
SunFounder super-kit-v2-for-pi

www.sunfounder.com

Sep 21, 2022

CONTENTS

1 Components List 3

2 Preparation 9
2.1 What Do We Need? . 9
2.2 Installing the OS . 11
2.3 Set up Your Raspberry Pi . 17

3 Libraries 25
3.1 RPi.GPIO . 25
3.2 WiringPi . 26

4 Raspberry Pi GPIO Extension Board 29

5 Download the Code 31

6 Lessons 33
6.1 Lesson 1 Blinking LED . 33
6.2 Lesson 2 Controlling an LED by a Button . 37
6.3 Lesson 3 Flowing LED Lights . 42
6.4 Lesson 4 Breathing LED . 47
6.5 Lesson 5 RGB LED . 52
6.6 Lesson 6 Buzzer . 57
6.7 Lesson 7 How to Drive a DC Motor . 61
6.8 Lesson 8 Rotary Encoder . 69
6.9 Lesson 9 555 Timer . 74
6.10 Lesson 10 Driving LEDs by 74HC595 . 80
6.11 Lesson 11 Driving 7-Segment Display by 74HC595 . 87
6.12 Lesson 12 Driving Dot-Matrix by 74HC595 . 96
6.13 Lesson 13 LCD1602 . 104
6.14 Lesson 14 ADXL345 . 113

7 Appendix 121
7.1 I2C Configuration . 121
7.2 SPI Configuration . 123
7.3 Remote Desktop . 126

8 FAQ 137
8.1 C code is not working? . 137

9 Thank You 139

i

10 Copyright Notice 141

ii

SunFounder super-kit-v2-for-pi

About the Super Kit 2.0

This super kit is suitable for the Raspberry Pi B, model B+, Pi 2 model B, Pi 3 model B , Pi 3 model B+ and 4 Model B.
It includes various components and chips that can show different interesting phenomena. You can make it happen by
following the experiment instructions, and learn basic knowledge about them. Also you can explore more application
after mastering the principle and code. Now get on the road!

About the display language

In addition to English, we are working on other languages for this course. Please contact service@sunfounder.com if
you are interested in helping, and we will give you a free product in return. In the meantime, we recommend using
Google Translate to convert English to the language you want to see.

The steps are as follows.

• In this course page, right-click and select Translate to xx. If the current language is not what you want, you can
change it later.

• There will be a language popup in the upper right corner. Click on the menu button to choose another language.

• Select the language from the inverted triangle box, and then click Done.

CONTENTS 1

mailto:service@sunfounder.com

SunFounder super-kit-v2-for-pi

2 CONTENTS

CHAPTER

ONE

COMPONENTS LIST

Note: After unpacking, please check that the number of components is correct and that all components are in good
condition.

No. Name Quantity Component

1 RGB LED 1

2 555 Timer IC 1

3 Optocoupler (4N35) 2
continues on next page

3

SunFounder super-kit-v2-for-pi

Table 1 – continued from previous page

4 Shift Register (74HC595) 2

5 L293D 1

6 Accelerometer ADXL345 1

7 Rotary Encoder 1
continues on next page

4 Chapter 1. Components List

SunFounder super-kit-v2-for-pi

Table 1 – continued from previous page

8 Button 5

9 Resistor (220) 8

10 Resistor (1k) 8

11 Resistor (10k) 4

12 Resistor (100k) 4

13 Resistor (1M) 1

14 Resistor (5.1M) 1

15 Switch 1

16 Potentiometer (50k) 1

17 Power Supply Module 1
continues on next page

5

SunFounder super-kit-v2-for-pi

Table 1 – continued from previous page

18 LCD1602 1

19 Dot Matrix Display (8*8) 1

20 7-Segment Display 2

21 DC Motor 1

22 LED (red) 16

23 LED (white) 2

24 LED (green) 2

25 LED (yellow) 2
continues on next page

6 Chapter 1. Components List

SunFounder super-kit-v2-for-pi

Table 1 – continued from previous page

26 NPN Transistor (S8050) 2

27 PNP Transistor (S8550) 2

28 Capacitor Ceramic 100nF 4

29 Capacitor Ceramic 10nF 4

30 Diode Rectifier 4

31 Breadboard 1

32 Male-to-Male Jumper Wire 65
continues on next page

7

SunFounder super-kit-v2-for-pi

Table 1 – continued from previous page

33 Female-to-Male Dupont Wire 20

34 Active Buzzer 1

35 Fan 1

36 GPIO Extension Board 1

37 40-pin Ribbon Cable 1

8 Chapter 1. Components List

CHAPTER

TWO

PREPARATION

In this chapter, we firstly learn to start up Raspberry Pi. The content includes installing the OS, Raspberry Pi network
and how to open terminal.

Note: You can check the complete tutorial on the official website of the Raspberry Pi: raspberry-pi-setting-up.

If your Raspberry Pi is set up, you can skip the part and go into the next chapter.

2.1 What Do We Need?

2.1.1 Required Components

Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a computer monitor or TV, and uses a
standard keyboard and mouse. It is a capable little device that enables people of all ages to explore computing, and to
learn how to program in languages like Scratch and Python.

Our kit applies to the following versions of the product of Raspberry Pi:

9

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up

SunFounder super-kit-v2-for-pi

Power Adapter

To connect to a power socket, the Raspberry Pi has a micro USB port (the same found on many mobile phones). You
will need a power supply which provides at least 2.5 amps.

Micro SD Card

Your Raspberry Pi needs an SD card to store all its files and the Raspbian operating system. You will need a micro SD
card with a capacity of at least 8 GB.

2.1.2 Optional Components

Screen

To view the desktop environment of Raspberry Pi, you need to use the screen that can be a TV screen or a computer
monitor. If the screen has built-in speakers, the Pi plays sounds via them.

Mouse & Keyboard

When you use a screen , a USB keyboard and a USB mouse are also needed.

HDMI

The Raspberry Pi has a HDMI output port that is compatible with the HDMI ports of most modern TV and computer
monitors. If your screen has only DVI or VGA ports, you will need to use the appropriate conversion line.

Case

You can put the Raspberry Pi in a case; by this means, you can protect your device.

10 Chapter 2. Preparation

SunFounder super-kit-v2-for-pi

Sound or Earphone

The Raspberry Pi is equipped with an audio port about 3.5 mm that can be used when your screen has no built-in
speakers or when there is no screen operation.

2.2 Installing the OS

Required Components

Any Raspberry Pi 1 * Personal Computer
1 * Micro SD card

Step 1

Raspberry Pi have developed a graphical SD card writing tool that works on Mac OS, Ubuntu 18.04 and Windows,
and is the easiest option for most users as it will download the image and install it automatically to the SD card.

Visit the download page: https://www.raspberrypi.org/software/. Click on the link for the Raspberry Pi Imager that
matches your operating system, when the download finishes, click it to launch the installer.

Step 2

When you launch the installer, your operating system may try to block you from running it. For example, on Windows
I receive the following message:

If this pops up, click on More info and then Run anyway, then follow the instructions to install the Raspberry Pi
Imager.

Step 3

Insert your SD card into the computer or laptop SD card slot.

Step 4

2.2. Installing the OS 11

https://www.raspberrypi.org/software/

SunFounder super-kit-v2-for-pi

In the Raspberry Pi Imager, select the OS that you want to install and the SD card you would like to install it on.

Note:

1) You will need to be connected to the internet the first time.

2) That OS will then be stored for future offline use(lastdownload.cache,
C:/Users/yourname/AppData/Local/Raspberry Pi/Imager/cache). So the next time you open the software,
it will have the display “Released: date, cached on your computer”.

Step 5

Select the SD card you are using.

Step 6

12 Chapter 2. Preparation

SunFounder super-kit-v2-for-pi

Press Ctrl+Shift+X to open the Advanced options page to enable SSH and configure wifi, these 2 items must be set,
the others depend on your choice . You can choose to always use this image customization options.

Then scroll down to complete the wifi configuration and click SAVE.

Note: wifi country should be set the two-letter ISO/IEC alpha2 code for the country in which you are using
your Raspberry Pi, please refer to the following link: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_
assigned_code_elements

2.2. Installing the OS 13

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements

SunFounder super-kit-v2-for-pi

Step 7

Click the WRITE button.

14 Chapter 2. Preparation

SunFounder super-kit-v2-for-pi

Step 8

If your SD card currently has any files on it, you may wish to back up these files first to prevent you from permanently
losing them. If there is no file to be backed up, click Yes.

2.2. Installing the OS 15

SunFounder super-kit-v2-for-pi

Step 9

After waiting for a period of time, the following window will appear to represent the completion of writing.

16 Chapter 2. Preparation

SunFounder super-kit-v2-for-pi

2.3 Set up Your Raspberry Pi

2.3.1 If You Have a Screen

If you have a screen, it will be easy for you to operate on the Raspberry Pi.

Required Components

Any Raspberry Pi 1 * Power Adapter
1 * Micro SD card 1 * Screen Power Adapter
1 * HDMI cable 1 * Screen
1 * Mouse 1 * Keyboard

1) Insert the SD card you’ve set up with Raspberry Pi OS into the micro SD card slot on the underside of your
Raspberry Pi.

2) Plug in the Mouse and Keyboard.

3) Connect the screen to Raspberry Pi’s HDMI port and make sure your screen is plugged into a wall socket and
switched on.

Note: If you use a Raspberry Pi 4, you need to connect the screen to the HDMI0 (nearest the power in port).

4) Use the power adapter to power the Raspberry Pi. After a few seconds, the Raspberry Pi OS desktop will be
displayed.

2.3. Set up Your Raspberry Pi 17

SunFounder super-kit-v2-for-pi

2.3.2 If You Have No Screen

If you don’t have a display, you can log in to the Raspberry Pi remotely, but before that, you need to get the IP of the
Raspberry Pi.

Get the IP Address

After the Raspberry Pi is connected to WIFI, we need to get the IP address of it. There are many ways to know the IP
address, and two of them are listed as follows.

1. Checking via the router

If you have permission to log in the router(such as a home network), you can check the addresses assigned to Raspberry
Pi on the admin interface of router.

The default hostname of the Raspberry Pi OS is raspberrypi, and you need to find it. (If you are using ArchLinuxARM
system, please find alarmpi.)

2. Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry Pi. You can apply the software, Advanced
IP scanner and so on.

Scan the IP range set, and the name of all connected devices will be displayed. Similarly, the default hostname of the
Raspberry Pi OS is raspberrypi, if you haven’t modified it.

18 Chapter 2. Preparation

SunFounder super-kit-v2-for-pi

Use the SSH Remote Control

We can open the Bash Shell of Raspberry Pi by applying SSH. Bash is the standard default shell of Linux. The Shell
itself is a program written in C that is the bridge linking the customers and Unix/Linux. Moreover, it can help to
complete most of the work needed.

For Linux or/Mac OS X Users

Step 1

Go to Applications->Utilities, find the Terminal, and open it.

Step 2

Type in ssh pi@ip_address . “pi”is your username and “ip_address” is your IP address. For example:

ssh pi@192.168.18.197

Step 3

Input”yes”.

2.3. Set up Your Raspberry Pi 19

SunFounder super-kit-v2-for-pi

Step 4

Input the passcode and the default password is raspberry.

Step 5

We now get the Raspberry Pi connected and are ready to go to the next step.

20 Chapter 2. Preparation

SunFounder super-kit-v2-for-pi

Note: When you input the password, the characters do not display on window accordingly, which is normal. What
you need is to input the correct password.

For Windows Users

If you’re a Windows user, you can use SSH with the application of some software. Here, we recommend PuTTY.

Step 1

Download PuTTY.

Step 2

Open PuTTY and click Session on the left tree-alike structure. Enter the IP address of the RPi in the text box under
Host Name (or IP address) and 22 under Port (by default it is 22).

2.3. Set up Your Raspberry Pi 21

SunFounder super-kit-v2-for-pi

Step 3

Click Open. Note that when you first log in to the Raspberry Pi with the IP address, there prompts a security reminder.
Just click Yes.

Step 4

When the PuTTY window prompts “login as:”, type in “pi”(the user name of the RPi), and password: “raspberry”
(the default one, if you haven’t changed it).

22 Chapter 2. Preparation

SunFounder super-kit-v2-for-pi

Step 5

Here, we get the Raspberry Pi connected and it is time to conduct the next steps.

Note: When you input the password, the characters do not display on window accordingly, which is normal. What
you need is to input the correct password.

Note: If you are not satisfied with using the command window to control the Raspberry Pi, you can also use the remote
desktop function, which can help us manage the files in the Raspberry Pi easily.

For details on how to do this, please refer to Remote Desktop.

2.3. Set up Your Raspberry Pi 23

SunFounder super-kit-v2-for-pi

24 Chapter 2. Preparation

CHAPTER

THREE

LIBRARIES

Two important libraries are used in programming with Raspberry Pi, and they are wiringPi and RPi.GPIO. The Rasp-
bian OS image of Raspberry Pi installs them by default, so you can use them directly.

3.1 RPi.GPIO

If you are a Python user, you can program GPIOs with API provided by RPi.GPIO.

