: ../_images/rgb_symbol.png]
An RGB LED has 4 pins: the longest one is GND; the others are Red, Green and Blue. Touch its plastic shell and you will find a cut. The pin closest to the cut is the first pin, marked as Red, then GND, Green and Blue in turn.

[image: ../_images/rgb_pin.jpg]
Example

	2.2 Colorful Light (Basic Project)

	5.2 Threshold (Basic Project)

7-segment Display

[image: ../_images/7_segment.png]
A 7-segment display is an 8-shaped component which packages 7 LEDs. Each LED is called a segment - when energized, one segment forms part of a numeral to be displayed.

There are two types of pin connection: Common Cathode (CC) and Common Anode (CA). As the name suggests, a CC display has all the cathodes of the 7 LEDs connected when a CA display has all the anodes of the 7 segments connected.

In this kit, we use the Common Cathode 7-segment display, here is the electronic symbol.

[image: ../_images/segment_cathode1.png]
Each of the LEDs in the display is given a positional segment with one of its connection pins led out from the rectangular plastic package. These LED pins are labeled from “a” through to “g” representing each individual LED. The other LED pins are connected together forming a common pin. So by forward biasing the appropriate pins of the LED segments in a particular order, some segments will brighten and others stay dim, thus showing the corresponding character on the display.

Display Codes

To help you get to know how 7-segment displays(Common Cathode) display Numbers, we have drawn the following table. Numbers are the number 0-F displayed on the 7-segment display; (DP) GFEDCBA refers to the corresponding LED set to 0 or 1, For example, 00111111 means that DP and G are set to 0, while others are set to 1. Therefore, the number 0 is displayed on the 7-segment display, while HEX Code corresponds to hexadecimal number.

[image: ../_images/segment_code.png]
Example

	5.15 EEPROM (Basic Project)

	7. Current Limiting Gate (IoT Project)

I2C LCD1602

[image: ../_images/i2c_lcd1602.png]

	GND: Ground

	VCC: Voltage supply, 5V.

	SDA: Serial data line. Connect to VCC through a pullup resistor.

	SCL: Serial clock line. Connect to VCC through a pullup resistor.

As we all know, though LCD and some other displays greatly enrich the man-machine interaction, they share a common weakness. When they are connected to a controller, multiple IOs will be occupied of the controller which has no so many outer ports. Also it restricts other functions of the controller.

Therefore, LCD1602 with an I2C module is developed to solve the problem. The I2C module has a built-in PCF8574 I2C chip that converts I2C serial data to parallel data for the LCD display.

	PCF8574 Datasheet [https://www.ti.com/lit/ds/symlink/pcf8574.pdf?ts=1627006546204&ref_url=https%253A%252F%252Fwww.google.com%252F]

I2C Address

The default address is basically 0x27, in a few cases it may be 0x3F.

Taking the default address of 0x27 as an example, the device address can be modified by shorting the A0/A1/A2 pads; in the default state, A0/A1/A2 is 1, and if the pad is shorted, A0/A1/A2 is 0.

[image: ../_images/i2c_address.jpg]
Backlight/Contrast

Backlight can be enabled by jumper cap, unplugg the jumper cap to disable the backlight. The blue potentiometer on the back is used to adjust the contrast (the ratio of brightness between the brightest white and the darkest black).

[image: ../_images/back_lcd1602.jpg]

	Shorting Cap: Backlight can be enabled by this cap，unplugg this cap to disable the backlight.

	Potentiometer: It is used to adjust the contrast (the clarity of the displayed text), which is increased in the clockwise direction and decreased in the counterclockwise direction.

Example

	5.11.1 Liquid Crystal Display (Basic Project)

	5.12 Serial Read (Basic Project)

Buzzer

[image: ../_images/buzzer1.png]
As a type of electronic buzzer with an integrated structure, buzzers, which are supplied by DC power, are widely used in computers, printers, photocopiers, alarms, electronic toys, automotive electronic devices, telephones, timers and other electronic products or voice devices.

Buzzers can be categorized as active and passive ones (see the following picture). Turn the buzzer so that its pins are facing up, and the buzzer with a green circuit board is a passive buzzer, while the one enclosed with a black tape is an active one.

The difference between an active buzzer and a passive buzzer:

An active buzzer has a built-in oscillating source, so it will make sounds when electrified. But a passive buzzer does not have such source, so it will not beep if DC signals are used; instead, you need to use square waves whose frequency is between 2K and 5K to drive it. The active buzzer is often more expensive than the passive one because of multiple built-in oscillating circuits.

The following is the electrical symbol of a buzzer. It has two pins with positive and negative poles. With a + in the surface represents the anode and the other is the cathode.

[image: ../_images/buzzer_symbol.png]
You can check the pins of the buzzer, the longer one is the anode and the shorter one is the cathode. Please don’t mix them up when connecting, otherwise the buzzer will not make sound.

Buzzer - Wikipedia [https://en.wikipedia.org/wiki/Buzzer]

Example

	1.2 Beep (Basic Project)

	5.7 Tone() or noTone() (Basic Project)

	4. Cloud Music Player (IoT Project)

TT Motor

[image: ../_images/tt_motor.jpg]
This is a TT DC gearbox motor with a gear ratio of 1:48, it comes with 2 x 200mm wires with 0.1” male connectors that fit into a breadboard. Perfect for plugging into a breadboard or terminal block.

You can power these motors with 3 ~ 6VDC, but of course, they will go a little faster at higher voltages.

Note that these are very basic motors with no built-in encoder, speed control or position feedback. The voltage goes in and the spin comes out. There will be variation from motor to motor, so if you need precise motion, you’ll need a separate feedback system.

Technical Details

	Rated Voltage: 3~6V

	Continuous No-Load Current: 150mA +/- 10%

	Min. Operating Speed (3V): 90+/- 10% RPM

	Min. Operating Speed (6V): 200+/- 10% RPM

	Stall Torque (3V): 0.4kg.cm

	Stall Torque (6V): 0.8kg.cm

	Gear Ratio: 1:48

	Body Dimensions: 70 x 22 x 18mm

	Wires Length: 200mm & 28 AWG

	Weight: 30.6g

Dimensional Drawing

[image: ../_images/motor_size.jpg]
Example

	1.3 Turn the Wheel (Basic Project)

	1. Move (Car Project)

	3. Speed Up (Car Project)

	8. IoT Car (IoT Project)

Servo

[image: ../_images/servo.png]
A servo is generally composed of the following parts: case, shaft, gear system, potentiometer, DC motor, and embedded board.

It works like this: The microcontroller sends out PWM signals to the servo, and then the embedded board in the servo receives the signals through the signal pin and controls the motor inside to turn. As a result, the motor drives the gear system and then motivates the shaft after deceleration. The shaft and potentiometer of the servo are connected together. When the shaft rotates, it drives the potentiometer, so the potentiometer outputs a voltage signal to the embedded board. Then the board determines the direction and speed of rotation based on the current position, so it can stop exactly at the right position as defined and hold there.

[image: ../_images/servo_internal.png]
The angle is determined by the duration of a pulse that is applied to the control wire. This is called Pulse width Modulation. The servo expects to see a pulse every 20 ms. The length of the pulse will determine how far the motor turns. For example, a 1.5ms pulse will make the motor turn to the 90 degree position (neutral position).
When a pulse is sent to a servo that is less than 1.5 ms, the servo rotates to a position and holds its output shaft some number of degrees counterclockwise from the neutral point. When the pulse is wider than 1.5 ms the opposite occurs. The minimal width and the maximum width of pulse that will command the servo to turn to a valid position are functions of each servo. Generally the minimum pulse will be about 0.5 ms wide and the maximum pulse will be 2.5 ms wide.

[image: ../_images/servo_duty.png]
Example

	5.5 Use Internal Library (Basic Project)

	7. Current Limiting Gate (IoT Project)

Centrifugal Pump

[image: ../_images/pump.png]
The centrifugal pump converts rotational kinetic energy into hydrodynamic energy to transport fluid. The rotation energy comes from the electric motor. The fluid enters the pump impeller along or near the rotating shaft, is accelerated by the impeller, flows radially outward into the diffuser or volute chamber, and then flows out from there.

Common uses of centrifugal pumps include water, sewage, agricultural, petroleum, and petrochemical pumping.

	Centrifugal Pump - Wikipedia [https://en.wikipedia.org/wiki/Centrifugal_pump]

	Features
	
	Voltage Scope: DC 3 ~ 4.5V

	Operating Current: 120 ~ 180mA

	Power: 0.36 ~ 0.91W

	Max Water Head: 0.35 ~ 0.55M

	Max Flow Rate: 80 ~ 100 L/H

	Continuous Working Life: 100 hours

	Water Fing Grade: IP68

	Driving Mode: DC, Magnetic Driving

	Material: Engineering Plastic

	Outlet Outside Diameter: 7.8 mm

	Outlet Inside Diameter: 6.5 mm

	It is a submersible pump and should be used that way. It tends to heat too much that there’s a risk of overheating if you turn it on unsubmerged.

Example

	1.4 Pumping (Basic Project)

	6. Plant Monitor (IoT Project)

L9110 Motor Driver Module

The L9110 motor driver module is adept at driving two motors in tandem. It houses a pair of independent L9110S driver chips,
each channel boasting a steady current output of up to 800mA.

Spanning a voltage range from 2.5V to 12V, the module comfortably pairs with both 3.3V and 5V microcontrollers.

Serving as a streamlined solution, the L9110 motor driver module facilitates motor control across a spectrum of applications.
Thanks to its dual-channel architecture, it enables the independent orchestration of two motors—ideal for projects where dual motor
operations are paramount.

Given its potent continuous current output, this module confidently powers motors from the petite to the moderately sized,
paving the way for diverse robotic, automation, and motor-centric endeavors. Its expansive voltage range further injects adaptability, aligning with varied power supply setups.

Designed with user-friendliness in mind, the module offers intuitive input and output terminals, simplifying connections to microcontrollers
or akin control devices. Plus, it doesn’t skimp on safety—integrated overcurrent and overtemperature safeguards bolster the trustworthiness
and security of motor operations.

[image: ../_images/l9110_module.jpg]

	B-1A & B-1B(B-2A): Input pins for controlling the spinning direction of Motor B.

	A-1A & A-1B: Input pins for controlling the spinning direction of Motor A.

	0A & OB(A): Output pins of Motor A.

	0A & OB(B): Output pins of Motor B.

	VCC: Power input pin (2.5V-12V).

