
RGB Matrix Module for Arduino
Release 1.0

SunFounder

Aug 02, 2022

CONTENTS

1 Features 3

2 Assemble the Shield 5

3 Preparation 7
3.1 Tools needed . 7
3.2 Download the Code . 8
3.3 Add the Library . 8

4 Projects 11
4.1 Hello Matrix . 11
4.2 Dazzling Light . 15
4.3 Moving Eye . 17
4.4 Christmas Tree . 19
4.5 Custom Shape . 21
4.6 Custom Dynamic Shape . 23

5 Copyright Notice 29

i

ii

RGB Matrix Module for Arduino, Release 1.0

Welcome to use SunFounder RGB Matrix module. You can find the information you need for use here.

This is a module with 8 × 8 RGB LEDs on board. It also has a SH1.0-4P I2C control interface, which is convenient to
connect to other I2C devices or other single-chip microcomputers.

Here is the Email: cs@sunfounder.com.

CONTENTS 1

mailto:cs@sunfounder.com

RGB Matrix Module for Arduino, Release 1.0

2 CONTENTS

CHAPTER

ONE

FEATURES

• Working voltage: DC 3.3V

• Lamp bead: FM-N3535RGBW-SH

• Driver: SLED 1734X LED driver

• Communication method: I2C

• Color depth: 24 bit (R/G/B each 8 bit color, 256 x 256 x 256=16777216 colors can be combined)

• Resolution: 8*8=64 DOTS

• Pixel pitch: 4.7mm

• matrix size: 36.5mm*36.5mm

Documentation

• PCB

• Schematic

• Datasheet

3

RGB Matrix Module for Arduino, Release 1.0

4 Chapter 1. Features

CHAPTER

TWO

ASSEMBLE THE SHIELD

5

RGB Matrix Module for Arduino, Release 1.0

6 Chapter 2. Assemble the Shield

CHAPTER

THREE

PREPARATION

3.1 Tools needed

Please prepare the following tools:

• Arduino UNO

• USB Cable Type A/B

• Personal Computer

The APP you have to prepare:

• Arduino IDE

Here are tutorials for installing Arduino on different systems.

• Windows OS.

• Mac OS.

• Linux.

7

https://www.arduino.cc/en/software
https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/macOS
https://www.arduino.cc/en/Guide/Linux

RGB Matrix Module for Arduino, Release 1.0

3.2 Download the Code

Go to github-rgb_matrix download the code.

3.3 Add the Library

In order to use the RGB Matrix Shield, you need to load the library as follows.

In the Arduino IDE, navigate to Sketch > Include Library > Add .ZIP Library.

Find sunfounder_rgbMatrix.zip under the path rgb_matrix/arduino, then click Open to add it.

8 Chapter 3. Preparation

https://github.com/sunfounder/rgb_matrix

RGB Matrix Module for Arduino, Release 1.0

3.3. Add the Library 9

RGB Matrix Module for Arduino, Release 1.0

10 Chapter 3. Preparation

CHAPTER

FOUR

PROJECTS

This page show you the examples provided with RGB Matrix.

Note: Before downloading the code, make sure you have Add the Library.

4.1 Hello Matrix

Introduce

In this project, you will learn how to make RGB Matix HAT display different patterns and characters in different
colors.

11

RGB Matrix Module for Arduino, Release 1.0

Code

When the program runs, you will see a dot, a line, a rectangle, a love pattern, the letter A, and the text Hi, SunFouder
appear on the RGB Matrix Shield in turn.

How it works?

RGBMatrixInit();

This function is used to initialize the RGB Matrix Shield. To make the RGB Matrix Shield work, you need to call this
function first.

byte dot[2]={3,1};
byte line[4]={0,3,7,3};
byte rectangle[4]={3,5,5,7};
byte heart[]={0x00,0x66,0xff,0xff,0x7e,0x3c,0x18,0x00};

• dot[2]={3,1}: Define an array to store the coordinates of the point (3,1).

• line[4]={0,3,7,3}: Define an array to store the start (0,3) and end (7,3) coordinates of the line.

• rectangle[4]={3,5,5,7}: Define an array to store the two diagonal coordinates (3, 5) and (5, 7) of the
rectangle.