RPi.GPIO is a module to control Raspberry Pi GPIO channels. This package provides a class to control the GPIO on
a Raspberry Pi. For examples and documents, visit http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/.

Test whether RPi.GPIO is installed or not, type in python:

python

In Python CLI, input “import RPi.GPIO”, If no error prompts, it means RPi.GPIO is installed.

import RPi.GPIO

Then, type in RPi.GPIO.VERSION to check its version.

RPi.GPIO.VERSION

If you want to quit python CLI, type in:

exit()

25

http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

SunFounder super-kit-v2-for-pi

3.2 WiringPi

wiringPi is a C language GPIO library applied to the Raspberry Pi. It complies with GUN Lv3. The functions
in wiringPi are similar to those in the wiring system of Arduino. They enable the users familiar with Arduino to use
wiringPi more easily.

wiringPi includes lots of GPIO commands which enable you to control all kinds of interfaces on Raspberry Pi.

Please run the following command to install wiringPi library.

sudo apt-get update
git clone https://github.com/WiringPi/WiringPi
cd WiringPi
./build

You can test whether the wiringPi library is installed successfully or not by the following instruction.

gpio -v

Check the GPIO with the following command:

gpio readall

26 Chapter 3. Libraries

SunFounder super-kit-v2-for-pi

For more details about wiringPi, you can refer to WiringPi.

3.2. WiringPi 27

https://github.com/WiringPi/WiringPi

SunFounder super-kit-v2-for-pi

28 Chapter 3. Libraries

CHAPTER

FOUR

RASPBERRY PI GPIO EXTENSION BOARD

We apply the GPIO Extension Board to extend the pins of Raspberry Pi to the breadboard and avoid damage caused
by frequent plugging and unplugging.

Here, we apply a 40-pin GPIO Extension board and a 40-pin GPIO cable. In case of the potential risk of short circuit,
you must build your circit in strict accordance with the following picture.

The pins of Raspberry Pi have three kinds of ways to name and they are wiringPi, BCM and Board. Among these
naming methods, 40-pin GPIO Extension board uses the naming method, BCM. But for some special pins, such as I2C
port and SPI port, they use the Name that comes with themselves. The following table shows us the naming methods
of WiringPi, Board and the intrinsic Name of each pin on GPIO Extension board. For example, for the GPIO17, the
Board naming method of it is 11, the wiringPi naming method is 0, and the intrinsic naming method of it is GPIO0.

Note: 1In C Language, what is used is the naming method WiringPi.

2In Python Language, the applied naming methods are Board and BCM, and the function GPIO.setmode() is used to
set them.

29

SunFounder super-kit-v2-for-pi

30 Chapter 4. Raspberry Pi GPIO Extension Board

CHAPTER

FIVE

DOWNLOAD THE CODE

Change directory to /home/pi.

cd /home/pi/

Note: cd, short for change directory is to change to the intended directory from the current path. Informally, here is
to go to the path /home/pi/.

Clone the repository from GitHub (C code and python code).

git clone https://github.com/sunfounder/Sunfounder_SuperKit_C_code_for_RaspberryPi.git

git clone https://github.com/sunfounder/Sunfounder_SuperKit_Python_code_for_
→˓RaspberryPi.git

The advantage of this method is that, you can download the latest code any time you want, and then place the code
under the path /home/pi/. But in case of incorrect typing which is possible especially when you’re strange to the
commands, you can just enter github.com/sunfounder at the address bar of a web browser, and on the page directed
find the code for Super Kit.

31

https://github.com/sunfounder

SunFounder super-kit-v2-for-pi

Click on the repository. On the page directed, click Clone or download on the right side.

After download, transfer the package to /home/pi/.

Now you can start the experiments. Let’s rock!

32 Chapter 5. Download the Code

CHAPTER

SIX

LESSONS

6.1 Lesson 1 Blinking LED

6.1.1 Introduction

In this lesson, we will learn how to program Raspberry Pi to make an LED blink. You can play numerous tricks with
an LED as you want. Now get to start and you will enjoy the fun of DIY at once!

6.1.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * LED

- 1 * Resistor (220)

- Jumper wires

6.1.3 Principle

Semiconductor light-emitting diode is a type of component which can turn electric energy into light energy via PN
junctions. By wavelength, it can be categorized into laser diode, infrared light-emitting diode and visible light-emitting
diode which is usually known as light-emitting diode (LED).

When 2V-3V forward voltage is supplied to an LED, it will blink only if forward currents flow through the LED.
Usually there are red, yellow, green, blue and color-changing LEDs which change color with different voltages. LEDs
are widely used due to their low operating voltage, low current, luminescent stability and small size.

LEDs are diodes too. Hence they have a voltage drop which usually varies from 1V to 3V depending on their types.
Generally, they brighten if supplied with a 5mA–30mA current, and we usually use 10mA–20mA. Thus when an LED
is used, it is necessary to connect a current-limiting resistor to protect it from being burnt.

33

SunFounder super-kit-v2-for-pi

6.1.4 Schematic Diagram

In this experiment, connect a 220 resistor to the anode of the LED, then the resistor to 3.3 V, and connect the cathode
of the LED to GPIO17 (See Raspberry Pi Pin Number Introduction). Write 1 to GPIO17, and the LED will stay off;
write 0 to GPIO17, and then the LED will blink, just as indicated by the principle above.

6.1.5 Experimental Procedures

Step 1: Build the circuit.

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/01_LED

Step 3: Compile.

gcc led.c -o led -lwiringPi

Step 4: Run.

sudo ./led

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

34 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

Code

#include <wiringPi.h>
#include <stdio.h>

#define LedPin 0

int main(void)
{

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}
printf("linker LedPin : GPIO %d(wiringPi pin)\n",LedPin); //when initialize

→˓wiring successfully,print message to screen

pinMode(LedPin, OUTPUT);

while(1){
digitalWrite(LedPin, LOW); //led on
printf("led on...\n");
delay(500);
digitalWrite(LedPin, HIGH); //led off
printf("...led off\n");
delay(500);

}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 01_led.py

Now, you should see the LED blink.

Code

import RPi.GPIO as GPIO
import time

LedPin = 17

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led

def loop():
while True:

print ("...led on")

(continues on next page)

6.1. Lesson 1 Blinking LED 35

SunFounder super-kit-v2-for-pi

(continued from previous page)

GPIO.output(LedPin, GPIO.LOW) # led on
time.sleep(0.5)
print ("led off...")
GPIO.output(LedPin, GPIO.HIGH) # led off
time.sleep(0.5)

def destroy():
GPIO.output(LedPin, GPIO.HIGH) # led off
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

→˓destroy() will be executed.
destroy()

6.1.6 Further Exploration

If you want the LED to speed up the blinking, just change the delay time. For example, change the time to delay (200)
in the program, recompile and run, and then you will see the LED blink faster.

36 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.1.7 Summary

Raspberry Pi packages many low-level detail designs, which enable you to explore your own apps more conveniently.
Maybe that is the charm of Raspberry Pi.

Now you have already learnt how to use the Raspberry Pi GPIO to blink an LED. Keep moving to the next contents.

Tips

For any TECHNICAL questions, add a topic under FORUM section on our website www.sunfounder.com and we’ll
reply as soon as possible. For NON-TECH questions like order issues, please email service@sunfounder.com.

6.2 Lesson 2 Controlling an LED by a Button

6.2.1 Introduction

In this lesson, we will learn how to turn an LED on or off by a button.

6.2.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * LED

- 1 * Button

- 1 * Resistor (220)

- Jumper wires

6.2.3 Principle

Button

Buttons are a common component used to control electronic devices. They are usually used as switches to connect or
disconnect circuits. Although buttons come in a variety of sizes and shapes, the one used here is a 6mm mini-button
as shown in the following pictures. Pins pointed out by the arrows of same color are meant to be connected.

When the button is pressed, the pins pointed by the blue arrow will connect to the pins pointed by the red arrow (see
the above figure), thus closing the circuit, as shown in the following diagrams.

6.2. Lesson 2 Controlling an LED by a Button 37

http://www.sunfounder.com
mailto:service@sunfounder.com

SunFounder super-kit-v2-for-pi

Generally, the button can be connected directly to the LED in a circuit to turn on or off the LED, which is comparatively
simple. However, sometimes the LED will brighten automatically without any button pressed, which is caused by
various kinds of external interference. In order to avoid this interference, a pull-up resistor is used – usually connect
a 1K–10K resistor between the button and VCC. It can be connected to VCC to consume the interference when the
button is off.

6.2.4 Schematic Diagram

Use a normally open button as the input of Raspberry Pi. When the button is pressed, the GPIO connected to the button
will turn into low level (0V). We can detect the state of the GPIO connected to the button through programming. That
is, if the GPIO turns into low level, it means the button is pressed. You can run the corresponding code when the button
is pressed, and then the LED will light up.

38 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.2.5 Experimental Procedures

Step 1: Build the circuit.

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/02_BtnAndLed/

Step 3: Compile.

gcc BtnAndLed.c -o BtnAndLed -lwiringPi

Step 4: Run.

sudo ./BtnAndLed

6.2. Lesson 2 Controlling an LED by a Button 39

SunFounder super-kit-v2-for-pi

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define LedPin 0
#define ButtonPin 1

int main(void)
{

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}

pinMode(LedPin, OUTPUT);
pinMode(ButtonPin, INPUT);

pullUpDnControl(ButtonPin, PUD_UP); //pull up to 3.3V,make GPIO1 a stable level
while(1){

digitalWrite(LedPin, HIGH);
if(digitalRead(ButtonPin) == 0){ //indicate that button has pressed down

digitalWrite(LedPin, LOW); //led on
}

}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 02_btnAndLed.py

Now, press the button, and the LED will light up; press the button again, and the LED will go out. At the same time,
the state of the LED will be printed on the screen.

Code

import RPi.GPIO as GPIO
import time

LedPin = 17
BtnPin = 18

Led_status = 1

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM

(continues on next page)

40 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output
GPIO.setup(BtnPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set BtnPin's mode is

→˓input, and pull up to high level(3.3V)
GPIO.output(LedPin, GPIO.HIGH) # Set LedPin high(+3.3V) to off led

def swLed(ev=None):
global Led_status
Led_status = not Led_status
GPIO.output(LedPin, Led_status) # switch led status(on-->off; off-->on)
if Led_status == 1:

print ("led off...")
else:

print ("...led on")

def loop():
GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=swLed, bouncetime=200) #

→˓wait for falling and set bouncetime to prevent the callback function from being
→˓called multiple times when the button is pressed

while True:
time.sleep(1) # Don't do anything

def destroy():
GPIO.output(LedPin, GPIO.HIGH) # led off
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

→˓destroy() will be executed.
destroy()

6.2. Lesson 2 Controlling an LED by a Button 41

SunFounder super-kit-v2-for-pi

6.2.6 Summary

Through this experiment, you have learnt how to control the GPIOs of the Raspberry Pi by programming.

6.3 Lesson 3 Flowing LED Lights

6.3.1 Introduction

In this lesson, we will learn how to make eight LEDs blink in various effects as you want based on Raspberry Pi.

6.3.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 8 * LED

- 8 * Resistor (220)

- Jumper wires

42 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.3.3 Schematic Diagram

Set GPIO17-GPIO25 to low level in turn by programming, and then LED0-LED7 will light up in turn. You can make
eight LEDs blink in different effects by controlling their delay time and the order of lighting up.

6.3.4 Experimental Procedures

Step 1: Build the circuit.

6.3. Lesson 3 Flowing LED Lights 43

SunFounder super-kit-v2-for-pi

Step 2: GPIO4 is the default pin for onewire driver (w1-gpio). In this lesson, we need to disable the onewire function
and use it as an output pin.

sudo nano /boot/config.txt

Commit the following line.

#dtoverlay = w1-gpio

For C Language Users:

Step 3: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/03_8Led/

Step 4: Compile.

gcc 8Led.c -o 8Led -lwiringPi

Step 5: Run.

sudo ./8Led

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

(continues on next page)

44 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

//make led_n on
void led_on(int n)
{

digitalWrite(n, LOW);
}

//make led_n off
void led_off(int n)
{

digitalWrite(n, HIGH);
}

int main(void)
{

int i;

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}

for(i=0;i<8;i++){
printf("linker LedPin : GPIO %d(wiringPi pin)\n",i); //when initialize wiring

→˓successfully,print message to screen
}

for(i=0;i<8;i++){ //make 8 pins' mode is output
pinMode(i, OUTPUT);

}

while(1){
for(i=0;i<8;i++){ //make led on from left to right

led_on(i);
delay(100);
led_off(i);

}
// delay(500);

for(i=8;i>=0;i--){ //make led off from right to left
led_on(i);
delay(100);
led_off(i);

}
}

return 0;
}

6.3. Lesson 3 Flowing LED Lights 45

SunFounder super-kit-v2-for-pi

For Python Users:

Step 3: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 4: Run.

sudo python3 03_8Led.py

Then you will see eight LEDs brighten and dim left to right and right to left circularly, just like flowing water.