	GND: Ground pin.

Features

	On-board 2 L9110S motor control chip

	Dual-channel motor control.

	Independent motor spinning direction control.

	High current output (800mA per channel).

	Wide voltage range (2.5V-12V).

	Compact design.

	Convenient input and output terminals.

	Built-in protective features.

	Versatile applications.

	PCB Size: 29.2mm x 23mm

	Operating Temperature: -20°C ~ 80°C

	Power-On LED indicator

Operating Principle

Here is the truth table of Motor B:

This truth table shows the different states of Motor B based on the values of input pins B-1A and B-1B(B-2A). It indicates the direction of rotation (clockwise or counterclockwise), braking, or stopping of Motor B.

	B-1A

	B-1B(B-2A)

	The state of Motor B

	1

	0

	Rotate clockwise

	0

	1

	Rotate counterclockwise

	0

	0

	Brake

	1

	1

	Stop

Here is the truth table of Motor A:

This truth table shows the different states of Motor A based on the values of input pins A-1A and A-1B. It indicates the direction of rotation (clockwise or counterclockwise), braking, or stopping of Motor A.

	A-1A

	A-1B

	The state of Motor B

	1

	0

	Rotate clockwise

	0

	1

	Rotate counterclockwise

	0

	0

	Brake

	1

	1

	Stop

	1.3 Turn the Wheel (Basic Project)

	1. Move (Car Project)

	3. Speed Up (Car Project)

	8. IoT Car (IoT Project)

Button

[image: ../_images/button.png]
Buttons are a common component used to control electronic devices. They are usually used as switches to connect or break circuits. Although buttons come in a variety of sizes and shapes, the one used here is a 6mm mini-button as shown in the following pictures.
Pin 1 is connected to pin 2 and pin 3 to pin 4. So you just need to connect either of pin 1 and pin 2 to pin 3 or pin 4.

The following is the internal structure of a button. The symbol on the right below is usually used to represent a button in circuits.

[image: ../_images/button_symbol.png]
Since the pin 1 is connected to pin 2, and pin 3 to pin 4, when the button is pressed, the 4 pins are connected, thus closing the circuit.

[image: ../_images/button_1212_size.png]
Example

	3.1 Reading Button Value (Basic Project)

Reed Switch

[image: ../_images/reed.png]
The Reed Switch is an electrical switch that operates by means of an applied magnetic field. It was invented by Walter B. Ellwood of Bell Telephone Laboratories in 1936 and patented in the United States on June 27, 1940, under patent number 2264746.

The principle of operation of a reed switch is very simple. Two reeds (usually made of iron and nickel, two metals) that overlap at the end points are sealed in a glass tube, with the two reeds overlapping and separated by a small gap (only about a few microns). The glass tube is filled with a high purity inert gas (such as nitrogen), and some reed switches are made to have a vacuum inside to enhance their high voltage performance.

The reed acts as a magnetic flux conductor. The two reeds are not in contact when not yet in operation; when passing through a magnetic field generated by a permanent magnet or electromagnetic coil, the applied magnetic field causes the two reeds to have different polarities near their endpoints, and when the magnetic force exceeds the spring force of the reeds themselves, the two reeds will be drawn together to conduct the circuit; when the magnetic field weakens or disappears, the reeds are released due to their own elasticity, and the contact surfaces will separate to open the circuit.

[image: ../_images/reed_sche.png]

	Reed Switch - Wikipedia [https://en.wikipedia.org/wiki/Reed_switch]

Example

	3.2 Feel the Magnetism (Basic Project)

	7. Current Limiting Gate (IoT Project)

Potentiometer

[image: ../_images/potentiometer.png]
Potentiometer is also a resistance component with 3 terminals and its resistance value can be adjusted according to some regular variation.

Potentiometers come in various shapes, sizes, and values, but they all have the following things in common:

	They have three terminals (or connection points).

	They have a knob, screw, or slider that can be moved to vary the resistance between the middle terminal and either one of the outer terminals.

	The resistance between the middle terminal and either one of the outer terminals varies from 0 Ω to the maximum resistance of the pot as the knob, screw, or slider is moved.

Here is the circuit symbol of potentiometer.

[image: ../_images/potentiometer_symbol.png]
The functions of the potentiometer in the circuit are as follows:

	Serving as a voltage divider

Potentiometer is a continuously adjustable resistor. When you adjust the shaft or sliding handle of the potentiometer, the movable contact will slide on the resistor. At this point, a voltage can be output depending on the voltage applied onto the potentiometer and the angle the movable arm has rotated to or the travel it has made.

	Serving as a rheostat

When the potentiometer is used as a rheostat, connect the middle pin and one of the other 2 pins in the circuit. Thus you can get a smoothly and continuously changed resistance value within the travel of the moving contact.

	Serving as a current controller

When the potentiometer acts as a current controller, the sliding contact terminal must be connected as one of the output terminals.

If you want to know more about potentiometer, refer to: Potentiometer - Wikipedia [https://en.wikipedia.org/wiki/Potentiometer]

Example

	4.1 Turn the Knob (Basic Project)

Joystick Module

[image: ../_images/joystick_pic.png]
The basic idea of a joystick is to translate the movement of a stick into electronic information that a computer can process.

In order to communicate a full range of motion to the computer, a joystick needs to measure the stick’s position on two axes – the X-axis (left to right) and the Y-axis (up and down). Just as in basic geometry, the X-Y coordinates pinpoint the stick’s position exactly.

To determine the location of the stick, the joystick control system simply monitors the position of each shaft. The conventional analog joystick design does this with two potentiometers, or variable resistors.

The joystick also has a digital input that is actuated when the joystick is pressed down.

[image: ../_images/joystick318.png]
Example

	4.3 Toggle the Joystick (Basic Project)

IR Receiver

IR Receiver

[image: ../_images/ir_receiver_hs0038b.jpg]

	OUT: Signal output

	GND: GND

	VCC: power supply, 3.3v~5V

An infrared-receiver is a component which receives infrared signals and can independently receive infrared rays and output signals compatible with TTL level. It is similar with a normal plastic-packaged transistor in size and is suitable for all kinds of infrared remote control and infrared transmission.

Infrared, or IR, communication is a popular, low-cost, easy-to-use wireless communication technology. Infrared light has a slightly longer wavelength than visible light, so it is imperceptible to the human eye - ideal for wireless communication. A common modulation scheme for infrared communication is 38KHz modulation.

	Adopted HS0038B [https://pdf1.alldatasheet.com/datasheet-pdf/view/103034/VISHAY/HS0038B.html] IR Receiver Sensor, high sensitivity

	Can be used for remote control

	Power Supply: 5V

	Interface: Digital

	Modulate Frequency: 38Khz

	Pin Definitions: (1) Output (2) Vcc (3) GND

	Size: 23.5mm x 21.5mm

Remote Control

[image: ../_images/image186.jpeg]
This is a Mini thin infrared wireless remote control with 21 function buttons and a transmitting distance of up to 8 meters, which is suitable for operating a wide range of devices in a kid’s room.

	Size: 85x39x6mm

	Remote control range: 8-10m

	Battery: 3V button type lithium manganese battery

	Infrared carrier frequency: 38KHz

	Surface paste material: 0.125mm PET

	Effective life: more than 20,000 times

Example

	5.11.2 IR Receiver (Basic Project)

	9. Remote Control (Car Project)

	10. One Touch Start (Car Project)

Photoresistor

[image: ../_images/photoresistor.png]
A photoresistor or photocell is a light-controlled variable resistor. The resistance of a photoresistor decreases with increasing incident light intensity; in other words, it exhibits photo conductivity.

A photoresistor can be applied in light-sensitive detector circuits and light-activated and dark-activated switching circuits acting as a resistance semiconductor. In the dark, a photoresistor can have a resistance as high as several megaohms (MΩ), while in the light, a photoresistor can have a resistance as low as a few hundred ohms.

Here is the electronic symbol of photoresistor.

[image: ../_images/photoresistor_symbol.png]

	Photoresistor - Wikipedia [https://en.wikipedia.org/wiki/Photoresistor#:~:text=A%20photoresistor%20(also%20known%20as,on%20the%20component's%20sensitive%20surface]

Example

	4.2 Feel the Light (Basic Project)

	5. Home Environment Monitoring (IoT Project)

	6. Plant Monitor (IoT Project)

Thermistor

[image: ../_images/thermistor.png]
A thermistor is a type of resistor whose resistance is strongly dependent on temperature, more so than in standard resistors. The word is a combination of thermal and resistor. Thermistors are widely used as inrush current limiters, temperature sensors (negative temperature coefficient or NTC type typically), self-resetting overcurrent protectors, and self-regulating heating elements (positive temperature coefficient or PTC type typically).

	Thermistor - Wikipedia [https://en.wikipedia.org/wiki/Thermistor]

Here is the electronic symbol of thermistor.

[image: ../_images/thermistor_symbol.png]
Thermistors are of two opposite fundamental types:

	With NTC thermistors, resistance decreases as temperature rises usually due to an increase in conduction electrons bumped up by thermal agitation from valency band. An NTC is commonly used as a temperature sensor, or in series with a circuit as an inrush current limiter.

	With PTC thermistors, resistance increases as temperature rises usually due to increased thermal lattice agitations particularly those of impurities and imperfections. PTC thermistors are commonly installed in series with a circuit, and used to protect against overcurrent conditions, as resettable fuses.

In this kit we use an NTC one. Each thermistor has a normal resistance. Here it is 10k ohm, which is measured under 25 degree Celsius.

Here is the relation between the resistance and temperature:

RT = RN * expB(1/TK – 1/TN)

	RT is the resistance of the NTC thermistor when the temperature is TK.

	RN is the resistance of the NTC thermistor under the rated temperature TN. Here, the numerical value of RN is 10k.

	TK is a Kelvin temperature and the unit is K. Here, the numerical value of TK is 273.15 + degree Celsius.

	TN is a rated Kelvin temperature; the unit is K too. Here, the numerical value of TN is 273.15+25.

	And B(beta), the material constant of NTC thermistor, is also called heat sensitivity index with a numerical value 3950.

	exp is the abbreviation of exponential, and the base number e is a natural number and equals 2.7 approximately.

Convert this formula TK=1/(ln(RT/RN)/B+1/TN) to get Kelvin temperature that minus 273.15 equals degree Celsius.

This relation is an empirical formula. It is accurate only when the temperature and resistance are within the effective range.