• heart[]: This is a hexadecimal array that stores the heart pattern, and each hex digit stores the LED lit or off
state for each row. For example, the second element in heart[], 0x66 (0110 0110), 0 means off and 1 means
on, so you can see that the 1st, 2nd, 5th, and 6th are lit and the other LEDs are off.

12 Chapter 4. Projects

RGB Matrix Module for Arduino, Release 1.0

The x,y coordinate directions of the dot matrix are as follows, with the first RGB LED in the upper left corner as the
coordinate origin.

draw_point(dot, 255, 255, 0);
image();
delay(3000);
draw_line(line, 255, 0, 255);
image();
delay(3000);
draw_rectangle(rectangle, 0, 255, 255);
image();
delay(3000);
ShowHex(heart, 255, 0, 0);
delay(3000);
DispShowChar('A', 0, 255, 0);
delay(3000);
flow_text("Hi, SunFounder", 0, 0, 255);
delay(3000);

We have packaged six basic functions in the RGB Matrix Shield library.

• draw_point(dot,255,255,0)It is used to draw a yellow point on the RGB Matrix Shield. It has four
parameters. dot is an array to store the coordinates of the points. 255, 255, 0 represent to fill this point with yel-
low. Reference: https://www.rapidtables.com/web/color/RGB_Color.html for more color value combinations.

• draw_line(line,255,0,255): Draw a magenta line.

• draw_rectangle(rectangle,0,255,255): Draw a cyan rectangle.

4.1. Hello Matrix 13

https://www.rapidtables.com/web/color/RGB_Color.html

RGB Matrix Module for Arduino, Release 1.0

Note: draw_point(), draw_line(), draw_rectangle() just confirm the coordinates of the LEDs that
need to be lit, and cooperate with the image() function to actually light them.

• ShowHex(heart,255,0,0): Show a red heart on the RGB Matrix Shield.

ShowHex converts hexadecimal numbers into binary numbers, then judges the binary numbers, and when one of them
is equal to 1, it will light up the corresponding LED, as shown below.

Reference: https://gurgleapps.com/tools/matrix#tp-color can get more such hex arrays.

• DispShowChar('A',0,255,0): Let the RGB Matrix Shield display a green character A.

• flow_text("Hi!Sunfounder",0,0,255): Let the RGB matrix shield display a string of blue text “Hi,
SunFounder”.

Note: Characters are represented by single quotation marks, and strings are represented by double quotation marks.

14 Chapter 4. Projects

https://gurgleapps.com/tools/matrix#tp-color

RGB Matrix Module for Arduino, Release 1.0

4.2 Dazzling Light

In the previous project, we learned to use some simple functions to make RGB Matrix Shield work. So here, we will
use the draw_line() function with different colors to make RGB Matrix HAT make more cool effects.

Code

We have written two light blinking modes, dazzling_light() and dazzling_light()2 for reference. When
the program is running, you will first see the RGB matrix shield flowing on displaying different colors. After a while,
you will notice that the flow of light becomes more smooth.

How it works?

for (int i=0; i<50; i++){
dazzling_light();

}
for (int i=0; i<5; i++){
dazzling_light2();

}

The main logic is to call the dazzling_light() function 50 times and then call the dazzling_light2()
function 5 times.

byte line[8][4] = {{0, 0, 0, 7},
{1, 0, 1, 7},

(continues on next page)

4.2. Dazzling Light 15

RGB Matrix Module for Arduino, Release 1.0

(continued from previous page)

{2, 0, 2, 7},
{3, 0, 3, 7},
{4, 0, 4, 7},
{5, 0, 5, 7},
{6, 0, 6, 7},
{7, 0, 7, 7}};

Define a two-dimensional array line[8][4] to store the starting and ending coordinates of the 8 vertical lines.

byte color[7][3] = {{255,0,0},
{255,102,0},
{255,255,0},
{0,255,0},
{0,128,128},
{0,0,255},
{128,0,128}};

Define a two-dimensional array color[7][3] to store the 7 colors, red, orange, yellow, green, blue, blue and purple.

int i = 0;
void dazzling_light(){
for (int j=0; j<8; j++){

draw_line(line[j],color[i][0],color[i][1],color[i][2]);
i++;
if (i == 6){
i = 0;

}
}

image();
}

The dazzling_light() function is to write different colors (red, orange, yellow, green, blue, blue and purple) to
the 8 vertical lines, where the first and last lines are red.