Code

import RPi.GPIO as GPIO
import time

pins = [17, 18, 27, 22, 23, 24, 25, 4]

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
for pin in pins:

GPIO.setup(pin, GPIO.OUT) # Set all pins' mode is output
GPIO.output(pin, GPIO.HIGH) # Set all pins to high(+3.3V) to off led

def loop():
while True:

for pin in pins:
GPIO.output(pin, GPIO.LOW)
time.sleep(0.05)
GPIO.output(pin, GPIO.HIGH)

for pin in reversed(pins):
GPIO.output(pin, GPIO.LOW)
time.sleep(0.05)
GPIO.output(pin, GPIO.HIGH)

def destroy():
for pin in pins:

GPIO.output(pin, GPIO.HIGH) # turn off all leds
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

→˓destroy() will be executed.
destroy()

46 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

Further Exploration

You can write the blinking effects of LEDs in an array. If you want to use one of these effects, you can call it in the
main() function directly.

6.4 Lesson 4 Breathing LED

6.4.1 Introduction

In this lesson, we will try something interesting – gradually increase and decrease the luminance of an LED with
PWM, just like breathing. So we give it a magical name - Breathing LED.

6.4.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * LED

- 1 * Resistor (220)

- Jumper wires

6.4. Lesson 4 Breathing LED 47

SunFounder super-kit-v2-for-pi

6.4.3 Principle

PWM

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital means. Digital control is used
to create a square wave, a signal switched between on and off. This on-off pattern can simulate voltages in between
full on (3.3 Volts) and off (0 Volts) by changing the portion of the time the signal spends on versus the time that the
signal spends off. The duration of “on time” is called pulse width. To get varying analog values, you change, or
modulate, that width. If you repeat this on-off pattern fast enough with some device, an LED for example, the result
would be like this: the signal is a steady voltage between 0 and 3.3v controlling the brightness of the LED. (See the
PWM description on the official website of Arduino)

Duty Cycle

A duty cycle is the percentage of one period in which a signal is active. A period is the time it takes for a signal to
complete an on-and-off cycle. As a formula, a duty cycle may be expressed as:

where D is the duty cycle, T is the time the signal is active, and P is the total period of the signal. Thus, a 60% duty
cycle means the signal is on 60% of the time but off 40% of the time. The “on time” for a 60% duty cycle could be a
fraction of a second, a day, or even a week, depending on the length of the period.

In this experiment, we use this technology to make the LED brighten and dim slowly so it looks like our breath.

48 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.4.4 Schematic Diagram

6.4.5 Experimental Procedures

Step 1: Build the circuit.

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/04_PwmLed

Step 3: Compile.

gcc PwmLed.c -o PwmLed -lwiringPi -lpthread

Step 4: Run.

sudo ./PwmLed

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

6.4. Lesson 4 Breathing LED 49

SunFounder super-kit-v2-for-pi

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>

#define LedPin 1

int main(void)
{

int i;

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}

softPwmCreate(LedPin, 0, 100);

while(1){
for(i=0;i<=100;i++){

softPwmWrite(LedPin, i);
delay(20);

}
delay(1000);
for(i=100;i>=0;i--){

softPwmWrite(LedPin, i);
delay(20);

}
}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 04_pwmLed.py

Now you will see the gradual change of the LED luminance, between bright and dim.

Code

import RPi.GPIO as GPIO
import time

LedPin = 18

def setup():
global p
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
GPIO.setup(LedPin, GPIO.OUT) # Set LedPin's mode is output

(continues on next page)

50 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

GPIO.output(LedPin, GPIO.LOW) # Set LedPin to low(0V)

p = GPIO.PWM(LedPin, 1000) # set Frequece to 1KHz
p.start(0) # Duty Cycle = 0

def loop():
while True:

for dc in range(0, 101, 4): # Increase duty cycle: 0~100
p.ChangeDutyCycle(dc) # Change duty cycle
time.sleep(0.05)

time.sleep(1)
for dc in range(100, -1, -4): # Decrease duty cycle: 100~0

p.ChangeDutyCycle(dc)
time.sleep(0.05)

time.sleep(1)

def destroy():
p.stop()
GPIO.cleanup()

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

→˓destroy() will be executed.
destroy()

6.4. Lesson 4 Breathing LED 51

SunFounder super-kit-v2-for-pi

6.4.6 Summary

Through this experiment, you should have mastered the principle of PWM and how to program Raspberry Pi with
PWM. You can try to apply this technology to DC motor speed regulation later.

6.5 Lesson 5 RGB LED

6.5.1 Introduction

Previously we’ve used the PWM technology to control an LED brighten and dim. In this lesson, we will use it to
control an RGB LED to flash various kinds of colors.

6.5.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * RGB LED

- 3 * Resistor (220)

- Several jumper wires

6.5.3 Principle

RGB

RGB LEDs emit light in various colors. RGB stands for the red, green, and blue color channels and is an industry
color standard. They package three LEDs of red, green, and blue into a transparent or semitransparent plastic shell
and have four pins. An RGB LED can display various new colors by changing the three channels and superimposing
them, which, according to statistics, can create 16,777,216 different colors.

The three primary colors can be mixed into various colors by brightness. The brightness of LED can be adjusted with
PWM. Raspberry Pi has only one channel for hardware PWM output, but it needs three channels to control the RGB
LED, which means it is difficult to control the RGB LED with the hardware PWM of Raspberry Pi. Fortunately, the
softPwm library simulates PWM (softPwm) by programming. You only need to include the header file softPwm.h (for
C language users), and then call the API it provides to easily control the RGB LED by multi-channel PWM output, so
as to display all kinds of color.

RGB LEDs can be categorized into common anode and common cathode ones. In this experiment, the latter is used.

52 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.5.4 Schematic Diagram

6.5.5 Experimental Procedures

Step 1: Build the circuit.

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/05_RGB/

Step 3: Compile.

gcc rgb.c -o rgb -lwiringPi -lpthread

Step 4: Run.

6.5. Lesson 5 RGB LED 53

SunFounder super-kit-v2-for-pi

sudo ./rgb

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>

#define uchar unsigned char

#define LedPinRed 0
#define LedPinGreen 1
#define LedPinBlue 2

void ledInit(void)
{

softPwmCreate(LedPinRed, 0, 100);
softPwmCreate(LedPinGreen,0, 100);
softPwmCreate(LedPinBlue, 0, 100);

}

void ledColorSet(uchar r_val, uchar g_val, uchar b_val)
{

softPwmWrite(LedPinRed, r_val);
softPwmWrite(LedPinGreen, g_val);
softPwmWrite(LedPinBlue, b_val);

}

int main(void)
{

int i;

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}
//printf("linker LedPin : GPIO %d(wiringPi pin)\n",LedPin); //when initialize

→˓wiring successfully,print message to screen

ledInit();

while(1){
ledColorSet(0xff,0x00,0x00); //red
delay(500);
ledColorSet(0x00,0xff,0x00); //green
delay(500);
ledColorSet(0x00,0x00,0xff); //blue
delay(500);

ledColorSet(0xff,0xff,0x00); //yellow
delay(500);
ledColorSet(0xff,0x00,0xff); //pick

(continues on next page)

54 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

delay(500);
ledColorSet(0xc0,0xff,0x3e);
delay(500);

ledColorSet(0x94,0x00,0xd3);
delay(500);
ledColorSet(0x76,0xee,0x00);
delay(500);
ledColorSet(0x00,0xc5,0xcd);
delay(500);

}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 05_rgb.py

Here you should see the RGB LED flash different colors in turn.

Code

import RPi.GPIO as GPIO
import time

colors = [0xFF0000, 0x00FF00, 0x0000FF, 0xFFFF00, 0xFF00FF, 0x00FFFF]
pins = {'pin_R':17, 'pin_G':18, 'pin_B':27} # pins is a dict

GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
for i in pins:

GPIO.setup(pins[i], GPIO.OUT) # Set pins' mode is output
GPIO.output(pins[i], GPIO.HIGH) # Set pins to high(+3.3V) to off led

p_R = GPIO.PWM(pins['pin_R'], 2000) # set Frequece to 2KHz
p_G = GPIO.PWM(pins['pin_G'], 2000)
p_B = GPIO.PWM(pins['pin_B'], 5000)

p_R.start(0) # Initial duty Cycle = 0(leds off)
p_G.start(0)
p_B.start(0)

def map(x, in_min, in_max, out_min, out_max):
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def setColor(col): # For example : col = 0x112233
R_val = (col & 0xFF0000) >> 16
G_val = (col & 0x00FF00) >> 8

(continues on next page)

6.5. Lesson 5 RGB LED 55

SunFounder super-kit-v2-for-pi

(continued from previous page)

B_val = (col & 0x0000FF) >> 0

R_val = map(R_val, 0, 255, 0, 100)
G_val = map(G_val, 0, 255, 0, 100)
B_val = map(B_val, 0, 255, 0, 100)

p_R.ChangeDutyCycle(R_val) # Change duty cycle
p_G.ChangeDutyCycle(G_val)
p_B.ChangeDutyCycle(B_val)

try:
while True:

for col in colors:
setColor(col)
time.sleep(0.5)

except KeyboardInterrupt:
p_R.stop()
p_G.stop()
p_B.stop()
for i in pins:

GPIO.output(pins[i], GPIO.HIGH) # Turn off all leds
GPIO.cleanup()

56 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.5.6 Further Exploration

You can modify the parameters of the function ledColorSet() by yourself, and then compile and run the code to see
the color changes of the RGB LED.

6.5.7 Experimental Summary

In this experiment, you have learnt how to control RGB LEDs with the softPwm of Raspberry Pi in this experiment.
Try to apply the softPwm to DC motor speed regulation.

6.6 Lesson 6 Buzzer

6.6.1 Introduction

In this lesson, we will learn how to drive an active buzzer to beep with a PNP transistor.

6.6.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * Buzzer (Active)

- 1 * PNP transistor (8550)

- 1 * Resistor (1K)

- Jumper wires

6.6.3 Principle

As a type of electronic buzzer with integrated structure, buzzers, which are supplied by DC power, are widely used
in computers, printers, photocopiers, alarms, electronic toys, automotive electronic devices, telephones, timers and
other electronic products for voice devices. Buzzers can be categorized as active and passive ones (see the following
picture). Turn the pins of two buzzers face up, and the one with a green circuit board is a passive buzzer, while the
other enclosed with a black tape is an active one.

The difference between an active buzzer and a passive buzzer is:

An active buzzer has a built-in oscillating source, so it will make sounds when electrified. But a passive buzzer does
not have such source, so it will not beep if DC signals are used; instead, you need to use square waves whose frequency
is between 2K and 5K to drive it. The active buzzer is often more expensive than the passive one because of multiple
built-in oscillating circuits.

6.6. Lesson 6 Buzzer 57

SunFounder super-kit-v2-for-pi

6.6.4 Schematic Diagram

In this experiment, an active buzzer is used. When the GPIO of Raspberry Pi output is supplied with low level (0V)
by programming, the transistor will conduct because of current saturation and the buzzer will make sounds. But when
high level is supplied to the IO of Raspberry Pi, the transistor will be cut off and the buzzer will not make sounds.

6.6.5 Experimental Procedures

Step 1: Build the circuit (Pay attention to the positive and negative poles of the buzzer)

58 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/06_Beep/

Step 3: Compile.

gcc beep.c -o beep -lwiringPi

Step 4: Run.

sudo ./beep

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define BeepPin 0

int main(void)
{

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}

pinMode(BeepPin, OUTPUT); //set GPIO0 output

while(1){
digitalWrite(BeepPin, LOW); //beep on
delay(100); //delay
digitalWrite(BeepPin, HIGH); //beep off
delay(100); //delay

}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 06_beep.py

Now, you should hear the buzzer make sounds.

Code

6.6. Lesson 6 Buzzer 59

SunFounder super-kit-v2-for-pi

import RPi.GPIO as GPIO
import time

BeepPin = 17

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
GPIO.setup(BeepPin, GPIO.OUT) # Set BeepPin's mode is output
GPIO.output(BeepPin, GPIO.HIGH) # Set BeepPin high(+3.3V) to off beep

def loop():
while True:

GPIO.output(BeepPin, GPIO.LOW)
time.sleep(0.1)
GPIO.output(BeepPin, GPIO.HIGH)
time.sleep(0.1)

def destroy():
GPIO.output(BeepPin, GPIO.HIGH) # beep off
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
print ("Press Ctrl+C to end the program...")
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

→˓destroy() will be executed.
destroy()

60 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.6.6 Further Exploration

If you have a passive buzzer in hand, you can replace the active buzzer with it. Now you can make a buzzer sound like
“do re mi fa so la si do” with just some basic knowledge of programming. Give a try!

6.7 Lesson 7 How to Drive a DC Motor

6.7.1 Introduction

In this lesson, we will learn to how to use L293D to drive a DC motor and make it rotate clockwise and counterclock-
wise.