Example

	6.3 High Temperature Alarm (Basic Project)

	4.5 Thermometer (Basic Project)

DHT11 Humiture Sensor

The digital temperature and humidity sensor DHT11 is a composite sensor that contains a calibrated digital signal output of temperature and humidity.
The technology of a dedicated digital modules collection and the temperature and humidity sensing technology are applied to ensure that the product has high reliability and excellent long-term stability.

The sensor includes a resistive sense of wet component and an NTC temperature measurement device, and is connected with a high-performance 8-bit microcontroller.

Only three pins are available for use: VCC, GND, and DATA.
The communication process begins with the DATA line sending start signals to DHT11, and DHT11 receives the signals and returns an answer signal.
Then the host receives the answer signal and begins to receive 40-bit humiture data (8-bit humidity integer + 8-bit humidity decimal + 8-bit temperature integer + 8-bit temperature decimal + 8-bit checksum).

[image: ../_images/dht11.png]
Features

	Humidity measurement range: 20 - 90%RH

	Temperature measurement range: 0 - 60℃

	Output digital signals indicating temperature and humidity

	Working voltage:DC 5V; PCB size: 2.0 x 2.0 cm

	Humidity measurement accuracy: ±5%RH

	Temperature measurement accuracy: ±2℃

	DHT11 Datasheet [http://wiki.sunfounder.cc/images/c/c7/DHT11_datasheet.pdf]

Example

	5.11.3 Temperature - Humidity (Basic Project)

	5. Home Environment Monitoring (IoT Project)

	6. Plant Monitor (IoT Project)

Line Tracking Module

[image: ../_images/line_track.png]

	S: Usually low level, high level when the black line is detected.

	V+: Power supply, 3.3v~5V

	G: Ground

This is a 1-channel Line Tracking module which, as the name suggests, tracks black lines on a white background or white lines against a black background.

[image: ../_images/tcrt5000.jpg]
The module uses a TCRT500 infrared sensor, which consists of an infrared LED (blue) and a photosensitive triplet (black).

	The blue infrared LED, when powered on, emits infrared light that is invisible to the human eye.

	The black phototransistor, which is used to receive infrared light, has an internal resistor whose resistance varies with the infrared light received; the more infrared light received, the lower its resistance decreases and vice versa.

There is a LM393 comparator on the module, which is used to compare the voltage of the phototransistor with the set voltage (adjusted by potentiometer), if it is greater than the set voltage, the output is 1; otherwise the output is 0.

Therefore, when the infrared emitter tube shines on a black surface, because the black will absorb light, the photosensitive transistor receives less infrared light, its resistance will increase (voltage increase), after LM393 comparator, the output high level.

Similarly, when it shines on a white surface, the reflected light will become more and the resistance of the photosensitive transistor will decrease (voltage decreases); therefore, the comparator outputs a low level and the indicator LED lights up.

	TCRT5000 [https://www.vishay.com/docs/83760/tcrt5000.pdf]

Features

	Using infrared emission sensor TCRT5000

	Detection distance: 1-8mm, focal length of 2.5mm

	Comparator output signal clean, good waveform, driving capacity greater than 15mA

	Using potentiometer for sensitivity adjustment

	Operating voltage: 3.3V-5V

	Digital output: 0 (white) and 1 (black)

	Uses wide voltage LM393 comparator.

	Size: 42mmx10mm

Example

	3.4 Detect the Line (Basic Project)

	4. Follow the line (Car Project)

Soil Moisture Module

[image: ../_images/soil_mositure.png]

	GND: Ground

	VCC: Power supply, 3.3v~5V

	AOUT: Outputs the soil moisture value, the wetter the soil, the smaller its value.

This capacitive soil moisture sensor is different from most of the resistive sensors on the market, using the principle of capacitive induction to detect soil moisture. It avoids the problem that resistive sensors are highly susceptible to corrosion and greatly extends its working life.

It is made of corrosion-resistant materials and has an excellent service life. Insert it into the soil around plants and monitor real-time soil moisture data. The module includes an on-board voltage regulator that allows it to operate over a voltage range of 3.3 ~ 5.5 V. It is ideal for low-voltage microcontrollers with 3.3 V and 5 V supplies.

The hardware schematic of the capacitive soil moisture sensor is shown below.

[image: ../_images/solid_schematic.png]
There is a fixed frequency oscillator, which is built with a 555 timer IC. The generated square wave is then fed to the sensor like a capacitor. However, for the square wave signal, the capacitor has a certain reactance or, for the sake of argument, a resistor with a pure ohmic resistor (10k resistor on pin 3) to form a voltage divider.

The higher the soil moisture, the higher the capacitance of the sensor. As a result, the square wave has less reactance, which reduces the voltage on the signal line, and the smaller the value of the analog input through the microcontroller.

Specification

	Operating Voltage: 3.3 ~ 5.5 VDC

	Output Voltage: 0 ~ 3.0VDC

	Operating Current: 5mA

	Interface: PH2.0-3P

	Dimensions: 3.86 x 0.905 inches (L x W)

	Weight: 15g

Example

	4.4 Measure Soil Moisture (Basic Project)

	6. Plant Monitor (IoT Project)

Obstacle Avoidance Module

[image: ../_images/IR_Obstacle.png]

	VCC: Power supply, 3.3 ~ 5V DC.

	GND: Ground

	OUT: Signal pin, usually high level, and low level when an obstacle is detected.

The IR obstacle avoidance module has strong adaptability to environmental light, it has a pair of infrared transmitting and receiving tubes.

The transmitting tube emits infrared frequency, when the detection direction encounters an obstacle, the infrared radiation is received by the receiving tube,
after the comparator circuit processing, the indicator will light up and output low level signal.

The detection distance can be adjusted by potentiometer, the effective distance range 2-30cm.

[image: ../_images/IR_module.png]
Example

	3.3 Detect the Obstacle (Basic Project)

	5. Play with Obstacle Avoidance Module (Car Project)

	8. Self-Driving Car (Car Project)

	7. Current Limiting Gate (IoT Project)

Ultrasonic Module

[image: ../_images/ultrasonic_pic.png]
Ultrasonic ranging module provides 2cm - 400cm non-contact measurement function, and the ranging accuracy can reach to 3mm.
It can ensure that the signal is stable within 5m, and the signal is gradually weakened after 5m, till the 7m position disappears.

The module includes ultrasonic transmitters, receiver and control circuit. The basic principles are as follows:

	Use an IO flip-flop to process a high level signal of at least 10us.

	The module automatically sends eight 40khz and detects if there is a pulse signal return.

	If the signal returns, passing the high level, the high output IO duration is the time from the transmission of the ultrasonic wave to the return of it. Here, test distance = (high time x sound speed (340 m / s) / 2.

The timing diagram is shown below.

[image: ../_images/ultrasonic228.png]
You only need to supply a short 10us pulse for the trigger input to start the ranging, and then the module
will send out an 8 cycle burst of ultrasound at 40 kHz and raise its
echo. You can calculate the range through the time interval between
sending trigger signal and receiving echo signal.

Formula: us / 58 = centimeters or us / 148 =inch; or: the range = high
level time * velocity (340M/S) / 2; you are suggested to use
measurement cycle over 60ms in order to prevent signal collisions of
trigger signal and the echo signal.

Example

	5.8 User-defined Function (Basic Project)

	7. Follow Your Hand (Car Project)

	6. Play with Ultrasonic Module (Car Project)

Get Started with Arduino

If you have no idea about Arduino. There are several words I would like to show you: electronics, design, programming, and even Maker. Some of you may think these words are quite far away from us, but in fact, they are not far at all. Because Arduino can take us into the world of programming and help us realize the dream of being a Maker.
In this session we will learn:

	What is Arduino?

	what can Arduino do?

	How to build an Arduino Project?

What is Arduino?

First of all, I will give you a brief introduction to Arduino.

Arduino is a convenient, flexible, and easy-to-use open-source electronic prototyping platform, including hardware Arduino boards of various models and software Arduino IDE. It is not only suitable for engineers for rapid prototyping, but also artists, designers, hobbyists, while it is almost a must-have tool for modern Makers.

Arduino is quite a large system. It has software, hardware, and a very huge online community of people who have never met each other but are able to work together because of a common hobby. Everyone in the Arduino family is using their wisdom, making with their hands, and sharing one great invention after another. And you can also be a part of it.

What can Arduino do?

Speaking of which, you may have doubts about what Arduino can actually do. Suffice it to say, Arduino will solve all your problems.

Technically speaking, Arduino is a programmable logic controller. It is a development board that can be used to create many exciting and creative electronic creations: such as remote-controlled cars, robotic arms, bionic robots, smart homes, etc.

Arduino boards are straightforward, simple, and powerful, suitable for students, makers and even professional programmers.

To this day, electronics enthusiasts worldwide continue to develop creative electronic creations based on Arduino development boards.

How to build an Arduino Project

Follow these steps to learn how to use Arduino from zero!

	Download and Install Arduino IDE 2.0
	Requirements

	Download the Arduino IDE 2.0

	Installation

	Open the IDE

	Introduce of Arduino IDE

	How to create, open or Save the Sketch?

	How to upload Sketch to the Board?

	Arduino Program Structure

	Sketch Writing Rule
	Semicolon ;

	Curlybraces {}

	Commment //

	Commment /**/

	#define

	Variable
	Declare a variable

	How to Build the Circuit
	Hello, Breadboard!

	Beware of short circuits

	Direction of the circuit

	Protection of the circuit

	Control circuit with Arduino

Download and Install Arduino IDE 2.0

The Arduino IDE, known as Arduino Integrated Development Environment, provides all the software support needed to complete an Arduino project. It is a programming software specifically designed for Arduino, provided by the Arduino team, that allows us to write programs and upload them to the Arduino board.

The Arduino IDE 2.0 is an open-source project. It is a big step from its sturdy predecessor, Arduino IDE 1.x, and comes with revamped UI, improved board & library manager, debugger, autocomplete feature and much more.

In this tutorial, we will show how to download and install the Arduino IDE 2.0 on your Windows, Mac, or Linux computer.

Requirements

	Windows - Win 10 and newer, 64 bits

	Linux - 64 bits

	Mac OS X - Version 10.14: “Mojave” or newer, 64 bits

Download the Arduino IDE 2.0

	Vist Arduino IDE 2.0.0 Page.

	Download the IDE for your OS version.

[image: ../_images/sp_001.png]

Installation

Windows

	Double click the arduino-ide_xxxx.exe file to run the downloaded file.