The for loop traverses the array line[] and draws eight vertical lines on the RGB matrix shield with
draw_line(). The colors are chosen from the array color[7][3], for example, color[0] represents the
first element {255, 0, 0}, while color[0][1] represents 255.

void dazzling_light2(){
for (long firstPixelHue = 0; firstPixelHue < 65536; firstPixelHue += 500) {
for (int j=0; j<8; j++){

long pixelHue = firstPixelHue + (j * 65536L / 16);
draw_line(line[j], gamma32(ColorHSV(pixelHue)));

}
image();

}
}

When you call the dazzling_light2() function, you will notice a softer flow of colors. This is because we have
split the colors into more colors, making the transition between colors more smooth.

Two for loops are defined in dazzling_light2(). The inner loop is to fill the eight vertical lines with eight
colors, and the outer loop is to add a value to each color to switch to the next color to achieve the effect of color flow.

Here ColorHSV() and gamma32() are functions packaged in the library. The former is used to handle decimal
numbers, which is equivalent to mapping all the colors of the RGB matrix shield to the range 0 to 65536. gamma32()
is used for transcoding, converting the return value of ColorHSV() into an acceptable argument to draw_line().

16 Chapter 4. Projects

RGB Matrix Module for Arduino, Release 1.0

4.3 Moving Eye

Introduce

In this project, we will use the draw_rectangle() and draw_point() functions to draw an eye pattern and
achieve the effect of moving the eye around.

Code

When the program is running, you will see an eye moving around on the RGB Matrix Shield.

How it works?

byte eye[] = {3,3,4,4};
byte rectangle_arry[] = {0,0,7,7};
byte point_arry[][2] = {{0,0},{1,0},{0,1},{6,0},{7,0},{7,1},

{0,6},{0,7},{1,7},{7,6},{7,7},{6,7}};

The array eye[] represents the coordinates of the pupil, the array rectangle_arry[] represents the entire RGB
Matrix Shiled, and the array point_arry[][2] to represent twelve points in the corners, by means of these 3 array
to outline the shape of an eye.

void setup() {
// put your setup code here, to run once:
RGBMatrixInit();
draw_rectangle(rectangle_arry,251,248,40);

(continues on next page)

4.3. Moving Eye 17

RGB Matrix Module for Arduino, Release 1.0

(continued from previous page)

for (int i=0; i<sizeof(point_arry); i++){
draw_point(point_arry[i],0,0,0);

}
draw_rectangle(eye,0,0,0);
image();

}

In the setup() function, the entire RGB matrix is lit in yellow, and then the four corner and pupil position LEDs are
extinguished so that you can see an eye.

void loop() {
// put your main code here, to run repeatedly:
up(eye,3);
delay(100);
down(eye,6);
delay(100);
up(eye,6);
delay(100);
down(eye,6);
delay(100);
up(eye,3);
delay(1000);
right_down(eye,2);
delay(100);
up(eye,4);
delay(100);
left(eye,4);
delay(100);
down(eye,4);
delay(100);
right(eye,4);
delay(100);
left_up(eye,2);
delay(1000);

}

The main loop is to make the eyeball keep moving up and down, then turn one cycle, and finally return to the original
position.

We call some functions to move the eyeball, for example up(eye,3) is to move the eyeball up three squares, now
look at how this function is implemented.

void up(byte eye[4],int count=1){
for (int i=0; i<count; i++){
draw_rectangle(eye,251,248,40);
eye[1] -= 1;
eye[3] -= 1;
draw_rectangle(eye,0,0,0);
for (int i=0; i<sizeof(point_arry); i++){

draw_point(point_arry[i],0,0,0);
}

image();
delay(30);

}
}

The up() function has 2 parameters eye[4] and count, the internal logic is to move the rectangle eye[4] up

18 Chapter 4. Projects

RGB Matrix Module for Arduino, Release 1.0

count squares. (default is 1).

• Define a for() loop with the number of loops determined by count.

• Set the color of the rectangle eye to yellow.

• byte eye[] = {3,3,4,4}; are the 2 diagonal coordinates (3,3) and (4,4), eye[1] and eye[3] are
subtracted by one, meaning that the y-values of the 2 diagonal coordinates are subtracted by one.

• Then the modified eye = [3,2,4,3] color is set to (0,0,0) by the function draw_rectangle() and
displayed on the dot matrix by the function display().