6.7.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * L293D

- 1 * DC motor

- 1 * Power Module

- Jumper wires

6.7.3 Principle

L293D

L293D is a 4-channel motor driver integrated by chip with high voltage and high current. It’s designed to connect
to standard DTL, TTL logic level, and drive inductive loads (such as relay coils, DC, Stepper Motors) and power
switching transistors etc. DC Motors are devices that turn DC electrical energy into mechanical energy. They are
widely used in electrical drive for their superior speed regulation performance.

See the figure of pins below. L293D has two pins (Vcc1 and Vcc2) for power supply. Vcc2 is used to supply power
for the motor, while Vcc1 to supply for the chip.

6.7. Lesson 7 How to Drive a DC Motor 61

SunFounder super-kit-v2-for-pi

The following is the internal structure of L293D. Pin EN is an enable pin and only works with high level; A stands for
input and Y for output. You can see the relationship among them at the right bottom. When pin EN is High level, if A
is High, Y outputs high level; if A is Low, Y outputs Low level. When pin EN is Low level, the L293D does not work.

62 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

DC Motor

This is a 5V DC motor. It will rotate when you give the two terminals of the copper sheet one high and one low level.
For convenience, you can weld the pins to it.

Size: 25*20*15MM

Operation Voltage: 1-6V

Free-run current (3V): 70mA

Free-run speed (3V): 13000RPM

Stall current (3V): 800mA

Shaft diameter: 2mm

Power Supply Module

In this experiment, it needs large currents to drive the motor especially when it starts and stops, which will severely
interfere with the normal work of Raspberry Pi. Therefore, we separately supply power for the motor by this module
to make it run safely and steadily.

You can just plug it in the breadboard to supply power. It provides a voltage of 3.3V and 5V, and you can connect
either via a jumper cap included.

6.7. Lesson 7 How to Drive a DC Motor 63

SunFounder super-kit-v2-for-pi

Schematic Diagram

Plug the power supply module in breadboard, and insert the jumper cap to pin of 5V, then it will output voltage of 5V.
Connect pin 1 of L293D to GPIO22, and set it as high level. Connect pin2 to GPIO27, and pin7 to GPIO17, then set
one pin high, while the other low. Thus you can change the motor’s rotation direction.

64 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.7.4 Experimental Procedures

Step 1: Build the circuit.

6.7. Lesson 7 How to Drive a DC Motor 65

SunFounder super-kit-v2-for-pi

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/07_Motor/

Step 3: Compile.

gcc motor.c -o motor -lwiringPi

Step 4: Run.

sudo ./motor

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define MotorPin1 0
#define MotorPin2 1
#define MotorEnable 2

int main(void)
{

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}

pinMode(MotorPin1, OUTPUT);
pinMode(MotorPin2, OUTPUT);
pinMode(MotorEnable, OUTPUT);

int i;

while(1){
digitalWrite(MotorEnable, HIGH);
digitalWrite(MotorPin1, HIGH);
digitalWrite(MotorPin2, LOW);
for(i=0;i<3;i++){

delay(1000);
}

digitalWrite(MotorEnable, LOW);
delay(1000);

digitalWrite(MotorEnable, HIGH);
digitalWrite(MotorPin1, LOW);
digitalWrite(MotorPin2, HIGH);
for(i=0;i<3;i++){

delay(1000);
}

(continues on next page)

66 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

digitalWrite(MotorEnable, LOW);
delay(1000);

}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 07_motor.py

Now, you should see the motor blade rotating.

Code

import RPi.GPIO as GPIO
import time

MotorPin1 = 17
MotorPin2 = 18
MotorEnable = 27

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
GPIO.setup(MotorPin1, GPIO.OUT) # mode --- output
GPIO.setup(MotorPin2, GPIO.OUT)
GPIO.setup(MotorEnable, GPIO.OUT)
GPIO.output(MotorEnable, GPIO.LOW) # motor stop

def loop():
while True:

print ("Press Ctrl+C to end the program...")
GPIO.output(MotorEnable, GPIO.HIGH) # motor driver enable
GPIO.output(MotorPin1, GPIO.HIGH) # clockwise
GPIO.output(MotorPin2, GPIO.LOW)
time.sleep(5)

GPIO.output(MotorEnable, GPIO.LOW) # motor stop
time.sleep(5)

GPIO.output(MotorEnable, GPIO.HIGH) # motor driver enable
GPIO.output(MotorPin1, GPIO.LOW) # anticlockwise
GPIO.output(MotorPin2, GPIO.HIGH)
time.sleep(5)

GPIO.output(MotorEnable, GPIO.LOW) # motor stop
time.sleep(5)

(continues on next page)

6.7. Lesson 7 How to Drive a DC Motor 67

SunFounder super-kit-v2-for-pi

(continued from previous page)

def destroy():
GPIO.output(MotorEnable, GPIO.LOW) # motor stop
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

→˓destroy() will be executed.
destroy()

6.7.5 Further Exploration

You can use buttons to control the clockwise and counterclockwise rotation of the motor blade based on the previous
lessons. Also you can apply the PWM technology to control the rotation.

6.7.6 Summary

Through this lesson, you have learnt the relative principle and driving mode of DC motors, as well as how to drive a
motor by Raspberry Pi. You should also pay special attention to the fact that a DC motor will greatly interfere with
the whole circuit when it works, so you need to adopt photoelectric isolation and provide separate power supply. A
freewheeling diode is also necessary for the whole system to work reliably and steadily.

68 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.8 Lesson 8 Rotary Encoder

6.8.1 Introduction

A rotary encoder is a type of electro-mechanical device that converts the angular position or motion of a shaft or axle
to an analog or digital code. In this lesson, we will learn how to use this device.

6.8.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * Rotary Encoder Module

- Jumper wires

6.8.3 Principle

A rotary encoder is an electronic switch with a set of regular pulses with strictly timing sequence. When used with
IC, it can achieve increment, decrement, page turning and other operations such as mouse scrolling, menu selection,
acoustic sound regulation, frequency regulation, toaster temperature regulation, and so on.

There are mainly two types of rotary encoders: absolute and incremental (relative) encoders. The output of absolute en-
coders indicates the current position of the shaft, making them angle transducers. The output of incremental encoders
provides information about the motion of the shaft, which is typically further processed elsewhere into information
such as speed, distance, and position.

Most rotary encoders have 5 pins with three functions of turning left, turning right and pressing down:

Pin 4 & 5: switching wiring terminals for pressing down (no different from the buttons mentioned previously, so no
more details will be provided here.)

Pin 2: generally connected to ground.

6.8. Lesson 8 Rotary Encoder 69

SunFounder super-kit-v2-for-pi

Pin 1 & 3: first connected to a pull-up resistor and then to a microprocessor (in this experiment, to GPIO0 and GPIO1
of Raspberry Pi); when you spin the knob of the encoder clockwise and counterclockwise, there will be pulse outputs
in pin 1 and pin 3.

If both GPIO0 and GPIO1 are at high level, the switch rotates clockwise; if GPIO0 is at high level but GPIO1 is low,
the switch rotates counterclockwise. Therefore, when programming, you only need to check the state of pin 3 when
pin 1 is at high level, and then you can tell whether the switch rotates clockwise or counterclockwise.

Step 1: Build the circuit.

Raspberry Pi Rotary Encoder
3.3V +
GND GND
GPIO17 DT
GPIO18 CLK
GPIO27 SW

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/08_RotaryEncoder/

Step 3: Compile.

gcc rotaryEncoder.c -o rotaryEncoder -lwiringPi

Step 4: Run.

sudo ./rotaryEncoder

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please

70 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

refer to C code is not working?.

Code

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <wiringPi.h>

#define RoAPin 0
#define RoBPin 1
#define RoSPin 2

static volatile int globalCounter = 0 ;

unsigned char flag;
unsigned char Last_RoB_Status;
unsigned char Current_RoB_Status;

void rotaryDeal(void)
{

Last_RoB_Status = digitalRead(RoBPin);

while(!digitalRead(RoAPin)){
Current_RoB_Status = digitalRead(RoBPin);
flag = 1;

}

if(flag == 1){
flag = 0;
if((Last_RoB_Status == 0)&&(Current_RoB_Status == 1)){

globalCounter ++;
printf("globalCounter : %d\n",globalCounter);

}
if((Last_RoB_Status == 1)&&(Current_RoB_Status == 0)){

globalCounter --;
printf("globalCounter : %d\n",globalCounter);

}

}
}

void rotaryClear(void)
{

if(digitalRead(RoSPin) == 0)
{

globalCounter = 0;
printf("globalCounter : %d\n",globalCounter);
delay(1000);

}
}

int main(void)
{

if(wiringPiSetup() < 0){
fprintf(stderr, "Unable to setup wiringPi:%s\n",strerror(errno));

(continues on next page)

6.8. Lesson 8 Rotary Encoder 71

SunFounder super-kit-v2-for-pi

(continued from previous page)

return 1;
}

pinMode(RoAPin, INPUT);
pinMode(RoBPin, INPUT);
pinMode(RoSPin, INPUT);

pullUpDnControl(RoSPin, PUD_UP);

while(1){
rotaryDeal();
rotaryClear();

}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 08_rotaryEncoder.py

Now, gently rotate the encoder to change the value of the variable in the above program, and you will see the value
printed on the screen. Rotate the encoder clockwise, the value will increase; or rotate it counterclockwise, the value
will decrease.

Code

import RPi.GPIO as GPIO
import time

Set up pins
Rotary A Pin
RoAPin = 17
Rotary B Pin
RoBPin = 18
Rotary Switch Pin
RoSPin = 27

def setup():
global counter
global Last_RoB_Status, Current_RoB_Status
GPIO.setmode(GPIO.BCM)
GPIO.setup(RoAPin, GPIO.IN)
GPIO.setup(RoBPin, GPIO.IN)
GPIO.setup(RoSPin,GPIO.IN, pull_up_down=GPIO.PUD_UP)
Set up a falling edge detect to callback clear
GPIO.add_event_detect(RoSPin, GPIO.FALLING, callback=clear)

Set up a counter as a global variable

(continues on next page)

72 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

counter = 0
Last_RoB_Status = 0
Current_RoB_Status = 0

Define a function to deal with rotary encoder
def rotaryDeal():

global counter
global Last_RoB_Status, Current_RoB_Status

flag = 0
Last_RoB_Status = GPIO.input(RoBPin)
When RoAPin level changes
while(not GPIO.input(RoAPin)):

Current_RoB_Status = GPIO.input(RoBPin)
flag = 1

if flag == 1:
Reset flag
flag = 0
if (Last_RoB_Status == 0) and (Current_RoB_Status == 1):

counter = counter + 1
if (Last_RoB_Status == 1) and (Current_RoB_Status == 0):

counter = counter - 1
print ("counter = %d" % counter)

Define a callback function on switch, to clean "counter"
def clear(ev=None):

global counter
counter = 0
print ("counter = %d" % counter)

def main():
while True:

rotaryDeal()

def destroy():
Release resource
GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':

setup()
try:

main()
When 'Ctrl+C' is pressed, the child program
destroy() will be executed.
except KeyboardInterrupt:

destroy()

6.8. Lesson 8 Rotary Encoder 73

SunFounder super-kit-v2-for-pi

6.8.4 Further Exploration

In this experiment, the pressing down function of rotary encoder is not involved. Try to explore this function by
yourself!

6.9 Lesson 9 555 Timer

6.9.1 Introduction

The NE555 Timer, a mixed circuit composed of analog and digital circuits, integrates analog and logical functions
into an independent IC, thus tremendously expanding the applications of analog integrated circuits. It is widely used
in various timers, pulse generators, and oscillators. In this lesson, we will learn how to use the 555 timer.

74 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.9.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * NE555

- 3 * Resistor (1 * 1K, 2 * 10K)

- 2 * Capacitor (100nF)

- Jumper wires

6.9.3 Principle

555 IC

A 555 timer is a medium-sized IC device which combines analog and digital functions. With low cost and reliable
performance, it just attaches external resistors and capacitors so as to achieve the functions of multivibrator, monos-
table trigger, Schmitt trigger and other circuits which can generate and transform pulses. It is also used frequently as a
timer and widely applied to instruments, household appliances, electronic measurement, automatic control and other
fields.

Its pins and their functions:

As shown in the picture, the pins are set dual in-line with the 8-pin package.

- Pin 1 (GND): the ground

- Pin 2 (TRIGGER): the input of lower comparator

- Pin 3 (OUTPUT): having two states of 0 and 1 decided by the input electrical level

- Pin 4 (RESET): outputting low level when supplied a low one

- Pin 5 (CONTROL VOLTAGE): changing the upper and lower level trigger values

- Pin 6 (THRESHOLD): the input of the upper comparator

- Pin 7 (DISCHARGE): having two states of suspension and ground connection also decided by the input, and the
output of the internal discharge tube

- Pin 8 (VCC): the power supply

The 555 timer can work under three modes. In this experiment, the astable mode is used to generate square waves.