	Read the License Agreement and agree it.

[image: ../_images/sp_002.png]

	Choose installation options.

[image: ../_images/sp_003.png]

	Choose install location. It is recommended that the software be installed on a drive other than the system drive.

[image: ../_images/sp_004.png]

	Then Finish.

[image: ../_images/sp_005.png]

macOS

Double click on the downloaded arduino_ide_xxxx.dmg file and follow the instructions to copy the Arduino IDE.app to the Applications folder, you will see the Arduino IDE installed successfully after a few seconds.

[image: ../_images/macos_install_ide.png]

Linux

For the tutorial on installing the Arduino IDE 2.0 on a Linux system, please refer to: https://docs.arduino.cc/software/ide-v2/tutorials/getting-started/ide-v2-downloading-and-installing#linux

Open the IDE

	When you first open Arduino IDE 2.0, it automatically installs the Arduino AVR Boards, built-in libraries, and other required files.

[image: ../_images/sp_901.png]

	In addition, your firewall or security center may pop up a few times asking you if you want to install some device driver. Please install all of them.

[image: ../_images/sp_104.png]

	Now your Arduino IDE is ready!

Note

In the event that some installations didn’t work due to network issues or other reasons, you can reopen the Arduino IDE and it will finish the rest of the installation. The Output window will not automatically open after all installations are complete unless you click Verify or Upload.

Introduce of Arduino IDE

[image: ../_images/sp_ide_2.png]

	Verify: Compile your code. Any syntax problem will be prompted with errors.

	Upload: Upload the code to your board. When you click the button, the RX and TX LEDs on the board will flicker fast and won’t stop until the upload is done.

	Debug: For line-by-line error checking.

	Select Board: Quick setup board and port.

	Serial Plotter: Check the change of reading value.

	Serial Monitor: Click the button and a window will appear. It receives the data sent from your control board. It is very useful for debugging.

	File: Click the menu and a drop-down list will appear, including file creating, opening, saving, closing, some parameter configuring, etc.

	Edit: Click the menu. On the drop-down list, there are some editing operations like Cut, Copy, Paste, Find, and so on, with their corresponding shortcuts.

	Sketch: Includes operations like Verify, Upload, Add files, etc. More important function is Include Library – where you can add libraries.

	Tool: Includes some tools – the most frequently used Board (the board you use) and Port (the port your board is at). Every time you want to upload the code, you need to select or check them.

	Help: If you’re a beginner, you may check the options under the menu and get the help you need, including operations in IDE, introduction information, troubleshooting, code explanation, etc.

	Output Bar: Switch the output tab here.

	Output Window: Print information.

	Board and Port: Here you can preview the board and port selected for code upload. You can select them again by Tools -> Board / Port if any is incorrect.

	The editing area of the IDE. You can write code here.

	Sketchbook: For managing sketch files.

	Board Manager: For managing board driver.

	Library Manager: For managing your library files.

	Debug: Help debugging code.

	Search: Search the codes from your sketches.

How to create, open or Save the Sketch?

	When you open the Arduino IDE for the first time or create a new sketch, you will see a page like this, where the Arduino IDE creates a new file for you, which is called a “sketch”.

[image: ../_images/sp221014_173458.png]
These sketch files have a regular temporary name, from which you can tell the date the file was created. sketch_oct14a.ino means October 14th first sketch, .ino is the file format of this sketch.

	Now let’s try to create a new sketch. Copy the following code into the Arduino IDE to replace the original code.

[image: ../_images/create1.png]

void setup() {
 // put your setup code here, to run once:
 pinMode(13,OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
 digitalWrite(13,HIGH);
 delay(500);
 digitalWrite(13,LOW);
 delay(500);
}

	Press Ctrl+S or click File -> Save. The Sketch is saved in: C:\Users\{your_user}\Documents\Arduino by default, you can rename it or find a new path to save it.

[image: ../_images/create2.png]

	After successful saving, you will see that the name in the Arduino IDE has been updated.

[image: ../_images/create3.png]

Please continue with the next section to learn how to upload this created sketch to your Arduino board.

How to upload Sketch to the Board?

In this section, you will learn how to upload the sketch created previously to the Arduino board, as well as learn about some considerations.

1. Choose Board and port

Arduino development boards usually come with a USB cable. You can use it to connect the board to your computer.

Select the correct Board and Port in the Arduino IDE. Normally, Arduino boards are recognized automatically by the computer and assigned a port, so you can select it here.

[image: ../_images/board_port.png]

If your board is already plugged in, but not recognized, check if the INSTALLED logo appears in the Arduino UNO R4 Boards section of the Boards Manager, if not, please scroll down a bit and click on INSTALL.

[image: ../_images/upload1.png]

Reopening the Arduino IDE and re-plugging the Arduino board will fix most of the problems. You can also click Tools -> Board or Port to select them.

2. Verify the Sketch

After clicking the Verify button, the sketch will be compiled to see if there are any errors.

[image: ../_images/sp221014_174532.png]

You can use it to find mistakes if you delete some characters or type a few letters by mistake. From the message bar, you can see where and what type of errors occurred.

[image: ../_images/sp221014_175307.png]

If there are no errors, you will see a message like the one below.

[image: ../_images/sp221014_175512.png]

3. Upload sketch

After completing the above steps, click the Upload button to upload this sketch to the board.

[image: ../_images/sp221014_175614.png]

If successful, you will be able to see the following prompt.

[image: ../_images/sp221014_175654.png]
At the same time, the on-board LED blink.

[image: ../_images/1_led.jpg]
The Arduino board will automatically run the sketch after power is applied after the sketch is uploaded. The running program can be overwritten by uploading a new sketch.

Arduino Program Structure

Let’s take a look at the new sketch file. Although it has a few lines of code itself, it is actually an “empty” sketch.
Uploading this sketch to the development board will cause nothing to happen.

void setup() {
// put your setup code here, to run once:

}

void loop() {
// put your main code here, to run repeatedly:

}

If we remove setup() and loop() and make the sketch a real blank file, you will find that it does not pass the verification.
They are the equivalent of the human skeleton, and they are indispensable.

During sketching, setup() is run first, and the code inside it (inside {}) is run after the board is powered up or reset and only once.
loop() is used to write the main feature, and the code inside it will run in a loop after setup() is executed.

To better understand setup() and loop(), let’s use four sketches. Their purpose is to make the on-board LED of the Arduino blink. Please run each experiment in turn and record them specific effects.

	Sketch 1: Make the on-board LED blink continuously.

void setup() {
 // put your setup code here, to run once:
 pinMode(13,OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
 digitalWrite(13,HIGH);
 delay(500);
 digitalWrite(13,LOW);
 delay(500);
}

	Sketch 2: Make the on-board LED blink only once.

void setup() {
 // put your setup code here, to run once:
 pinMode(13,OUTPUT);
 digitalWrite(13,HIGH);
 delay(500);
 digitalWrite(13,LOW);
 delay(500);
}

void loop() {
 // put your main code here, to run repeatedly:
}

	Sketch 3: Make the on-board LED blink slowly once and then blink quickly.

void setup() {
 // put your setup code here, to run once:
 pinMode(13,OUTPUT);
 digitalWrite(13,HIGH);
 delay(1000);
 digitalWrite(13,LOW);
 delay(1000);
}

void loop() {
 // put your main code here, to run repeatedly:
 digitalWrite(13,HIGH);
 delay(200);
 digitalWrite(13,LOW);
 delay(200);
}

	Sketch 4: Report an error.

void setup() {
 // put your setup code here, to run once:
 pinMode(13,OUTPUT);
}

digitalWrite(13,HIGH);
delay(1000);
digitalWrite(13,LOW);
delay(1000);

void loop() {
 // put your main code here, to run repeatedly:
}

With the help of these sketches, we can summarize several features of setup-loop.

	loop() will be run repeatedly after the board is powered up.

	setup() will run only once after the board is powered up.

	After the board is powered up, setup() will run first, followed by loop().

	The code needs to be written within the {} scope of setup() or loop(), out of the framework will be an error.

Note

Statements such as digitalWrite(13,HIGH) are used to control the on-board LED, and we will talk about their usage in detail in later chapters.

Sketch Writing Rule

If you ask a friend to turn on the lights for you, you can say “Turn on the lights.”, or “Lights on, bro.”, you can use any tone of voice you want.

However, if you want the Arduino board to do something for you, you need to follow the Arduino program writing rules to type in the commands.

This chapter contains the basic rules of the Arduino language and will help you understand how to translate natural language into code.

Of course, this is a process that takes time to get familiar with, and it is also the most error-prone part of the process for newbies, so if you make mistakes often, it’s okay, just try a few more times.

Semicolon ;

Just like writing a letter, where you write a period at the end of each sentence as the end, the Arduino language requires you to use ; to tell the board the end of the command.

Take the familiar “onboard LED blinking” example. A healthy sketch should look like this.

Example:

void setup() {
 // put your setup code here, to run once:
 pinMode(13,OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
 digitalWrite(13,HIGH);
 delay(500);
 digitalWrite(13,LOW);
 delay(500);
}

Next, let’s take a look at the following two sketches and guess if they can be correctly recognized by Arduino before running them.

Sketch A:

void setup() {
 // put your setup code here, to run once:
 pinMode(13,OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
 digitalWrite(13,HIGH)
 delay(500)
 digitalWrite(13,LOW)
 delay(500)
}

Sketch B:

void setup() {
 // put your setup code here, to run once:
 pinMode(13,OUTPUT);
}

void loop() {
 // put your main code here, to run repeatedly:
 digitalWrite(13,
HIGH); delay
 (500
);
 digitalWrite(13,

 LOW);
 delay(500)
 ;
}

The result is that Sketch A reports an error and Sketch B runs.

	The errors in Sketch A are missing ; and although it looks normal, the Arduino can’t read it.

	Sketch B, looks anti-human, but in fact, indentation, line breaks and spaces in statements are things that do not exist in Arduino programs, so to the Arduino compiler, it looks the same as in the example.

However, please don’t write your code as Sketch B, because it is usually natural people who write and view the code, so don’t get yourself into trouble.

Curlybraces {}

{} is the main component of the Arduino programming language, and they must appear in pairs.
A better programming convention is to insert a structure that requires curly braces by typing the right curly brace directly after typing the left curly brace, and then moving the cursor between the curly braces to insert the statement.

Commment //

Commment is the part of the sketch that the compiler ignores. They are usually used to tell others how the program works.