• The second for() loop is to keep the 12 points on the 4 corners off all the time.

• After one for loop in this way, the pupil is moved up one square.

4.4 Christmas Tree

In this project, we will use the draw_point() function to make a colorful Christmas tree.

Code

When the program runs, you will see a shiny Christmas tree appear on the RGB Matrix Shield.

How it works?

4.4. Christmas Tree 19

RGB Matrix Module for Arduino, Release 1.0

byte green[][2] = {{2,1},{3,1},{5,1},
{1,2},{2,2},{4,2},{5,2},{6,2},
{1,3},{2,3},{3,3},{4,3},{6,3},
{2,4},{4,4},{5,4},
{1,5},{3,5},{5,5},{6,5},
{1,6},{2,6},{5,6},{6,6}};

byte flash[][2] = {{4,1},{3,2},{5,3},{3,4},{2,5},{4,5}};
byte red[][2] = {{0,3},{7,3},{0,6},{7,6}};
byte yellow[][2] = {{3,0},{4,0},{3,6},{4,6},{3,7},{4,7}};
byte color[7][3] = {{255,0,0},

{255,102,0},
{255,255,0},
{0,255,0},
{0,128,128},
{0,0,255},
{128,0,128}};

The Christmas tree is divided into four parts, the red part, the yellow part, the green part, and the blinking part, so we
define four arrays to store these coordinates. The array color[7][3] stores the 7 colors from which the blinking
color will be selected.

void setup() {
// put your setup code here, to run once:
RGBMatrixInit();
tree();

}

void loop() {
// put your main code here, to run repeatedly:
dot();

}

Call the tree() function in setup() to draw the red, yellow and green parts of the Christmas tree. Call the dot()
function in loop() to make the Christmas tree blink.

void tree() {
int lenTotal_green = sizeof(green) / sizeof(byte);
int lenLow_green = sizeof(green[0]) / sizeof(byte);
int lenHigh_green = lenTotal_green / lenLow_green;
for (int i = 0; i < lenHigh_green; i++) {

draw_point(green[i], 0, 255, 0);
}
...

The tree() function is used to display the red, yellow and green parts of the Christmas tree on the RGB matrix
shield using the draw_point() function.

sizeof() is an operator that returns the number of bytes a type occupies in memory. * Divide the bytes occupied
by the entire two-dimensional array by the bytes occupied by its data type to get the total number of elements. *
Divide the bytes occupied by the first one-dimensional array by the bytes occupied by its data type to get the number
of elements of each one-dimensional array. * Finally, divide the total number of elements by the number of elements
in the 1D array to get the number of 1D arrays, i.e. the number of coordinate points.

For example, lenHigh_green is calculated as 24, which is the number of elements in the green[][2] array. Then a for
loop is used to traverse green[][2] to draw the dots and fill those dots with green.

The red and yellow parts are also implemented in the same way.

20 Chapter 4. Projects

RGB Matrix Module for Arduino, Release 1.0

int i = 0
void dot(){

int lenTotal_coor = sizeof(coor) / sizeof(byte);
int lenLow_coor = sizeof(coor[0]) / sizeof(byte);
int lenHigh_coor = lenTotal_coor / lenLow_coor;
for (int j=0; j<lenHigh_coor; j++){
draw_point(coor[j],color[i][0],color[i][1],color[i][2]);
i++;
if (i == 7){

i = 0;
}

}
image();
delay(200);

}

The dot() function fills the six points in flash[][2] with seven different colors in order, the colors are cho-
sen from the array color[7][3], for example {color[0][0],color[0][1],color[0][2]} means red
{255, 0, 0}. The dot() function can be called in a loop to achieve the blinking effect.

4.5 Custom Shape

To draw interesting patterns on RGB Matrix Shield, we define ShowHex() function to facilitate drawing custom
patterns.

First you should get the hexadecimal array of the pattern. It is recommended to use the LED Matrix tool, which can
be used to design fonts or images for the RGB matrix, and you can also adjust it based on the original pattern.

You can select the corresponding character or pattern in the Sprites page, then set a specific color in the Colour page,
and finally get the HEX array of that pattern or character from the Code page.

For example, we get two HEX arrays of Pac-Man.