6.9. Lesson 9 555 Timer 75

SunFounder super-kit-v2-for-pi

Under the astable mode, the frequency of output waveform of the 555 timer is determined by R1, R2 and C2 :

𝑓 =
1

𝑙𝑛2 * 𝐶2 * (𝑅1 + 2𝑅2)

In the above circuit, R1= R2=10K= 104; =100nF=10-7F, so we can get the frequency:

𝑓 =
1

𝑙𝑛2 * 10−7 * (104 + 2 * 104)
≈ 481𝐻𝑧

After connecting the circuit according to the schematic diagram, use an oscilloscope to observe the frequency of the
output waveform. We can see it is consistent with the above calculated result.

76 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

Attach the output pin (e.g. pin 3) of the 555 timer to GPIO17 of the Raspberry Pi, configure GPIO17 as the mode
of the rising edge interrupt by programming, and then detect the square wave pulses generated by the 555 timer with
interrupt. The work of Interrupt Service Routine (ISR) is to add 1 to a variable.

6.9.4 Experimental Procedures

Step 1: Build the circuit.

6.9. Lesson 9 555 Timer 77

SunFounder super-kit-v2-for-pi

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/09_Timer555/

Step 3: Compile.

gcc timer555.c -o timer555 -lwiringPi

Step 4: Run.

sudo ./timer555

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <wiringPi.h>

#define Pin0 0

static volatile int globalCounter = 0 ;

void exInt0_ISR(void) //GPIO0 interrupt service routine
{

++globalCounter;
}

int main (void)
{

if(wiringPiSetup() < 0){
fprintf(stderr, "Unable to setup wiringPi:%s\n",strerror(errno));

return 1;
}

wiringPiISR(Pin0, INT_EDGE_FALLING, &exInt0_ISR);

while(1){
printf("Current pluse number is : %d\n", globalCounter);
delay(100);

}

return 0;
}

78 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 09_timer555.py

Now, you should see data printed on the display, which are square waves generated by the 555 timer. The program
counts pulses by interrupt as we have learned previously.

Code

import RPi.GPIO as GPIO
import time

SigPin = 17

g_count = 0

def count(ev=None):
global g_count
g_count += 1

def setup():
GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
GPIO.setup(SigPin, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Set Pin's mode is

→˓input, and pull up to high level(3.3V)
GPIO.add_event_detect(SigPin, GPIO.RISING, callback=count) # wait for rasing

def loop():
while True:

print ("g_count = %d" % g_count)
time.sleep(0.2)

def destroy():
GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
setup()
try:

loop()
except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program

→˓destroy() will be executed.
destroy()

6.9. Lesson 9 555 Timer 79

SunFounder super-kit-v2-for-pi

6.10 Lesson 10 Driving LEDs by 74HC595

6.10.1 Introduction

In this lesson, we will learn how to use 74HC595 to make eight LEDs blink regularly.

6.10.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * 74HC595

- 8 * LED

- 8 * Resistor (220)

- Jumper wires

80 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.10.3 Principle

74HC595

The 74HC595 consists of an 8bit shift register and a storage register with threestate parallel outputs. It converts serial
input into parallel output so that you can save IO ports of an MCU. The 74HC595 is widely used to indicate multipath
LEDs and drive multi-bit segment displays. “Three-state” mentioned above refers to the fact that you can set the
output pins as either high, low or high impedance. With data latching, the instant output will not be affected during
the shifting; with data output, you can cascade 74HC595s more easily. Compatible with low voltage TTL circuit,
74HC595 can transform serial input of 8-bit data into parallel output of 8-bit data. So it is often used to extend GPIO
for embedded system and drive low power devices.

Pins of 74HC595 and their functions:

Q0-Q7: 8-bit parallel data output pins, able to control 8 LEDs or 8 pins of 7-segment display directly.

Q7’: Series output pin, connected to DS of another 74HC595 to connect multiple 74HC595s in series

MR: Reset pin, active at low level; here it is directly connected to 5V.

SH_CP: Time sequence input of shift register. On the rising edge, the data in shift register moves successively one
bit, i.e. data in Q1 moves to Q2, and so forth. While on the falling edge, the data in shift register remain unchanged.

ST_CP: Time sequence input of storage register. On the rising edge, data in the shift register moves into memory
register.

OE: Output enable pin, active at low level, connected to GND.

DS: Serial data input pin

VCC: Positive supply voltage

GND: Ground

6.10. Lesson 10 Driving LEDs by 74HC595 81

SunFounder super-kit-v2-for-pi

6.10.4 Schematic Diagram

In this experiment, connect ST_CP to Raspberry Pi GPIO18, SH_CP to GPIO27, and DS to GPIO17. Input data in
DS pin to the shift register when SH_CP (the clock input of the shift register) is at the rising edge, and to the memory
register when ST_CP (the clock input of the memory) is at the rising edge. Then you can control the states of SH_CP
and ST_CP via Raspberry Pi GPIO to transform serial input data into parallel output data so as to save Raspberry Pi
GPIOs.

6.10.5 Experimental Procedures

Step 1: Build the circuit.

82 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/10_74HC595_LED/

Step 3: Compile.

gcc 74HC595_LED.c -o 74HC595_LED -lwiringPi

Step 4: Run.

sudo ./74HC595_LED

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define SDI 0 //serial data input
#define RCLK 1 //memory clock input(STCP)
#define SRCLK 2 //shift register clock input(SHCP)

unsigned char LED[8] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};

void pulse(int pin)
{

digitalWrite(pin, 0);
digitalWrite(pin, 1);

(continues on next page)

6.10. Lesson 10 Driving LEDs by 74HC595 83

SunFounder super-kit-v2-for-pi

(continued from previous page)

}

void SIPO(unsigned char byte)
{

int i;

for(i=0;i<8;i++){
digitalWrite(SDI, ((byte & (0x80 >> i)) > 0));
pulse(SRCLK);

}
}

void init(void)
{

pinMode(SDI, OUTPUT); //make P0 output
pinMode(RCLK, OUTPUT); //make P0 output
pinMode(SRCLK, OUTPUT); //make P0 output

digitalWrite(SDI, 0);
digitalWrite(RCLK, 0);
digitalWrite(SRCLK, 0);

}

int main(void)
{

int i;

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}

init();

while(1){
for(i=0;i<8;i++){

SIPO(LED[i]);
pulse(RCLK);
delay(150);
//printf("i = %d\n",i);

}
delay(500);

for(i=0;i<3;i++){
SIPO(0xff);
pulse(RCLK);
delay(100);
SIPO(0x00);
pulse(RCLK);
delay(100);

}
delay(500);

// digitalWrite(RCLK,0);

for(i=0;i<8;i++){
SIPO(LED[8-i-1]);
pulse(RCLK);

(continues on next page)

84 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

delay(150);
}
delay(500);

for(i=0;i<3;i++){
SIPO(0xff);
pulse(RCLK);
delay(100);
SIPO(0x00);
pulse(RCLK);
delay(100);

}
delay(500);

}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 10_74HC595_LED.py

Here you should see eight LEDs blink regularly.

Code

import RPi.GPIO as GPIO
import time

SDI = 17
RCLK = 18
SRCLK = 27

#=============== LED Mode Defne ================
You can define yourself, in binay, and convert it to Hex
8 bits a group, 0 means off, 1 means on
like : 0101 0101, means LED1, 3, 5, 7 are on.(from left to right)
and convert to 0x55.

LED0 = [0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80] #original mode
LED1 = [0x01,0x03,0x07,0x0f,0x1f,0x3f,0x7f,0xff] #blink mode 1
LED2 = [0x01,0x05,0x15,0x55,0xb5,0xf5,0xfb,0xff] #blink mode 2
LED3 = [0x02,0x03,0x0b,0x0f,0x2f,0x3f,0xbf,0xff] #blink mode 3
#===

def print_msg():
print ("Program is running...")
print ("Please press Ctrl+C to end the program...")

(continues on next page)

6.10. Lesson 10 Driving LEDs by 74HC595 85

SunFounder super-kit-v2-for-pi

(continued from previous page)

def setup():
GPIO.setmode(GPIO.BCM) # Number GPIOs by BCM
GPIO.setup(SDI, GPIO.OUT)
GPIO.setup(RCLK, GPIO.OUT)
GPIO.setup(SRCLK, GPIO.OUT)
GPIO.output(SDI, GPIO.LOW)
GPIO.output(RCLK, GPIO.LOW)
GPIO.output(SRCLK, GPIO.LOW)

def hc595_in(dat):
for bit in range(0, 8):

GPIO.output(SDI, 0x80 & (dat << bit))
GPIO.output(SRCLK, GPIO.HIGH)
time.sleep(0.001)
GPIO.output(SRCLK, GPIO.LOW)

def hc595_out():
GPIO.output(RCLK, GPIO.HIGH)
time.sleep(0.001)
GPIO.output(RCLK, GPIO.LOW)

def loop():
WhichLeds = LED0 # Change Mode, modes from LED0 to LED3
sleeptime = 0.1 # Change speed, lower value, faster speed
while True:

for i in range(0, len(WhichLeds)):
hc595_in(WhichLeds[i])
hc595_out()
time.sleep(sleeptime)

for i in range(len(WhichLeds)-1, -1, -1):
hc595_in(WhichLeds[i])
hc595_out()
time.sleep(sleeptime)

def destroy(): # When program ending, the function is executed.
GPIO.cleanup()

if __name__ == '__main__': # Program starting from here
print_msg()
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

86 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.10.6 Further Exploration

In this experiment, three Raspberry Pi GPIOs are used to separately control 8 LEDs based on 74HC595. In fact,
74HC595 has another powerful function – cascade. With cascade, you can use a microprocessor to control more
peripherals. We’ll check more details later.

6.11 Lesson 11 Driving 7-Segment Display by 74HC595

6.11.1 Introduction

Since we’ve got some knowledge of the 74HC595 in the previous lesson, now let’s try to use it and drive a 7-segment
display to show a figure from 0 to 9.

6.11.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * 74HC595

- 1 * 7-segment display

- 2 * Resistor (220K,10K)

- 1 * Button

- Jumper wires

6.11. Lesson 11 Driving 7-Segment Display by 74HC595 87

SunFounder super-kit-v2-for-pi

6.11.3 Principle

7-Segment Display

A 7-segment display is an 8-shaped component which packages 7 LEDs. Each LED is called a segment – when
energized, one segment forms part of a numeral (both decimal and hexadecimal) to be displayed. An additional 8th
LED is sometimes used within the same package thus allowing the indication of a decimal point (DP) when two or
more 7-segment displays are connected together to display numbers greater than ten.

Each of the LEDs in the display is given a positional segment with one of its connection pins led out from the rect-
angular plastic package. These LED pins are labeled from “a” through to “g” representing each individual LED. The
other LED pins are connected together forming a common pin. So by forward biasing the appropriate pins of the
LED segments in a particular order, some segments will brighten and others stay dim, thus showing the corresponding
character on the display.

The common pin of the display generally tells its type. There are two types of pin connection: a pin of connected
cathodes and one of connected anodes, indicating Common Cathode (CC) and Common Anode (CA). As the name
suggests, a CC display has all the cathodes of the 7 LEDs connected when a CA display has all the anodes of the 7
segments connected.

Common Cathode 7-Segment Display

In a common cathode display, the cathodes of all the LED segments are connected to the logic “0” or ground. Then an
individual segment (a-g) is energized by a “HIGH”, or logic “1” signal via a current limiting resistor to forward bias
the anode of the segment.

88 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

Common Anode 7-Segment Display

In a common anode display, the anodes of all the LED segments are connected to the logic “1”. Then an individual
segment (a-g) is energized by a ground, logic “0” or “LOW” signal via a current limiting resistor to the cathode of the
segment.

In this experiment, a common cathode 7-segment display is use. It should be connected to ground. When the anode of
an LED in a certain segment is at high level, the corresponding segment will light up; when it is at low, the segment
will stay dim.

6.11. Lesson 11 Driving 7-Segment Display by 74HC595 89

SunFounder super-kit-v2-for-pi

6.11.4 Schematic Diagram

Connect pin ST_CP of 74HC595 to Raspberry Pi GPIO18, SH_CP to GPIO27, DS to GPIO17, parallel output ports
to 8 segments of the LED segment display. Input data in DS pin to shift register when SH_CP (the clock input of the
shift register) is at the rising edge, and to the memory register when ST_CP (the clock input of the memory) is at the
rising edge. Then you can control the states of SH_CP and ST_CP via the Raspberry Pi GPIOs to transform serial data
input into parallel data output so as to save Raspberry Pi GPIOs and drive the display.

6.11.5 Experimental Procedures

Step 1: Build the circuit.