If we write two adjacent slashes in a line of code, the compiler will ignore anything up to the end of the line.

If we create a new sketch, it comes with two comments, and if we remove these two comments, the sketch will not be affected in any way.

void setup() {
 // put your setup code here, to run once:

}

void loop() {
 // put your main code here, to run repeatedly:

}

Comment is very useful in programming, and several common uses are listed below.

	Usage A: Tell yourself or others what this section of code does.

void setup() {
 pinMode(13,OUTPUT); //Set pin 13 to output mode, it controls the onboard LED
}

void loop() {
 digitalWrite(13,HIGH); // Activate the onboard LED by setting pin 13 high
 delay(500); // Status quo for 500 ms
 digitalWrite(13,LOW); // Turn off the onboard LED
 delay(500);// Status quo for 500 ms
}

	Usage B: Temporarily invalidate some statements (without deleting them) and uncomment them when you need to use them, so you don’t have to rewrite them. This is very useful when debugging code and trying to locate program errors.

void setup() {
 pinMode(13,OUTPUT);
 // digitalWrite(13,HIGH);
 // delay(1000);
 // digitalWrite(13,LOW);
 // delay(1000);
}

void loop() {
 digitalWrite(13,HIGH);
 delay(200);
 digitalWrite(13,LOW);
 delay(200);
}

Note

Use the shortcut Ctrl+/ to help you quickly comment or uncomment your code.

Commment /**/

Same as // for comments. This type of comment can be more than one line long, and once the compiler reads /*, it ignores anything that follows until it encounters */.

Example 1:

/* Blink */

void setup() {
 pinMode(13,OUTPUT);
}

void loop() {
 /*
 The following code will blink the onboard LED
 You can modify the number in delay() to change the blinking frequency
 */
 digitalWrite(13,HIGH);
 delay(500);
 digitalWrite(13,LOW);
 delay(500);
}

#define

This is a useful C++ tool.

#define identifier token-string

The compiler automatically replaces identifier with token-string when it reads it, which is usually used for constant definitions.

As an example, here is a sketch that uses define, which improves the readability of the code.

#define ONBOARD_LED 13
#define DELAY_TIME 500

void setup() {
 pinMode(ONBOARD_LED,OUTPUT);
}

void loop() {
 digitalWrite(ONBOARD_LED,HIGH);
 delay(DELAY_TIME);
 digitalWrite(ONBOARD_LED,LOW);
 delay(DELAY_TIME);
}

To the compiler, it actually looks like this.

void setup() {
 pinMode(13,OUTPUT);
}

void loop() {
 digitalWrite(13,HIGH);
 delay(500);
 digitalWrite(13,LOW);
 delay(500);
}

We can see that the identifier is replaced and does not exist inside the program.
Therefore, there are several caveats when using it.

	A token-string can only be modified manually and cannot be converted into other values by arithmetic in the program.

	Avoid using symbols such as ;. For example.

#define ONBOARD_LED 13;

void setup() {
 pinMode(ONBOARD_LED,OUTPUT);
}

void loop() {
 digitalWrite(ONBOARD_LED,HIGH);
}

The compiler will recognize it as the following, which is what will be reported as an error.

void setup() {
 pinMode(13;,OUTPUT);
}

void loop() {
 digitalWrite(13;,HIGH);
}

Note

A naming convention for #define is to capitalize identifier to avoid confusion with variables.

Variable

The variable is one of the most powerful and critical tools in a program. It helps us to store and call data in our programs.

The following sketch file uses variables. It stores the pin numbers of the on-board LED in the variable ledPin and a number “500” in the variable delayTime.

int ledPin = 13;
int delayTime = 500;

void setup() {
 pinMode(ledPin,OUTPUT);
}

void loop() {
 digitalWrite(ledPin,HIGH);
 delay(delayTime);
 digitalWrite(ledPin,LOW);
 delay(delayTime);
}

Wait, is this a duplicate of what #define does? The answer is NO.

	The role of #define is to simply and directly replace text, it is not considered by the compiler as part of the program.

	A variable, on the other hand, exists within the program and is used to store and call value. A variable can also modify its value within the program, something that a define cannot do.

The sketch file below self-adds to the variable and it will cause the on-board LED to blink longer after each blink.

int ledPin = 13;
int delayTime = 500;

void setup() {
 pinMode(ledPin,OUTPUT);
}

void loop() {
 digitalWrite(ledPin,HIGH);
 delay(delayTime);
 digitalWrite(ledPin,LOW);
 delay(delayTime);
 delayTime = delayTime+200; //Each execution increments the value by 200
}

Declare a variable

Declaring a variable means creating a variable.

To declare a variable, you need two things: the data type, and the variable name. The data type needs to be separated from the variable by a space, and the variable declaration needs to be terminated by a ;.

Let’s use this variable as an example.

int delayTime;

Data Type

Here int is a data type called integer type, which can be used to store integers from -32768 to 32766. It can also not be used to store decimals.

Variables can hold different kinds of data other than integers. The Arduino language (which, remember, is C++) has built-in support for a few of them (only the most frequently used and useful are listed here):

	float: Store a decimal number, for example 3.1415926.

	byte: Can hold numbers from 0 to 255.

	boolean: Holds only two possible values, True or False, even though it occupies a byte in memory.

	char: Holds a number from -127 to 127. Because it is marked as a char the compiler will try to match it to a character from the ASCII table of characters.

	string: Can stores a string of characters, e.g. Halloween.

Variable Name

You can set the variable to any name you want, such as i, apple, Bruce, R2D2, Sectumsempra, but there are some basic rules to follow.

	describe what it is used for. Here, I named the variable delayTime, so you can easily understand what it does. It works fine if I name the variable barryAllen, but it confuses the person looking at the code.

	Use regular nomenclature. You can use CamelCase like I did, with the initial T in delayTime so that it is easy to see that the variable consists of two words. Also, you can use UnderScoreCase to write the variable as delay_time. It doesn’t affect the program’s running, but it would help the programmer to read the code if you use the nomenclature you prefer.

	Don’t use keywords. Similar to what happens when we type “int”, the Arduino IDE will color it to remind you that it is a word with a special purpose and cannot be used as a variable name. Change the name of the variable if it is colored.

	Special symbols are not allowed. For example, space, #, $, /, +, %, etc. The combination of English letters (case sensitive), underscores, and numbers (but numbers cannot be used as the first character of a variable name) is rich enough.

Assign a value to a variable

Once we have declared the variable, it is time to store the data. We use the assignment operator (i.e. =) to put value into the variable.

We can assign values to the variable as soon as we declare it.

int delayTime = 500;

It is also possible to assign a new value to it at some time.

int delayTime; // no value
delayTime = 500; // value is 500
delayTime = delayTime +200; // value is 700

How to Build the Circuit

Many of the things you use every day are powered by electricity, like the lights in your house and the computer you’re reading.

To use electricity, you must build an electrical circuit. Basically, a circuit is a path through which electricity flows, or an electronic circuit, and is made up of electrical devices and components (appliances) that are connected in a certain way, such as resistors, capacitors, power supplies, and switches.

[image: ../_images/circuit.png]
A circuit is a closed path in which electrons move to create an electric current. To flow current, there must be a conducting path between the positive terminal of the power supply and the negative terminal, which is called a closed circuit (if it is broken, it is called an open circuit.) .

The Arduino Board has some power output pins (positive) and some ground pins (negative).
You can use these pins as the positive and negative sides of the power supply by plugging the power source into the board.

[image: ../_images/arduinoPN.jpg]
With electricity, you can create works with light, sound, and motion.
You can light up an LED by connecting the long pin to the positive terminal and the short pin to the negative terminal.
The LED will break down very quickly if you do this, so you need to add a 1k* resistor inside the circuit to protect it.

The circuit they form is shown below.

[image: ../_images/sp221014_181625.png]
You may have questions this time: how do I build this circuit? Hold the wires by hand, or tape the pins and wires?

In this situation, solderless breadboards will be your strongest allies.

Hello, Breadboard!

A breadboard is a rectangular plastic plate with a bunch of small holes.
These holes allow us to easily insert electronic components and build electronic circuits.
Breadboards do not permanently fix electronic components, so we can easily repair a circuit and start over if something goes wrong.

Note

There is no need for special tools to use breadboards. However, many electronic components are very small, and a pair of tweezers can help us to pick up small parts better.

On the Internet, we can find a lot of information about breadboards.

	How to Use a Breadboard - Science Buddies [https://www.sciencebuddies.org/science-fair-projects/references/how-to-use-a-breadboard#pth-smd]

	What is a BREADBOARD? - Makezine [https://cdn.makezine.com/uploads/2012/10/breadboardworkshop.pdf]

Here are some things you should know about breadboards.

	Each half-row group (such as column A-E in row 1 or column F-J in row 3) is connected. Therefore, if an electrical signal flows in from A1, it can flow out from B1, C1, D1, E1, but not from F1 or A2.

	In most cases, both sides of the breadboard are used as power buses, and the holes in each column (about 50 holes) are connected together. As a general rule, positive power supplies are connected to the holes near the red wire, and negative power supplies are connected to the holes near the blue wire.

	In a circuit, current flows from the positive pole to the negative pole after passing through the load. In this case, a short circuit may occur.

Let us follow the direction of the current to build the circuit!

[image: ../_images/connect_led.png]

	In this circuit, we use the 5V pin of the board to power the LED. Use a male-to-male (M2M) jumper wire to connect it to the red power bus.

	To protect the LED, the current must pass through a 1k ohm resistor. Connect one end (either end) of the resistor to the red power bus, and the other end to the free row of the breadboard.

Note

The color ring of the 1k ohm resistor is brown, black, black, brown and brown.

	If you pick up the LED, you will see that one of its leads is longer than the other. Connect the longer lead to the same row as the resistor, and the shorter lead to the other row.

Note

The longer lead is the anode, which represents the positive side of the circuit; the shorter lead is the cathode, which represents the negative side.

The anode needs to be connected to the GPIO pin through a resistor; the cathode needs to be connected to the GND pin.

	Using a male-to-male (M2M) jumper wire, connect the LED short pin to the breadboard’s negative power bus.

	Connect the GND pin of board to the negative power bus using a jumper.

Beware of short circuits

Short circuits can occur when two components that shouldn’t be connected are “accidentally” connected.
This kit includes resistors, transistors, capacitors, LEDs, etc. that have long metal pins that can bump into each other and cause a short. Some circuits are simply prevented from functioning properly when a short occurs. Occasionally, a short circuit can damage components permanently, especially between the power supply and the ground bus, causing the circuit to get very hot, melting the plastic on the breadboard and even burning the components!