4.5. Custom Shape 21

https://gurgleapps.com/tools/matrix#tp-color

RGB Matrix Module for Arduino, Release 1.0

22 Chapter 4. Projects

RGB Matrix Module for Arduino, Release 1.0

Code

When the program runs, you will see two Pac-Man pictures are constantly switching.

How it works?

void loop() {
// put your main code here, to run repeatedly:
ShowHex(pacman,255,255,0);
delay(1000);
ShowHex(pacman2,255,255,0,1);
delay(1000);
}

The main logic is to draw the pattern corresponding to pacman[], after a delay of 1s, move one square to the right to
draw the pattern corresponding to pacman2[], cyclically. The fifth parameter in ShowHex() is used to determine
the position of the pattern in the RGB Matrix Shield. For example, 0 is in the middle, and 1 is one square to the right.

4.6 Custom Dynamic Shape

Now, based on the previous project, make several patterns display more consistently.

4.6. Custom Dynamic Shape 23

RGB Matrix Module for Arduino, Release 1.0

Code

When the program runs, Pac-Man will move to the right, then it will stop and turn its head to smile at you, and finally
continue to move to the right.

How it works?

byte pacman[]={0x3c,0x7e,0xdc,0xf8,0xf8,0xfc,0x7e,0x3c};
byte pacman2[]={0x3c,0x7e,0xdf,0xff,0xf8,0xff,0x7e,0x3c};
byte rotate[]={0x3c,0x7e,0xde,0xff,0xc0,0xff,0x7e,0x3c};
byte normal[]={0x3c,0x7e,0xbd,0xff,0x81,0xff,0x7e,0x3c};
byte smile[]={0x3c,0x7e,0xbd,0xff,0x81,0xe7,0x7e,0x3c};
byte smile2[]={0x3c,0x7e,0xbd,0xff,0x81,0xc3,0x66,0x3c};

Define six hexadecimal arrays to store the patterns of the actions Pac-Man will do.

void moving_pacman(){
for(int i=-7; i<2; i++){
ShowHex(pacman,255,255,0,i);
delay(200);
i++;
ShowHex(pacman2,255,255,0,i);
delay(200);

}
ShowHex(pacman2,255,255,0,1);
delay(800);

}

The moving_pacman() function is used to display the open-mouth state (pacman[]) and the closed state
(pacman2[]) of Pac-man alternately and move from the left side to the right side, finally displaying the closed
state (pacman2[]).

The fourth parameter of ShowHex() can determine the position of the pattern on the RGB Matrix Shield. So use a
for loop to make Pac-Man appear in the position i=-7 to i=1 to achieve the effect of moving.

void smile_man(){
ShowHex(normal,255,255,0);

(continues on next page)

24 Chapter 4. Projects

RGB Matrix Module for Arduino, Release 1.0

(continued from previous page)

delay(100);
for(int i=0; i<4; i++){
ShowHex(smile,255,255,0);
delay(200);
ShowHex(smile2,255,255,0);
delay(200);

}
ShowHex(smile,255,255,0);
delay(100);
ShowHex(normal,255,255,0);
delay(200);

}

Define a smile_man() function to realize the actions of Pac-Man to laugh.

void moving_pacman2(){
for(int i=1; i<8; i++){
ShowHex(pacman,255,255,0,i);
delay(100);
i++;
ShowHex(pacman2,255,255,0,i);
delay(100);

}
}

The moving_pacman2() function is used to show the actions of continuing to move after a laugh.

Run the sketch

1. Open the one sketch under the path rgb_matrix\arduino.

2. Select the Board and Port.

4.6. Custom Dynamic Shape 25

RGB Matrix Module for Arduino, Release 1.0

3. Compile.

4. Upload.

26 Chapter 4. Projects

RGB Matrix Module for Arduino, Release 1.0

4.6. Custom Dynamic Shape 27

RGB Matrix Module for Arduino, Release 1.0

28 Chapter 4. Projects

CHAPTER

FIVE

COPYRIGHT NOTICE

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company.
You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes,
under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right
holders. For any individual or organization that uses these for commercial profit without permission, the Company
reserves the right to take legal action.

29

	Features
	Assemble the Shield
	Preparation
	Tools needed
	Download the Code
	Add the Library

	Projects
	Hello Matrix
	Dazzling Light
	Moving Eye
	Christmas Tree
	Custom Shape
	Custom Dynamic Shape

	Copyright Notice