90 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/11_Segment/

Step 3: Compile.

gcc segment1.c -o segment1 -lwiringPi

Step 4: Run.

sudo ./segment1

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define SDI 0 //serial data input
#define RCLK 1 //memory clock input(STCP)
#define SRCLK 2 //shift register clock input(SHCP)

unsigned char SegCode[17] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,
→˓0x7c,0x39,0x5e,0x79,0x71,0x80};

void init(void)
{

pinMode(SDI, OUTPUT); //make P0 output

(continues on next page)

6.11. Lesson 11 Driving 7-Segment Display by 74HC595 91

SunFounder super-kit-v2-for-pi

(continued from previous page)

pinMode(RCLK, OUTPUT); //make P0 output
pinMode(SRCLK, OUTPUT); //make P0 output

digitalWrite(SDI, 0);
digitalWrite(RCLK, 0);
digitalWrite(SRCLK, 0);

}

void hc595_shift(unsigned char dat)
{

int i;

for(i=0;i<8;i++){
digitalWrite(SDI, 0x80 & (dat << i));
digitalWrite(SRCLK, 1);
delay(1);
digitalWrite(SRCLK, 0);

}

digitalWrite(RCLK, 1);
delay(1);
digitalWrite(RCLK, 0);

}

int main(void)
{

int i;

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}

init();

while(1){
for(i=0;i<17;i++){

hc595_shift(SegCode[i]);
delay(500);

}
}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 11_segment.py

You should see the 7-segment display from 0 to 9, and A to F.

92 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

Code

import RPi.GPIO as GPIO
import time

SDI = 17
RCLK = 18
SRCLK = 27

segCode = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,
→˓0x71,0x80]

def print_msg():
print ("Program is running...")
print ("Please press Ctrl+C to end the program...")

def setup():
GPIO.setmode(GPIO.BCM) #Number GPIOs by BCM
GPIO.setup(SDI, GPIO.OUT)
GPIO.setup(RCLK, GPIO.OUT)
GPIO.setup(SRCLK, GPIO.OUT)
GPIO.output(SDI, GPIO.LOW)
GPIO.output(RCLK, GPIO.LOW)
GPIO.output(SRCLK, GPIO.LOW)

def hc595_shift(dat):
for bit in range(0, 8):

GPIO.output(SDI, 0x80 & (dat << bit))
GPIO.output(SRCLK, GPIO.HIGH)
time.sleep(0.001)
GPIO.output(SRCLK, GPIO.LOW)

GPIO.output(RCLK, GPIO.HIGH)
time.sleep(0.001)
GPIO.output(RCLK, GPIO.LOW)

def loop():
while True:

for i in range(0, len(segCode)):
hc595_shift(segCode[i])
time.sleep(0.5)

def destroy(): #When program ending, the function is executed.
GPIO.cleanup()

if __name__ == '__main__': #Program starting from here
print_msg()
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

6.11. Lesson 11 Driving 7-Segment Display by 74HC595 93

SunFounder super-kit-v2-for-pi

6.11.6 Further Exploration

You can slightly modify the hardware and software based on this experiment to make a dice. For hardware, add a
button to the original board.

94 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.11.7 Build the circuit:

Next, go to 11_Segment, and compile dice.c

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/11_Segment/

gcc dice.c -lwiringPi

Run.

sudo ./a.out

Now you should see a number flashing between 0 and 6 quickly on the segment display. Press the button on the
breadboard, and the display will statically display a random number between 0 and 6 for 2 seconds and then circularly
flash randomly between 0 and 6 again.

6.11. Lesson 11 Driving 7-Segment Display by 74HC595 95

SunFounder super-kit-v2-for-pi

6.11.8 Summary

Through this lesson, you may have mastered the basic principle and programming for 7-segment display based on
Raspberry Pi, as well as more knowledge about using 74HC595. Now you can apply what you’ve learnt and put it into
practice to create your own works!

6.12 Lesson 12 Driving Dot-Matrix by 74HC595

6.12.1 Introduction

With low-voltage scanning, dot matrix LED displays have advantages such as power saving, long service life, low
cost, high brightness, a wide angle of view, long visual range, waterproofness, and so on. They can meet the needs of
different applications and thus have a broad development prospect. In this lesson, we will learn how to use 74HC595
to drive an LED dot-matrix.

96 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.12.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 2 * 74HC595

- 1 * Dot-Matrix

- Jumper wires

6.12.3 Principle

Dot Matrix

The external view:

Pin definition:

Define the row and column numbering at first (only for the dot matrix whose model number ends with BS)

6.12. Lesson 12 Driving Dot-Matrix by 74HC595 97

SunFounder super-kit-v2-for-pi

Pin numbering corresponding to the above rows and columns:

COL 1 2 3 4 5 6 7 8
Pin No. 13 3 4 10 6 11 15 16
ROW 1 2 3 4 5 6 7 8
Pin No. 9 14 8 12 1 7 2 5

The 8*8 dot matrix is made up of sixty-four LEDs and each LED is placed at the cross point of a row and a column.
When the electrical level of a certain row is High and the electrical level of a certain column is Low, the corresponding
LED at their cross point will light up. For example, to turn on the LED at the first dot, you should set ROW 1 to high
level and COL 1 to low, so the LED at the first dot brightens; to turn on all the LEDs on the first row, set ROW 1 to
high level and COL 1-8 to low, and then all the LEDs on the first row will light up; similarly, set COL 1 to low level
and ROW 1-8 to high level, and all the LEDs on the first column will light up.

The principle of 74HC595 has been illustrated previously. One chip is used to control the rows of the dot matrix while
the other, the columns.

98 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.12.4 Schematic Diagram

6.12.5 Experimental Procedures

Step 1: Build the circuit.

6.12. Lesson 12 Driving Dot-Matrix by 74HC595 99

SunFounder super-kit-v2-for-pi

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/12_DotMatrix/

Step 3: Compile.

gcc dotMatrix.c -o dotMatrix -lwiringPi

Step 4: Run.

sudo ./dotMatrix

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define SDI 0 //serial data input
#define RCLK 1 //memory clock input(STCP)
#define SRCLK 2 //shift register clock input(SHCP)

unsigned char code_H[20] = {0x01,0xff,0x80,0xff,0x01,0x02,0x04,0x08,0x10,0x20,0x40,
→˓0x80,0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};

(continues on next page)

100 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

unsigned char code_L[20] = {0x00,0x7f,0x00,0xfe,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
→˓0x00,0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};

//unsigned char code_L[8] = {0x00,0x00,0x3c,0x42,0x42,0x3c,0x00,0x00};
//unsigned char code_H[8] = {0xff,0xe7,0xdb,0xdb,0xdb,0xdb,0xe7,0xff};

//unsigned char code_L[8] = {0xff,0xff,0xc3,0xbd,0xbd,0xc3,0xff,0xff};
//unsigned char code_H[8] = {0x00,0x18,0x24,0x24,0x24,0x24,0x18,0x00};

void init(void)
{

pinMode(SDI, OUTPUT); //make P0 output
pinMode(RCLK, OUTPUT); //make P0 output
pinMode(SRCLK, OUTPUT); //make P0 output

digitalWrite(SDI, 0);
digitalWrite(RCLK, 0);
digitalWrite(SRCLK, 0);

}

void hc595_in(unsigned char dat)
{

int i;

for(i=0;i<8;i++){
digitalWrite(SDI, 0x80 & (dat << i));
digitalWrite(SRCLK, 1);
delay(1);
digitalWrite(SRCLK, 0);

}
}

void hc595_out()
{

digitalWrite(RCLK, 1);
delay(1);
digitalWrite(RCLK, 0);

}

int main(void)
{

int i;

if(wiringPiSetup() == -1){ //when initialize wiring failed,print messageto screen
printf("setup wiringPi failed !");
return 1;

}

init();

while(1){
for(i=0;i<sizeof(code_H);i++){

hc595_in(code_L[i]);
hc595_in(code_H[i]);
hc595_out();
delay(100);

}
(continues on next page)

6.12. Lesson 12 Driving Dot-Matrix by 74HC595 101

SunFounder super-kit-v2-for-pi

(continued from previous page)

for(i=sizeof(code_H);i>=0;i--){
hc595_in(code_L[i]);
hc595_in(code_H[i]);
hc595_out();
delay(100);

}
}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 12_dotMatrix.py

You should see LEDs light up as you control.

Code

import RPi.GPIO as GPIO
import time

SDI = 17
RCLK = 18
SRCLK = 27

code_H = [0x01,0xff,0x80,0xff,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,0xff,0xff,0xff,
→˓0xff,0xff,0xff,0xff,0xff]
code_L = [0x00,0x7f,0x00,0xfe,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xfe,0xfd,0xfb,
→˓0xf7,0xef,0xdf,0xbf,0x7f]

def print_msg():
print ("Program is running...")
print ("Please press Ctrl+C to end the program...")

def setup():
GPIO.setmode(GPIO.BCM) # Number GPIOs by BCM
GPIO.setup(SDI, GPIO.OUT)
GPIO.setup(RCLK, GPIO.OUT)
GPIO.setup(SRCLK, GPIO.OUT)
GPIO.output(SDI, GPIO.LOW)
GPIO.output(RCLK, GPIO.LOW)
GPIO.output(SRCLK, GPIO.LOW)

def hc595_in(dat):
for bit in range(0, 8):

GPIO.output(SDI, 0x80 & (dat << bit))

(continues on next page)

102 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

GPIO.output(SRCLK, GPIO.HIGH)
time.sleep(0.001)
GPIO.output(SRCLK, GPIO.LOW)

def hc595_out():
GPIO.output(RCLK, GPIO.HIGH)
time.sleep(0.001)
GPIO.output(RCLK, GPIO.LOW)

def loop():
while True:

for i in range(0, len(code_H)):
hc595_in(code_L[i])
hc595_in(code_H[i])
hc595_out()
time.sleep(0.1)

for i in range(len(code_H)-1, -1, -1):
hc595_in(code_L[i])
hc595_in(code_H[i])
hc595_out()
time.sleep(0.1)

def destroy(): # When program ending, the function is executed.
GPIO.cleanup()

if __name__ == '__main__': # Program starting from here
print_msg()
setup()
try:

loop()
except KeyboardInterrupt:

destroy()

6.12. Lesson 12 Driving Dot-Matrix by 74HC595 103

SunFounder super-kit-v2-for-pi

6.12.6 Summary

Through this lesson, you have got the basic principle of LED dot matrix and how to program the Raspberry Pi to drive
an LED dot matrix based on 74HC595 cascade. With the knowledge learnt, try more fascinating creations!

6.13 Lesson 13 LCD1602

6.13.1 Introduction

In this lesson, we will learn how to use LCD1602 to display characters and strings.

6.13.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * LCD1602

- 1 * Potentiometer

- Jumper wires

104 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

6.13.3 Principle

LCD1602, or character type LCD1602, is a dot matrix LCD module specially used to display letters, figures, symbols,
and so on. It consists of many 16*2 dot matrixes, and each one is composed of 5*7 or 5*11 character bit. Each
character bit can display one character. There is a dot space between each adjacent character bit. Also there is a dot
space between each row. The dot space functions as a character space or line space; thus, LCD1602 cannot display
graphics very well. It is widely used in pocket instruments and low power application systems due to its micro power
consumption, small size, richness in contents, ultra-thinness and lightness.

LCD1602 uses the standard 16-pin port, among which:

Pin 1 (GND): connected to Ground

Pin 2 (Vcc): connected to 5V power supply

Pin 3 (Vo): used to adjust the contrast of LCD1602; the level is lowest when it’s connected to a positive power
supply, and highest when connected to ground (you can connect a 10K potentiometer to adjust its contrast when using
LCD1602)

Pin 4 (RS): register select pin that controls where in the LCD’s memory you are writing data to. You can select either
the data register, which holds what goes on the screen, or an instruction register, which is where the LCD’s controller
looks for instructions on what to do next.

Pin 5 (R/W): to read/write signals; it reads signals when supplied with high level (1), and writes when low level (0)
(in this experiment, you only need to write data to LCD1602, so just connect this pin to ground)

Pin 6 (E): An enable pin that, when low-level energy is supplied, causes the LCD module to execute relevant instruc-
tions

Pin 7 (D0-D7): pins that read and write data

A and K: controlling LCD backlight

LCD1602 has two operation modes: 4-bit and 8-bit. When the IOs of microprocessor (MCU) are insufficient, you can
choose 4-bit mode, under which only pins D4~D7 are used. After connecting the circuit, you can operate LCD1602
by Raspberry Pi.

6.13. Lesson 13 LCD1602 105

SunFounder super-kit-v2-for-pi

6.13.4 Schematic Diagram

6.13.5 Experimental Procedures

Step1: Build the circuit (please be sure the pins are connected correctly. Otherwise, characters will not be displayed
properly):

106 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/13_LCD1602/

Step 3: Compile.

gcc lcd1602_2.c -o lcd1602_2 -lwiringPiDev -lwiringPi

Step 4: Run.

sudo ./lcd1602_2

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <stdio.h>
#include <stdlib.h>
#include <wiringPi.h>
#include <lcd.h>

const unsigned char Buf[] = "---SUNFOUNDER---";
const unsigned char myBuf[] = " sunfounder.com";

int main(void)
{

(continues on next page)

6.13. Lesson 13 LCD1602 107

SunFounder super-kit-v2-for-pi

(continued from previous page)

int fd;
int i;
if (wiringPiSetup() == -1){

exit(1);
}

fd = lcdInit(2,16,4, 2,3, 6,5,4,1,0,0,0,0); //see /usr/local/include/lcd.h
printf("%d", fd);
if (fd == -1){

printf("lcdInit 1 failed\n") ;
return 1;

}
delay(1000);

lcdClear(fd);
lcdPosition(fd, 0, 0);
lcdPuts(fd, "Welcom To--->");

lcdPosition(fd, 0, 1);
lcdPuts(fd, " sunfounder.com");

delay(1000);
lcdClear(fd);

while(1){
for(i=0;i<sizeof(Buf)-1;i++){

lcdPosition(fd, i, 1);
lcdPutchar(fd, *(Buf+i));
delay(200);

}
lcdPosition(fd, 0, 1);
lcdClear(fd);
delay(500);
for(i=0; i<16; i++){

lcdPosition(fd, i, 0);
lcdPutchar(fd, *(myBuf+i));
delay(100);

}
}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi/

Step 3: Run.

sudo python3 13_lcd1602.py

You should see two lines of characters displayed on the LCD1602: “SUNFOUNDER” and “Hello World ! :)”.