Therefore, always make sure that the pins of all the electronics on the breadboard are not touching each other.

Direction of the circuit

There is an orientation to circuits, and the orientation plays a significant role in certain electronic components. There are some devices with polarity, which means they must be connected correctly based on their positive and negative poles. Circuits built with the wrong orientation will not function properly.

[image: ../_images/connect_led_reverse.png]
If you reverse the LED in this simple circuit that we built earlier, you will find that it no longer works.

In contrast, some devices have no direction, such as the resistors in this circuit, so you can try inverting them without affecting the LEDs’ normal operation.

Most components and modules with labels such as “+”, “-”, “GND”, “VCC” or have pins of different lengths must be connected to the circuit in a specific way.

Protection of the circuit

Current is the rate at which electrons flow past a point in a complete electrical circuit. At its most basic, current = flow. An ampere (AM-pir), or amp, is the international unit used for measuring current. It expresses the quantity of electrons (sometimes called “electrical charge”) flowing past a point in a circuit over a given time.

The driving force (voltage) behind the flow of current is called voltage and is measured in volts (V).

Resistance (R) is the property of the material that restricts the flow of current, and it is measured in ohms (Ω).

According to Ohm’s law (as long as the temperature remains constant), current, voltage, and resistance are proportional.
A circuit’s current is proportional to its voltage and inversely proportional to its resistance.

Therefore, current (I) = voltage (V) / resistance (R).

	Ohm’s law - Wikipedia [https://en.wikipedia.org/wiki/Ohm%27s_law]

About Ohm’s law we can do a simple experiment.

[image: ../_images/sp221014_183107.png]
By changing the wire connecting 5V to 3.3V , the LED gets dimmer.
If you change the resistor from 1kohm to 2kohm, you will notice that the LED becomes dimmer than before. The larger the resistor, the dimmer the LED.

Note

For an introduction to resistors and how to calculate resistance values, see Resistor.

Most packaged modules only require access to the proper voltage (usually 3.3V or 5V), such as ultrasonic module.

However, in your self-built circuits, you need to be aware of the supply voltage and resistor usage for electrical devices.

As an example, LEDs usually consume 20mA of current, and their voltage drop is about 1.8V. According to Ohm’s law, if we use 5V power supply, we need to connect a minimum of 160ohm ((5-1.8)/20mA) resistor in order not to burn out the LED.

Control circuit with Arduino

Now that we have a basic understanding of Arduino programming and electronic circuits, it’s time to face the most critical question: How to control circuits with Arduino.

Simply put, the way Arduino controls a circuit is by changing the level of the pins on the board. For example, when controlling an on-board LED, it is writing a high or low level signal to pin 13.

Now let’s try to code the Arduino board to control the blinking LED on the breadboard. Build the circuit so that the LED is connected to pin 9.

[image: ../_images/wiring_led.png]
Next, upload this sketch to the Arduino development board.

int ledPin = 9;
int delayTime = 500;

void setup() {
 pinMode(ledPin,OUTPUT);
}

void loop() {
 digitalWrite(ledPin,HIGH);
 delay(delayTime);
 digitalWrite(ledPin,LOW);
 delay(delayTime);
}

This sketch is very similar to the one we used to control the blinking of the on-board LED, the difference is that the value of ledPin has been changed to 9.
This is because we are trying to control the level of pin 9 this time.

Now you can see the LED on the breadboard blinking.

Download the Code

Download the relevant code from the link below.

	SunFounder 3 in 1 Kit for Arduino [https://github.com/sunfounder/3in1-kit/archive/refs/heads/main-v2.zip]

	Or check out the code at SunFounder 3 in 1 Kit for Arduino - GitHub [https://github.com/sunfounder/3in1-kit/tree/main-v2]

Basic Projects

This chapter is used to learn how to control electronic circuits using Arduino.

Depending on the components, the basic control methods of Arduino can be divided into four types:

	1. Digital Write: Set the output voltage of the pin to be high or low, which can be used to turn the light on and off.

	2. Analog Write: Write the analog value (PWM wave [https://docs.arduino.cc/learn/microcontrollers/analog-output]) to the pin, which can be used to adjust the brightness of the light.

	3. Digital Read: Read the level signal of the digital pin, which can be used to read the working condition of the switch.

	4. Analog Read: Read the voltage of the analog pin, which can be used to read the working condition of the knob.

There are also some components that require additional libraries for use, and these are grouped under the section 5.11 Install External Libraries.

Finally, the kit also provides some 6. Funny Project, which includes many simple and useful manipulations.
Try this section of code and you will understand how most simple projects work.

	1. Digital Write
	1.1 Hello, LED!

	1.2 Beep

	1.3 Turn the Wheel

	1.4 Pumping

	2. Analog Write
	2.1 Fading

	2.2 Colorful Light

	3. Digital Read
	3.0 Serial Monitor

	3.1 Reading Button Value

	3.2 Feel the Magnetism

	3.3 Detect the Obstacle

	3.4 Detect the Line

	4. Analog Read
	4.1 Turn the Knob

	4.2 Feel the Light

	4.3 Toggle the Joystick

	4.4 Measure Soil Moisture

	4.5 Thermometer

	5. More Syntax
	5.1 If else

	5.2 Threshold

	5.3 State Change Detection

	5.4 Interval

	5.5 Use Internal Library

	5.6 Map

	5.7 Tone() or noTone()

	5.8 User-defined Function

	5.9 ShiftOut(LED)

	5.10 ShiftOut(Segment Display)

	5.11 Install External Libraries

	5.12 Serial Read

	5.13 Interrupt

	5.14 Calibration

	5.15 EEPROM

	6. Funny Project
	6.1 Light-sensitive Array

	6.2 Digital Dice

	6.3 High Temperature Alarm

	6.4 Reversing Aid

	6.5 Reaction Game

	6.6 Guess Number

1. Digital Write

Digital Write is to output or write a digital signal to a digital pin. The digital signal has only two states, 0 or 1, 0V or 5V, so it allows some components, such as the LED and buzzer, to be on or off.

On the Arduino R4 board, there are 14 digital I/0 pins from 0 to 13, now use the pinMode() and digitalWrite() functions to write a high or low level to these digital pins.

	pinMode(pin, mode): Configure the specific pin as INPUT or OUTPUT, here it needs to be set as OUTPUT.

	Syntax
	pinMode(pin, mode)

	Parameters
	
	pin: the Arduino pin number to set the mode of.

	mode: INPUT, OUTPUT, or INPUT_PULLUP.

	digitalWrite(pin, value): Write a high level (5V) or a low level (0V) to a digital pin to change the operating state of the component. If the pin has been configured as an OUTPUT with pinMode(), its voltage will be set to the corresponding value: 5V (or 3.3V on 3.3V boards) for HIGH, 0V (ground) for LOW.

	Syntax
	digitalWrite(pin, value)

	Parameters
	
	pin: the Arduino pin number.

	value: HIGH or LOW.

Example of Digital Write:

const int pin = 13;

void setup() {
 pinMode(pin, OUTPUT); // sets the digital pin as output
}

void loop() {
 digitalWrite(pin, HIGH); // sets the digital pin on
 delay(1000); // waits for a second
 digitalWrite(pin, LOW); // sets the digital pin off
 delay(1000); // waits for a second
}

[image: ../_images/1_led1.jpg]
Notes and Warnings

	The pins 0~13 are all digital pins.

	Do not use pins 0 and 1, as they are used to communicate with the computer. Connecting anything to these pins will interfere with communication, including causing the upload board to fail.

	If the digital pins are used up, the analog pins (A0-A5) can also be used as digital pins.

Related Components

Below are the related components, you can click in to learn how to use them.

	1.1 Hello, LED!

	1.2 Beep

	1.3 Turn the Wheel

	1.4 Pumping

1.1 Hello, LED!

Just as printing “Hello, world!” is the first step in learning to program, using a program to drive an LED is the traditional introduction to learning physical programming.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Breadboard

	BUY

	Jumper Wires

	BUY

	Resistor

	BUY

	LED

	BUY

Schematic

[image: ../_images/circuit_1.1_led.png]
The principle of this circuit is simple and the current direction is shown in the figure. When pin 9 outputs high level(5V), the LED will light up after the 1kohm current limiting resistor. When pin 9 outputs low level (0v), the LED will turn off.

Wiring

[image: ../_images/1.1_hello_led_bb.png]
Code

Note

	You can open the file 1.1.hello_led.ino under the path of 3in1-kit\learning_project\1.1.hello_led.

	Or copy this code into Arduino IDE.

 1.2 Beep

1.2 Beep

The active buzzer is a typical digital output device that is as easy to use as lighting up an LED!

Two types of buzzers are included in the kit.
We need to use active buzzer. Turn them around, the sealed back (not the exposed PCB) is the one we want.

[image: ../_images/buzzer.png]
Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Breadboard

	BUY

	Jumper Wires

	BUY

	Buzzer

	-

Schematic

[image: ../_images/circuit_1.2_beep.png]
Wiring

[image: ../_images/1.2_beep_bb.png]
Code

Note

	You can open the file 1.2.beep.ino under the path of 3in1-kit\learning_project\1.2.beep.

	Or copy this code into Arduino IDE.

 1.3 Turn the Wheel

1.3 Turn the Wheel

A motor is a typical digital output device, and it is used in the same way as an LED.
However, the motor needs to be driven with a large current,
and the large current may damage the main control board such as R4 board.
Therefore, an motor driver module is used in this occasion,
which is a good helper for the R4 board to control the motor safely.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Jumper Wires

	BUY

	TT Motor

	-

	L9110 Motor Driver Module

	-

Schematic

[image: ../_images/circuit_1.3_wheel_l9110.png]
Wiring

	L9110S

	R4 Board

	Motor

	VCC

	5V

	

	GND

	GND

	

	B-1B(B-2A)

	9

	

	B-1A

	10

	

	OA

	
	one wire of the motor

	OB

	
	one wire of the motor

[image: ../_images/1.3_turn_the_wheel_bb.png]
Code

Note

	You can open the file 1.3.turn_the_wheel.ino under the path of 3in1-kit\learning_project\1.3.turn_the_wheel.

	Or copy this code into Arduino IDE.