Code

108 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

from time import sleep

class LCD:
commands
LCD_CLEARDISPLAY = 0x01
LCD_RETURNHOME = 0x02
LCD_ENTRYMODESET = 0x04
LCD_DISPLAYCONTROL = 0x08
LCD_CURSORSHIFT = 0x10
LCD_FUNCTIONSET = 0x20
LCD_SETCGRAMADDR = 0x40
LCD_SETDDRAMADDR = 0x80

flags for display entry mode
LCD_ENTRYRIGHT = 0x00
LCD_ENTRYLEFT = 0x02
LCD_ENTRYSHIFTINCREMENT = 0x01
LCD_ENTRYSHIFTDECREMENT = 0x00

flags for display on/off control
LCD_DISPLAYON = 0x04
LCD_DISPLAYOFF = 0x00
LCD_CURSORON = 0x02
LCD_CURSOROFF = 0x00
LCD_BLINKON = 0x01
LCD_BLINKOFF = 0x00

flags for display/cursor shift
LCD_DISPLAYMOVE = 0x08
LCD_CURSORMOVE = 0x00

flags for display/cursor shift
LCD_DISPLAYMOVE = 0x08
LCD_CURSORMOVE = 0x00
LCD_MOVERIGHT = 0x04
LCD_MOVELEFT = 0x00

flags for function set
LCD_8BITMODE = 0x10
LCD_4BITMODE = 0x00
LCD_2LINE = 0x08
LCD_1LINE = 0x00
LCD_5x10DOTS = 0x04
LCD_5x8DOTS = 0x00

def __init__(self, pin_rs=27, pin_e=22, pins_db=[25, 24, 23, 18], GPIO = None):
Emulate the old behavior of using RPi.GPIO if we haven't been given
an explicit GPIO interface to use
if not GPIO:

import RPi.GPIO as GPIO
self.GPIO = GPIO
self.pin_rs = pin_rs
self.pin_e = pin_e
self.pins_db = pins_db

self.used_gpio = self.pins_db[:]
self.used_gpio.append(pin_e)

(continues on next page)

6.13. Lesson 13 LCD1602 109

SunFounder super-kit-v2-for-pi

(continued from previous page)

self.used_gpio.append(pin_rs)

self.GPIO.setwarnings(False)
self.GPIO.setmode(GPIO.BCM)
self.GPIO.setup(self.pin_e, GPIO.OUT)
self.GPIO.setup(self.pin_rs, GPIO.OUT)

for pin in self.pins_db:
self.GPIO.setup(pin, GPIO.OUT)

self.write4bits(0x33) # initialization
self.write4bits(0x32) # initialization
self.write4bits(0x28) # 2 line 5x7 matrix
self.write4bits(0x0C) # turn cursor off 0x0E to enable cursor
self.write4bits(0x06) # shift cursor right

self.displaycontrol = self.LCD_DISPLAYON | self.LCD_CURSOROFF | self.LCD_
→˓BLINKOFF

self.displayfunction = self.LCD_4BITMODE | self.LCD_1LINE | self.LCD_5x8DOTS
self.displayfunction |= self.LCD_2LINE

""" Initialize to default text direction (for romance languages) """
self.displaymode = self.LCD_ENTRYLEFT | self.LCD_ENTRYSHIFTDECREMENT
self.write4bits(self.LCD_ENTRYMODESET | self.displaymode) # set the entry

→˓mode

self.clear()

def begin(self, cols, lines):
if (lines > 1):

self.numlines = lines
self.displayfunction |= self.LCD_2LINE
self.currline = 0

def home(self):
self.write4bits(self.LCD_RETURNHOME) # set cursor position to zero
self.delayMicroseconds(3000) # this command takes a long time!

def clear(self):
self.write4bits(self.LCD_CLEARDISPLAY) # command to clear display
self.delayMicroseconds(3000) # 3000 microsecond sleep, clearing the

→˓display takes a long time

def setCursor(self, col, row):
self.row_offsets = [0x00, 0x40, 0x14, 0x54]

if (row > self.numlines):
row = self.numlines - 1 # we count rows starting w/0

self.write4bits(self.LCD_SETDDRAMADDR | (col + self.row_offsets[row]))

def noDisplay(self):
Turn the display off (quickly)
self.displaycontrol &= ~self.LCD_DISPLAYON
self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

(continues on next page)

110 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

def display(self):
Turn the display on (quickly)
self.displaycontrol |= self.LCD_DISPLAYON
self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

def noCursor(self):
Turns the underline cursor on/off
self.displaycontrol &= ~self.LCD_CURSORON
self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

def cursor(self):
Cursor On
self.displaycontrol |= self.LCD_CURSORON
self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

def noBlink(self):
Turn on and off the blinking cursor
self.displaycontrol &= ~self.LCD_BLINKON
self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

def noBlink(self):
Turn on and off the blinking cursor
self.displaycontrol &= ~self.LCD_BLINKON
self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

def scrollDisplayLeft(self):
These commands scroll the display without changing the RAM
self.write4bits(self.LCD_CURSORSHIFT | self.LCD_DISPLAYMOVE | self.LCD_

→˓MOVELEFT)

def scrollDisplayRight(self):
These commands scroll the display without changing the RAM
self.write4bits(self.LCD_CURSORSHIFT | self.LCD_DISPLAYMOVE | self.LCD_

→˓MOVERIGHT);

def leftToRight(self):
This is for text that flows Left to Right
self.displaymode |= self.LCD_ENTRYLEFT
self.write4bits(self.LCD_ENTRYMODESET | self.displaymode);

def rightToLeft(self):
This is for text that flows Right to Left
self.displaymode &= ~self.LCD_ENTRYLEFT
self.write4bits(self.LCD_ENTRYMODESET | self.displaymode)

def autoscroll(self):
This will 'right justify' text from the cursor
self.displaymode |= self.LCD_ENTRYSHIFTINCREMENT
self.write4bits(self.LCD_ENTRYMODESET | self.displaymode)

def noAutoscroll(self):
This will 'left justify' text from the cursor
self.displaymode &= ~self.LCD_ENTRYSHIFTINCREMENT
self.write4bits(self.LCD_ENTRYMODESET | self.displaymode)

def write4bits(self, bits, char_mode=False):
Send command to LCD

(continues on next page)

6.13. Lesson 13 LCD1602 111

SunFounder super-kit-v2-for-pi

(continued from previous page)

self.delayMicroseconds(1000) # 1000 microsecond sleep
bits=bin(bits)[2:].zfill(8)
self.GPIO.output(self.pin_rs, char_mode)
for pin in self.pins_db:

self.GPIO.output(pin, False)
for i in range(4):

if bits[i] == "1":
self.GPIO.output(self.pins_db[::-1][i], True)

self.pulseEnable()
for pin in self.pins_db:

self.GPIO.output(pin, False)
for i in range(4,8):

if bits[i] == "1":
self.GPIO.output(self.pins_db[::-1][i-4], True)

self.pulseEnable()

def delayMicroseconds(self, microseconds):
seconds = microseconds / float(1000000) # divide microseconds by 1 million

→˓for seconds
sleep(seconds)

def pulseEnable(self):
self.GPIO.output(self.pin_e, False)
self.delayMicroseconds(1) # 1 microsecond pause - enable pulse must be >

→˓ 450ns
self.GPIO.output(self.pin_e, True)
self.delayMicroseconds(1) # 1 microsecond pause - enable pulse must be >

→˓ 450ns
self.GPIO.output(self.pin_e, False)
self.delayMicroseconds(1) # commands need > 37us to settle

def message(self, text):
Send string to LCD. Newline wraps to second line
print ("message: %s"%text)
for char in text:

if char == '\n':
self.write4bits(0xC0) # next line

else:
self.write4bits(ord(char),True)

def destroy(self):
#print ("clean up used_gpio")
self.GPIO.cleanup(self.used_gpio)

def loop():
global lcd
lcd = LCD()
while True:

lcd.clear()
lcd.message(" LCD 1602 Test \n123456789ABCDEF")
sleep(2)
lcd.clear()
lcd.message(" SUNFOUNDER \nHello World ! :)")
sleep(2)
lcd.clear()
lcd.message("Welcom to --->\n sunfounder.com")
sleep(2)

(continues on next page)

112 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

def destroy():
lcd.destroy()

if __name__ == '__main__':
try:

loop()
except KeyboardInterrupt:

destroy()

6.13.6 Further Exploration

In this experiment, the LCD1602 is driven in the 4-bit mode. You can try programming by yourself to drive it in the
8-bit mode.

6.14 Lesson 14 ADXL345

6.14.1 Introduction

In this lesson, we will learn how to use the acceleration sensor ADXL345.

6.14. Lesson 14 ADXL345 113

SunFounder super-kit-v2-for-pi

6.14.2 Components

- 1 * Raspberry Pi

- 1 * Breadboard

- 1 * ADXL345 module

- Jumper wires

6.14.3 Principle

ADXL345

The ADXL345 is a small, thin, low power, 3-axis accelerometer with high resolution (13-bit) measurement at up to
±16 g. Digital output data is formatted as 16-bit two’s complement and is accessible through either an SPI (3- or
4-wire) or I2C digital interface.

The ADXL345 is well suited to measure the static acceleration of gravity in tilt-sensing applications, as well as
dynamic acceleration resulting from motion or shock. Its high resolution (4 mg/LSB) enables the inclination change
measurement by less than 1.0°. And the excellent sensitivity (3.9mg/LSB @2g) provides a high-precision output of
up to ±16g. In this experiment, I2C digital interface is used.

6.14.4 Experimental Procedures

Step 1: Build the circuit.

114 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

The I2C interface is used in the following program. Before running the program, please make sure the I2C driver
module of Raspberry Pi has loaded normally(Refer to Appendix).

For C Language Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_C_code_for_RaspberryPi/14_ADXL345/

Step 3: Compile.

gcc adxl345.c -o adxl345 -lwiringPi

Step 4: Run.

sudo ./adxl345

Note: If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please
refer to C code is not working?.

Code

#include <wiringPiI2C.h>
#include <wiringPi.h>
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>

#define DevAddr 0x53 //device address

(continues on next page)

6.14. Lesson 14 ADXL345 115

SunFounder super-kit-v2-for-pi

(continued from previous page)

struct acc_dat{
int x;
int y;
int z;

};

void adxl345_init(int fd)
{

wiringPiI2CWriteReg8(fd, 0x31, 0x0b);
wiringPiI2CWriteReg8(fd, 0x2d, 0x08);

// wiringPiI2CWriteReg8(fd, 0x2e, 0x00);
wiringPiI2CWriteReg8(fd, 0x1e, 0x00);
wiringPiI2CWriteReg8(fd, 0x1f, 0x00);
wiringPiI2CWriteReg8(fd, 0x20, 0x00);

wiringPiI2CWriteReg8(fd, 0x21, 0x00);
wiringPiI2CWriteReg8(fd, 0x22, 0x00);
wiringPiI2CWriteReg8(fd, 0x23, 0x00);

wiringPiI2CWriteReg8(fd, 0x24, 0x01);
wiringPiI2CWriteReg8(fd, 0x25, 0x0f);
wiringPiI2CWriteReg8(fd, 0x26, 0x2b);
wiringPiI2CWriteReg8(fd, 0x27, 0x00);

wiringPiI2CWriteReg8(fd, 0x28, 0x09);
wiringPiI2CWriteReg8(fd, 0x29, 0xff);
wiringPiI2CWriteReg8(fd, 0x2a, 0x80);
wiringPiI2CWriteReg8(fd, 0x2c, 0x0a);
wiringPiI2CWriteReg8(fd, 0x2f, 0x00);
wiringPiI2CWriteReg8(fd, 0x38, 0x9f);

}

struct acc_dat adxl345_read_xyz(int fd)
{

char x0, y0, z0, x1, y1, z1;
struct acc_dat acc_xyz;

x0 = 0xff - wiringPiI2CReadReg8(fd, 0x32);
x1 = 0xff - wiringPiI2CReadReg8(fd, 0x33);
y0 = 0xff - wiringPiI2CReadReg8(fd, 0x34);
y1 = 0xff - wiringPiI2CReadReg8(fd, 0x35);
z0 = 0xff - wiringPiI2CReadReg8(fd, 0x36);
z1 = 0xff - wiringPiI2CReadReg8(fd, 0x37);

printf(" x0 = %d ",x0);printf("x1 = %d \n",x1);
printf(" y0 = %d ",y0);printf("y1 = %d \n",y1);
printf(" z0 = %d ",z0);printf("z1 = %d \n",z1);

acc_xyz.x = (int)(x1 << 8) + (int)x0;
acc_xyz.y = (int)(y1 << 8) + (int)y0;
acc_xyz.z = (int)(z1 << 8) + (int)z0;

if(acc_xyz.x > 32767){
acc_xyz.x -= 65536;

}
if(acc_xyz.y > 32767){

acc_xyz.y -= 65536;
(continues on next page)

116 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

}
if(acc_xyz.z > 32767){

acc_xyz.z -= 65536;
}

return acc_xyz;
}

int main(void)
{

int fd;
struct acc_dat acc_xyz;

fd = wiringPiI2CSetup(DevAddr);

if(-1 == fd){
perror("I2C device setup error");

}

adxl345_init(fd);

while(1){
acc_xyz = adxl345_read_xyz(fd);
printf("x: %d y: %d z: %d\n", acc_xyz.x, acc_xyz.y, acc_xyz.z);
delay(1000);

}

return 0;
}

For Python Users:

Step 2: Change directory.

cd /home/pi/Sunfounder_SuperKit_Python_code_for_RaspberryPi

Step 3: Run.

sudo python3 14_ADXL345.py

Now, rotate the acceleration sensor, and you should see the values printed on the screen change.