 1.4 Pumping

1.4 Pumping

The water pump is also a motor, which converts the mechanical energy of the motor or other external energy through a special structure to transport the liquid.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Jumper Wires

	BUY

	L9110 Motor Driver Module

	-

	Centrifugal Pump

	-

Schematic

[image: ../_images/circuit_1.3_wheel_l9110.png]
Wiring

	L9110S

	R4 Board

	Motor

	VCC

	5V

	

	GND

	GND

	

	B-1B(B-2A)

	9

	

	B-1A

	10

	

	OA

	
	one wire of the motor

	OB

	
	one wire of the motor

[image: ../_images/1.4_pumping_bb.png]
Code

Note

	You can open the file 1.4.pumping.ino under the path of 3in1-kit\learning_project\1.4.pumping.

	Or copy this code into Arduino IDE.

 2. Analog Write

2. Analog Write

6 of the Arduino’s 14 digital pins also have PWM out function. Therefore, in addition to writing digital signals to these 6 pins, you can also write analog signals (PWM wave signals) to them. This way you can make the LEDs show different brightness or make the motor rotate at different speeds.

Pulse Width Modulation, or PWM [https://docs.arduino.cc/learn/microcontrollers/analog-output], is a technique for getting analog results with digital means. Since it may be hard to grasp the literal meaning, here is an example of controlling the intensity of an LED to help you better understand.

A digital signal consisting of high and low levels is called a pulse. The pulse width of these pins can be adjusted by changing the ON/OFF speed.
Simply put, when we turn the LED on, off, and on again for a short period of time (like 20ms, the visual dwell time of most people),
We won’t see that it has gone out, but the brightness of the light will be slightly weaker. During this period, the longer the LED is on, the brighter the LED will be.
That is to say, within a period, the wider the pulse, the greater the “electrical signal strength” output by the microcontroller.

This is the function needed to write the PWM wave.

	analogWrite(pin, value)

Writes an analog value (PWM wave) to a pin. Different output voltages (0-5V) can be simulated by generating a specified pulse signal. The pin will hold this signal until it is called by a new read or write statement.

	Syntax
	analogWrite(pin, value)

	Parameters
	
	pin: the Arduino pin to write to. Allowed data types: int.

	value: the duty cycle: between 0 (always off) and 255 (always on). Allowed data types: int.

Example of Analog Write

int pin = 9; //connect to pwm pin

void setup() {
 pinMode(pin, OUTPUT); // sets the pin as output
}

void loop() {
 for (int i = 0 ;i<255 ; i++){
 analogWrite(pin, i); //analogWrite values from 0 to 255
 delay(30);
 }
}

Notes and Warnings

	Looking closely at the R4 board, the pins marked with the “~” symbol have analog output function.

	The PWM outputs generated on pins 5 and 6 will have higher-than-expected duty cycles. This is because of interactions with the millis() and delay() functions, which share the same internal timer used to generate those PWM outputs. This will be noticed mostly on low duty-cycle settings (e.g. 0 - 10) and may result in a value of 0 not fully turning off the output on pins 5 and 6.

Related Components

Below are the related components, you can click in to learn how to use them.

	2.1 Fading

	2.2 Colorful Light

 2.1 Fading

2.1 Fading

This project is similar to 1.1 Hello, LED! , the difference is the signal type.
The former is to make the LED light on or off by outputting a digital signal (0&1), this project is to control the brightness of the LED by outputting an analog signal.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Breadboard

	BUY

	Jumper Wires

	BUY

	Resistor

	BUY

	LED

	BUY

Schematic

[image: ../_images/circuit_1.1_led.png]
Wiring

[image: ../_images/1.1_hello_led_bb.png]
Code

Note

	You can open the file 2.1.fading.ino under the path of 3in1-kit\learning_project\2.analogWrite\2.1.fading.

	Or copy this code into Arduino IDE.

 2.2 Colorful Light

2.2 Colorful Light

As we know, light can be superimposed. For example, mix blue light and green light give cyan light, red light and green light give yellow light.
This is called “The additive method of color mixing”.

	Additive color - Wikipedia [https://en.wikipedia.org/wiki/Additive_color]

Based on this method, we can use the three primary colors to mix the visible light of any color according to different specific gravity. For example, orange can be produced by more red and less green.

In this chapter, we will use RGB LED to explore the mystery of additive color mixing!

RGB LED is equivalent to encapsulating Red LED, Green LED, Blue LED under one lamp cap, and the three LEDs share one cathode pin.
Since the electric signal is provided for each anode pin, the light of the corresponding color can be displayed.
By changing the electrical signal intensity of each anode, it can be made to produce various colors.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Breadboard

	BUY

	Jumper Wires

	BUY

	Resistor

	BUY

	RGB LED

	BUY

Schematic

[image: ../_images/circuit_2.2_rgb.png]
The PWM pins 11, 10 and 9 control the Red, Green and Blue pins of the RGB LED respectively, and connect the common cathode pin to GND.
This allows the RGB LED to display a specific color by superimposing light on these pins with different PWM values.

Wiring

[image: ../_images/rgb_led_sch.png]
An RGB LED has 4 pins: the longest pin is the common cathode pin, which is usually connected to GND,
the left pin next to the longest pin is Red, and the 2 pins on the right are Green and Blue.

[image: ../_images/2.2_colorful_light_bb.png]
Code

Here, we can choose our favorite color in drawing software (such as paint) and display it with RGB LED.

Note

	You can open the file 2.2.colorful_light.ino under the path of 3in1-kit\learning_project\2.analogWrite\2.2.colorful_light.

	Or copy this code into Arduino IDE.

 3. Digital Read

3. Digital Read

Sensors capture real-world information, which is then communicated to the main board via pins (some digital, some analog) so that the computer can know the reality of the situation.

Therefore, the Arduino board can know the working status of digital sensors by reading the value of digital pins like buttons, IR obstacle avoidance module.

Here are the required functions.

	pinMode(pin, mode): Configure the specific pin as INPUT or OUTPUT, here it needs to be set as INPUT.

	Syntax
	pinMode(pin, mode)

	Parameters
	
	pin: the Arduino pin number to set the mode of.

	mode: INPUT, OUTPUT, or INPUT_PULLUP.

	digitalRead(pin): Read the value (level state) from the specified digital pin.

	Syntax
	digitalRead(pin)

	Parameters
	
	pin: the Arduino pin number you want to read

	Returns
	HIGH or LOW

Example of Digital Read

int ledPin = 13; // LED connected to digital pin 13
int inPin = 7; // pushbutton connected to digital pin 7
int val = 0; // variable to store the read value

void setup() {
 pinMode(ledPin, OUTPUT); // sets the digital pin 13 as output
 pinMode(inPin, INPUT); // sets the digital pin 7 as input
}

void loop() {
 val = digitalRead(inPin); // read the input pin
 digitalWrite(ledPin, val); // sets the LED to the button's value
}

Notes and Warnings

	Pull Up & Pull Down.

digitalRead() may produce random, indeterminate values if the pin is not getting a level signal. So directing the input pins to a known state can make the project more reliable.
When using an input component such as a button, it is usually necessary to connect a pull-up or pull-down resistor in parallel to the digital input pin.

Apart from connecting a pull-up resistor, you can also set the pin mode to INPUT_PULLUP in the code, for example pinMode(pin,INPUT_PULLUP). In this case, the pin will access the Atmega’s built-in pull-up resistor via software, and it will have the same effect as connecting a pull-up resistor.

	About Pin13.

All digital pins (1-13) on the R4 board can be used as digitalRead().
But digital pin 13 is more difficult to use as a digital input than other digital pins.
Because it connects an LED and resistor, it is soldered on most boards.
If you enable its internal 20k pull-up resistor, it will hang around 1.7V instead of the expected 5V because the onboard LED and series resistor pull the voltage level low, which means it always returns LOW. If you must use pin 13 as a digital input, set its pinMode() to INPUT and use an external pull-down resistor.

	Analog pins.

If the digital pins are not enough, the analog pins (A0-A5) can also be used as digital pins.
It needs to be set to INPUT with pinMode(pin,mode).

Related Components

Below are the related components, you can click in to learn how to use them.

	3.0 Serial Monitor

	3.1 Reading Button Value

	3.2 Feel the Magnetism

	3.3 Detect the Obstacle

	3.4 Detect the Line

 3.0 Serial Monitor

3.0 Serial Monitor

In the Arduino IDE, there is a serial monitor that allows you to send messages from your computer to the Arduino board (via USB) and also to receive messages from the Arduino.

So in this project we will learn how to receive data from the Arduino board.

Note

On Uno, Nano, Mini, and Mega, pins 0 and 1 are used for communication with the computer. Connecting anything to these pins can interfere with that communication, including causing failed uploads to the board.

Using the Serial Monitor

	Open the Arduino IDE, and paste the following code in it.

// the setup routine runs once when you press reset:
void setup() {
 // initialize serial communication at 9600 bits per second:
 Serial.begin(9600);
}

// the loop routine runs over and over again forever:
void loop() {
 int number = 100;
 Serial.println(number);
 Serial.println("Hello world");
 delay(100); // delay in between reads for stability
}

	Serial.begin() [https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/]: Sets the data rate in bits per second (baud) for serial data transmission, here set to 9600.

	Serial.println() [https://www.arduino.cc/reference/en/language/functions/communication/serial/println/]: Prints data to the serial port as human-readable ASCII text followed by a carriage return character (ASCII 13, or ‘r’) and a newline character (ASCII 10, or ‘n’). This command takes the same forms as Serial.print() [https://www.arduino.cc/reference/en/language/functions/communication/serial/print/].

	Select the correct board and port to upload the code.

	In the toolbar, click the magnifying glass icon to turn on Serial Monitor.

[image: ../_images/serial1.png]

	Here is the Serial Monitor.

[image: ../_images/serial2.png]

	1: Option to select between automatically scroll and not scroll.

	2: Option to show timestamp prior to data displayed on Serial Monitor.

	3: Ending selection, select the ending characters appended to data sent to Arduino. Selection includes:

	No line Ending just sends what you type;

	Newline is \n and will sends an ASCII new line code after what you type；

	Carriage Return is \r, which will send an ASCII carriage return character after what you type;

	Both NL & CR is \r\n which will send both a carriage return and a new line character after what you type.

	4: Select communication speed between Arduino board and PC. This value MUST be the same as the value set in Serial.begin().

	5: Clear all text on the output console.

	6: A textbox to send characters to the Arduino board, see 5.12 Serial Read for a tutorial.