Code

from I2C import I2C
from time import sleep
import RPi.GPIO as GPIO
from sys import version_info

if version_info.major == 3:
raw_input = input

class ADXL345(I2C):

ADXL345_ADDRESS = 0x53

(continues on next page)

6.14. Lesson 14 ADXL345 117

SunFounder super-kit-v2-for-pi

(continued from previous page)

ADXL345_REG_DEVID = 0x00 # Device ID
ADXL345_REG_DATAX0 = 0x32 # X-axis data 0 (6 bytes for X/Y/Z)
ADXL345_REG_POWER_CTL = 0x2D # Power-saving features control

ADXL345_DATARATE_0_10_HZ = 0x00
ADXL345_DATARATE_0_20_HZ = 0x01
ADXL345_DATARATE_0_39_HZ = 0x02
ADXL345_DATARATE_0_78_HZ = 0x03
ADXL345_DATARATE_1_56_HZ = 0x04
ADXL345_DATARATE_3_13_HZ = 0x05
ADXL345_DATARATE_6_25HZ = 0x06
ADXL345_DATARATE_12_5_HZ = 0x07
ADXL345_DATARATE_25_HZ = 0x08
ADXL345_DATARATE_50_HZ = 0x09
ADXL345_DATARATE_100_HZ = 0x0A # (default)
ADXL345_DATARATE_200_HZ = 0x0B
ADXL345_DATARATE_400_HZ = 0x0C
ADXL345_DATARATE_800_HZ = 0x0D
ADXL345_DATARATE_1600_HZ = 0x0E
ADXL345_DATARATE_3200_HZ = 0x0F

ADXL345_RANGE_2_G = 0x00 # +/- 2g (default)
ADXL345_RANGE_4_G = 0x01 # +/- 4g
ADXL345_RANGE_8_G = 0x02 # +/- 8g
ADXL345_RANGE_16_G = 0x03 # +/- 16g

def __init__(self, busnum=1, debug=False):
self.accel = I2C(self.ADXL345_ADDRESS, busnum, debug)
if self.accel.readU8(self.ADXL345_REG_DEVID) == 0xE5:

Enable the accelerometer
self.accel.write8(self.ADXL345_REG_POWER_CTL, 0x08)

def setRange(self, range):
Read the data format register to preserve bits. Update the data
rate, make sure that the FULL-RES bit is enabled for range scaling
format = ((self.accel.readU8(self.ADXL345_REG_DATA_FORMAT) & ~0x0F) |

range | 0x08)
Write the register back to the IC
seld.accel.write8(self.ADXL345_REG_DATA_FORMAT, format)

def getRange(self):
return self.accel.readU8(self.ADXL345_REG_DATA_FORMAT) & 0x03

def setDataRate(self, dataRate):
Note: The LOW_POWER bits are currently ignored,
we always keep the device in 'normal' mode
self.accel.write8(self.ADXL345_REG_BW_RATE, dataRate & 0x0F)

def getDataRate(self):
return self.accel.readU8(self.ADXL345_REG_BW_RATE) & 0x0F

Read the accelerometer
def read(self):

raw = self.accel.readList(self.ADXL345_REG_DATAX0, 6)
print (raw)
res = []

(continues on next page)

118 Chapter 6. Lessons

SunFounder super-kit-v2-for-pi

(continued from previous page)

for i in range(0, 6, 2):
g = raw[i] | (raw[i+1] << 8)
g = 65535 - g
if g > 32767:

g -= 65535
res.append(g)

return res

Simple example prints accelerometer data once per second:
def main():

accel = ADXL345()
accel.setRange(accel.ADXL345_RANGE_16_G)
while True:

x, y, z = accel.read()
print('X: %.2f, Y: %.2f, Z: %.2f'%(x, y, z))
sleep(1) # Output is fun to watch if this is commented out

def destroy():
exit()

def destroy():
exit()

if __name__ == '__main__':
try:

main()
except KeyboardInterrupt:

destroy()

6.14. Lesson 14 ADXL345 119

SunFounder super-kit-v2-for-pi

120 Chapter 6. Lessons

CHAPTER

SEVEN

APPENDIX

7.1 I2C Configuration

Step 1: Enable the I2C port of your Raspberry Pi (If you have enabled it, skip this; if you do not know whether you
have done that or not, please continue).

sudo raspi-config

3 Interfacing options

P5 I2C

121

SunFounder super-kit-v2-for-pi

<Yes>, then <Ok> -> <Finish>

Step 2: Check whether the i2c modules are loaded and active.

lsmod | grep i2c

Then the following codes will appear (the number may be different).

122 Chapter 7. Appendix

SunFounder super-kit-v2-for-pi

i2c_dev 6276 0
i2c_bcm2708 4121 0

Step 3: Install i2c-tools.

sudo apt-get install i2c-tools

Step 4: Check the address of the I2C device.

i2cdetect -y 1 # For Raspberry Pi 2 and higher version

i2cdetect -y 0 # For Raspberry Pi 1

pi@raspberrypi ~ $ i2cdetect -y 1
0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: -- -- -- -- -- -- -- -- 48 -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

If there is an I2C device connected, the address of the device will be displayed.

Step 5:

For C language users: Install libi2c-dev.

sudo apt-get install libi2c-dev

For Python users: Install smbus for I2C.

sudo pip3 install smbus2

7.2 SPI Configuration

Step 1: Enable the SPI port of your Raspberry Pi (If you have enabled it, skip this; if you do not know whether you
have done that or not, please continue).

sudo raspi-config

3 Interfacing options

7.2. SPI Configuration 123

SunFounder super-kit-v2-for-pi

P4 SPI

<YES>, then click <OK> and <Finish>.

124 Chapter 7. Appendix

SunFounder super-kit-v2-for-pi

Step 2: Check that the spi modules are loaded and active.

ls /dev/sp*

Then the following codes will appear (the number may be different).

/dev/spidev0.0 /dev/spidev0.1

Step 3: Install Python module SPI-Py.

git clone https://github.com/lthiery/SPI-Py.git
cd SPI-Py
sudo python3 setup.py install

Note: This step is for python users, if you use C language, please skip.

7.2. SPI Configuration 125

SunFounder super-kit-v2-for-pi

7.3 Remote Desktop

There are two ways to control the desktop of the Raspberry Pi remotely:

VNC and XRDP, you can use any of them.

7.3.1 VNC

You can use the function of remote desktop through VNC.

Enable VNC service

The VNC service has been installed in the system. By default, VNC is disabled. You need to enable it in config.

Step 1

Input the following command:

sudo raspi-config

Step 2

Choose 3 Interfacing Options by press the down arrow key on your keyboard, then press the Enter key.

126 Chapter 7. Appendix

SunFounder super-kit-v2-for-pi

Step 3

P3 VNC

Step 4

Select Yes -> OK -> Finish to exit the configuration.

Login to VNC

Step 1

You need to download and install the VNC Viewer on personal computer. After the installation is done, open it.

7.3. Remote Desktop 127

https://www.realvnc.com/en/connect/download/viewer/

SunFounder super-kit-v2-for-pi

Step 2

Then select “New connection”.

Step 3

Input IP address of Raspberry Pi and any Name.

128 Chapter 7. Appendix

SunFounder super-kit-v2-for-pi

Step 4

Double click the connection just created:

7.3. Remote Desktop 129

SunFounder super-kit-v2-for-pi

Step 5

Enter Username (pi) and Password (raspberry by default).

130 Chapter 7. Appendix

SunFounder super-kit-v2-for-pi

Step 6

Now you can see the desktop of the Raspberry Pi:

7.3. Remote Desktop 131

SunFounder super-kit-v2-for-pi

That’s the end of the VNC part.

7.3.2 XRDP

Another method of remote desktop is XRDP, it provides a graphical login to remote machines using RDP (Microsoft
Remote Desktop Protocol).

Install XRDP

Step 1

Login to Raspberry Pi by using SSH.

Step 2

Input the following instructions to install XRDP.

sudo apt-get update
sudo apt-get install xrdp

Step 3

Later, the installation starts.

Enter “Y”, press key “Enter” to confirm.

132 Chapter 7. Appendix

SunFounder super-kit-v2-for-pi

Step 4

Finished the installation, you should login to your Raspberry Pi by using Windows remote desktop applications.

Login to XRDP

Step 1

If you are a Windows user, you can use the Remote Desktop feature that comes with Windows. If you are a Mac user,
you can download and use Microsoft Remote Desktop from the APP Store, and there is not much difference between
the two. The next example is Windows remote desktop.

Step 2

Type in “mstsc” in Run (WIN+R) to open the Remote Desktop Connection, and input the IP address of Raspberry Pi,
then click on “Connect”.

Step 3

7.3. Remote Desktop 133

SunFounder super-kit-v2-for-pi

Then the xrdp login page pops out. Please type in your username and password. After that, please click “OK”. At the
first time you log in, your username is “pi” and the password is “raspberry”.

Step 4

Here, you successfully login to RPi by using the remote desktop.

134 Chapter 7. Appendix

SunFounder super-kit-v2-for-pi

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company.
You should only use it for personal study, investigation, enjoyment, or other non-commercial or nonprofit purposes,
under the related regulations and copyrights laws, without infringing the legal rights of the author and relevant right
holders. For any individual or organization that uses these for commercial profit without permission, the Company
reserves the right to take legal action.

7.3. Remote Desktop 135

SunFounder super-kit-v2-for-pi

136 Chapter 7. Appendix

CHAPTER

EIGHT

FAQ

8.1 C code is not working?

• Check your wiring for problems.

• Check if the code is reporting errors, if so, refer to: WiringPi.

• Has the code been compiled before running.

• If all the above 3 conditions are OK, it may be that your wiringPi version (2.50) is not compatible with your
Raspberry Pi 4B and above, refer to WiringPi to manually upgrade it to version 2.52.

137

SunFounder super-kit-v2-for-pi

138 Chapter 8. FAQ

CHAPTER

NINE

THANK YOU

Thanks to the evaluators who evaluated our products, the veterans who provided suggestions for the tutorial, and the
users who have been following and supporting us. Your valuable suggestions to us are our motivation to provide better
products!

Particular Thanks

• Len Davisson

• Kalen Daniel

• Juan Delacosta

Now, could you spare a little time to fill out this questionnaire?

Note: After submitting the questionnaire, please go back to the top to view the results.

139

SunFounder super-kit-v2-for-pi

140 Chapter 9. Thank You

CHAPTER

TEN

COPYRIGHT NOTICE

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company.
You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes,
under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right
holders. For any individual or organization that uses these for commercial profit without permission, the Company
reserves the right to take legal action.

141

	Components List
	Preparation
	What Do We Need?
	Installing the OS
	Set up Your Raspberry Pi

	Libraries
	RPi.GPIO
	WiringPi

	Raspberry Pi GPIO Extension Board
	Download the Code
	Lessons
	Lesson 1 Blinking LED
	Lesson 2 Controlling an LED by a Button
	Lesson 3 Flowing LED Lights
	Lesson 4 Breathing LED
	Lesson 5 RGB LED
	Lesson 6 Buzzer
	Lesson 7 How to Drive a DC Motor
	Lesson 8 Rotary Encoder
	Lesson 9 555 Timer
	Lesson 10 Driving LEDs by 74HC595
	Lesson 11 Driving 7-Segment Display by 74HC595
	Lesson 12 Driving Dot-Matrix by 74HC595
	Lesson 13 LCD1602
	Lesson 14 ADXL345

	Appendix
	I2C Configuration
	SPI Configuration
	Remote Desktop

	FAQ
	C code is not working?

	Thank You
	Copyright Notice