 3.1 Reading Button Value

3.1 Reading Button Value

In the previous projects, we used the output function, in this chapter we will use the input function to input read the button value.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Breadboard

	BUY

	Jumper Wires

	BUY

	Resistor

	BUY

	Button

	BUY

Schematic

[image: ../_images/circuit_3.1_button.png]
One side of the button pin is connected to 5V,
and the other side pin is connected to pin 2,
so when the button is pressed,
pin 2 will be high. However,
when the button is not pressed,
pin 2 is in a suspended state and may be high or low.
In order to get a stable low level when the button is not pressed,
pin 2 needs to be reconnected to GND through a 10K pull-down resistor.

Wiring

[image: ../_images/3.1_reading_button_value_bb.png]
Code

Note

	You can open the file 3.1.read_button_value.ino under the path of 3in1-kit\learning_project\3.1.read_button_value.

	Or copy this code into Arduino IDE.

 3.2 Feel the Magnetism

3.2 Feel the Magnetism

The most common type of reed switch contains a pair of magnetizable, flexible, metal reeds whose end portions are separated by a small gap when the switch is open.

A magnetic field from an electromagnet or a permanent magnet will cause the reeds to attract each other, thus completing an electrical circuit.
The spring force of the reeds causes them to separate, and open the circuit, when the magnetic field ceases.

A common example of a reed switch application is to detect the opening of a door or windows, for a security alarm.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Breadboard

	BUY

	Jumper Wires

	BUY

	Resistor

	BUY

	Reed Switch

	-

Schematic

[image: ../_images/circuit_3.2_reed.png]
By default, pin 2 is low; and will go high when the magnet is near the reed switch.

The purpose of the 10K resistor is to keep the pin 2 at a steady low level when no magnet is near.

Wiring

[image: ../_images/3.2_feel_the_magnetism_bb.png]
Code

Note

	You can open the file 3.2.feel_the_magnetism.ino under the path of 3in1-kit\learning_project\3.2.feel_the_magnetism.

	Or copy this code into Arduino IDE.

 3.3 Detect the Obstacle

3.3 Detect the Obstacle

This module is commonly installed on the car and robot to judge the
existence of the obstacles ahead. Also it is widely used in hand held
device, water faucet and so on.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Jumper Wires

	BUY

	Obstacle Avoidance Module

	BUY

Schematic

[image: ../_images/circuit_3.3_obstacle.png]
The digital pin 2 is used to read the
signal of IR Obstacle Avoidance Module. We get the VCC of IR
Sensor Module connected to 5V, GND to GND, OUT to digital pin 2.

Wiring

[image: ../_images/3.3_detect_the_obstacle_bb.png]
Code

Note

	You can open the file 3.3.detect_the_obstacle.ino under the path of 3in1-kit\learning_project\3.3.detect_the_obstacle.

	Or copy this code into Arduino IDE.

 3.4 Detect the Line

3.4 Detect the Line

The line tracking module is used to detect whether there are black areas on the ground, such as black lines pasted with electrical tape.

One of its LEDs emits appropriate infrared light to the ground, and the black surface has a relatively strong ability to absorb light and a weaker reflection ability. White surfaces are the opposite.
If it detects reflected light, it means the ground is currently white. If not detected, it means black.

That’s how it works.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Jumper Wires

	BUY

	Line Tracking Module

	BUY

Schematic

[image: ../_images/circuit_3.4_line.png]
The digital pin 2 is used to read the
signal of line track module. We get the VCC of the module connected to 5V,
GND to GND, OUT to digital pin 2.

Wiring

[image: ../_images/3.4_detect_the_line_bb.png]
Code

Note

	You can open the file 3.4.detect_the_line.ino under the path of 3in1-kit\learning_project\3.4.detect_the_line.

	Or copy this code into Arduino IDE.

 4. Analog Read

4. Analog Read

The Arduino can read the connected analog sensors through the analog pins.

The R4 board contains a multi-channel, 10-bit analog-to-digital converter. This means it maps the input voltage between 0 and the operating voltage (5V or 3.3V) to an integer value between 0 and 1023.

You need the analogRead(pin) function to read the value of the analog pin.

	analogRead(pin): Read the value from the specified analog pin.

	Syntax
	analogRead(pin)

	Parameters
	
	pin: the name of the analog input pin to read from (A0 to A5).

	Returns
	0-1023. Data type: int.

Example of Analog Read

int analogPin = A0; // device connected to analog pin A0
 // outside leads to ground and +5V
int val = 0; // variable to store the value read

void setup() {
 Serial.begin(9600); // setup serial
}

void loop() {
 val = analogRead(analogPin); // read the input pin
 Serial.println(val); // debug value
}

Notes and Warnings

	The analog pins are A0-A5.

	You don’t need to call pinMode() before calling the analog pin, but if the pin was previously set to OUTPUT, the function analogRead() will not work properly, in which case you need to call pinMode() to set it back to INTPUT.

Related Components

Below are the related components, you can click in to learn how to use them.

	4.1 Turn the Knob

	4.2 Feel the Light

	4.3 Toggle the Joystick

	4.4 Measure Soil Moisture

	4.5 Thermometer

 4.1 Turn the Knob

4.1 Turn the Knob

Potentiometer is a resistor component with 3 terminals and its resistance value can be
adjusted according to some regular variation.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Breadboard

	BUY

	Jumper Wires

	BUY

	Potentiometer

	BUY

Schematic

[image: ../_images/circuit_5.1_potentiometer.png]
In this example, we use the analog pin (A0) to read the value
of the potentiometer. By rotating the axis of the potentiometer, you can
change the distribution of resistance among these three pins, changing
the voltage on the middle pin. When the resistance between the middle
and a outside pin connected to 5V is close to zero (and the resistance
between the middle and the other outside pin is close to 10kΩ), the
voltage at the middle pin is close to 5V. The reverse operation (the
resistance between the middle and a outside pin connected to 5V is close
to 10kΩ) will make the voltage at the middle pin be close to 0V.

Wiring

[image: ../_images/4.1_turn_thek_knob_bb.png]
Code

Note

	You can open the file 4.1.turn_the_knob.ino under the path of 3in1-kit\learning_project\4.1.turn_the_knob.

	Or copy this code into Arduino IDE.

 4.2 Feel the Light

4.2 Feel the Light

The photoresistor is a typical device for analog inputs and it is used in a very similar way to a potentiometer. Its resistance value depends on the intensity of the light, the stronger the irradiated light, the smaller its resistance value; conversely, it increases.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Breadboard

	BUY

	Jumper Wires

	BUY

	Resistor

	BUY

	Photoresistor

	BUY

Schematic

[image: ../_images/circuit_5.2_light.png]
In this circuit, the 10K resistor and the photoresistor are connected in series, and the current passing through them is the same. The 10K resistor acts as a protection, and the pin A0 reads the value after the voltage conversion of the photoresistor.

When the light is enhanced, the resistance of the photoresistor decreases, then its voltage decreases, so the value from pin A0 will increase;
if the light is strong enough, the resistance of the photoresistor will be close to 0, and the value of pin A0 will be close to 1023.
At this time, the 10K resistor plays a protective role, so that 5V and GND are not connected together, resulting in a short circuit.

If you place the photoresistor in a dark situation, the value of pin A0 will decrease.
In a dark enough situation, the resistance of the photoresistor will be infinite, and its voltage will be close to 5V (the 10K resistor is negligible), and the value of pin A0 will be close to 0.

Wiring

[image: ../_images/4.2_feel_the_light_bb.png]
Code

Note

	Open the 4.2.feel_the_light.ino file under the path of 3in1-kit\learning_project\4.2.feel_the_light.

	Or copy this code into Arduino IDE.

 4.3 Toggle the Joystick

4.3 Toggle the Joystick

The joystick should be very familiar to anyone who plays video games regularly.
It is usually used to move characters or rotate the screen.

Our movements can be read by the Joystick, which works on a very simple principle.
It consists of two potentiometers that are perpendicular to each other.
These two potentiometers measure the analog value of the joystick in both vertical and horizontal directions, producing a value (x,y) in a planar right-angle coordinate system.

This kit also includes a joystick with a digital input. It is activated when the joystick is pressed.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Breadboard

	BUY

	Jumper Wires

	BUY

	Resistor

	BUY

	Joystick Module

	-

Schematic

[image: ../_images/circuit_5.3_joystick.png]

Note

The SW pin is connected to a 10K pull-up resistor,
the reason is to be able to get a stable high level on the SW pin (Z axis) when the joystick is not pressed;
otherwise the SW is in a suspended state and the output value may vary between 0/1.

Wiring

[image: ../_images/4.3_toggle_the_joystick_bb.png]
Code

Note

	Open the 4.3.toggle_the_joystick.ino file under the path of 3in1-kit\learning_project\4.3.toggle_the_joystick.

	Or copy this code into Arduino IDE.

 4.4 Measure Soil Moisture

4.4 Measure Soil Moisture

In the planting industry, the crops themselves cannot directly obtain the inorganic elements in the soil,
Water in the soil acts as a solvent for dissolving these inorganic elements.

Crops absorb soil moisture through the root system, obtain nutrients, and promote growth.

In the process of crop growth and development, the requirements for soil temperature are also different.
Therefore, a soil moisture sensor is required.

Required Components

In this project, we need the following components.

It’s definitely convenient to buy a whole kit, here’s the link:

	Name

	ITEMS IN THIS KIT

	LINK

	3 in 1 Starter Kit

	380+

	3 in 1 Starter Kit

You can also buy them separately from the links below.

	COMPONENT INTRODUCTION

	PURCHASE LINK

	Arduino Uno R4 Minima

	-

	Jumper Wires

	BUY

	Soil Moisture Module

	

 4.5 Thermometer

4.5 Thermometer

A thermometer is a device that measures temperature or a temperature gradient (the degree of hotness or coldness of an object).
A thermometer has two important elements: (1) a temperature sensor (e.g. the bulb of a mercury-in-glass thermometer or the pyrometric sensor in an infrared thermometer) in which some change occurs with a change in temperature;
and (2) some means of converting this change into a numerical value (e.g. the visible scale that is marked on a mercury-in-glass thermometer or the digital readout on an infrared model).
Thermometers are widely used in technology and industry to monitor processes, in meteorology, in medicine, and in scientific research.

A thermistor is a type of temperature sensor whose resistance is strongly dependent on temperature, and it has two types:
Negative Temperature Coefficient (NTC) and Positive Temperature Coefficient (PTC),
also known as NTC and PTC. The resistance of PTC thermistor increases with temperature, while the condition of NTC is op