

SunFounder Raspberry Pi Robot - PiDog

[image: _images/pidog.jpg]
Thank you for choosing our PiDog.

Note

This document is available in the following languages.

	Deutsch Online-Kurs

	日本語オンライン教材

	English Online-tutorials

Please click on the respective links to access the document in your preferred language.

PiDog is a Raspberry Pi pet robot with aluminum alloy structure. It can act as a mechanical pet, show cuteness to you, and interact with you.

It is equipped with a camera module, which can perform color recognition, face detection and other projects;
12 metal gear servos support it to walk, stand, sit, shake its head, and pose in various poses;
The ultrasonic module on the head enables it to quickly detect obstacles ahead;
Special touch sensors allow it to respond to your touch;
The Light Board on the chest can emit colorful light effects, and with the speaker equipped with the robot HAT, PiDog can express emotions such as happiness and excitement.
In addition, PiDog is also equipped with a sound direction sensor and a 6-DOF IMU module to realize more complex and interesting usage scenarios.

If you have any questions, please send an email to service@sunfounder.com and we will respond as soon as possible.

Content

	About This Kit

	Assemble Videos

	Play with Python
	1. Quick Guide on Python

	2. Calibrate the PiDog

	3. Fun Python Projects

	4. Easy Coding

	Hardware
	Robot HAT

	Camera Module

	Sound Direction Sensor

	6-DOF IMU

	Dual Touch Sensor

	11-channel Light Board

	Ultrasonic Module

	18650 Battery

	Appendix
	Filezilla Software

	Get the IP address

	Install OpenSSH via Powershell

	PuTTY

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes, under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.

Assemble Videos

Before assembling the PiDog, please first verify that all parts and components have been included. If there are any missing or damaged components, please contact SunFounder immediately at service@sunfounder.com to resolve the issue as soon as possible.

Please follow the steps on the following PDF for assembly instructions:

	Component List and Assembly Instructions [https://github.com/sunfounder/sf-pdf/raw/master/assembly_file/z0111v12-a0000966-pidog.pdf].

Mount Raspberry Pi Zero W on PiDog

If your mainboard is a Raspberry Pi Zero W, here are the steps to install it on the PiDog.

 Play with Python

Play with Python

If you want to program in python,
then you will need to learn some basic Python programming skills and basic knowledge of Raspberry Pi,
please configure the Raspberry Pi first according to 1. Quick Guide on Python.

	1. Quick Guide on Python
	1. What Do We Need?

	2. Installing the OS

	3. Power Supply for Raspberry Pi (Important)

	4. Setting Up Your Raspberry Pi

	5. Install All the Modules(Important)

	6. Check I2C and SPI Interface

	7. Servo Adjust(Importtant)

As soon as the assembly is completed, you need to calibrate the PiDog to prevent it from damaging the servo if there is a slight deviation in the assembly.

	2. Calibrate the PiDog

You can also have PiDog achieve the following project effects.

	3. Fun Python Projects
	1. Wake Up

	2. Function Demonstration

	3. Patrol

	4. Response

	5. Rest

	6. Be Picked Up

	7. Face Track

	8. Push Up

	9. Howling

	10. Balance

	11. Play PiDog with Keyboard

	12. Play PiDog with APP
	Control Pidog with app

	Autostart on Boot

	APP Program Configuration

	13. Ball Track

Then you may want to master its basic functions, or write some fun examples.

If you are familiar with Python programming, you can find examples of PiDog’s basic functions in the ~/pidog/basic_examples directory.

If you prefer, you can master them in a step-by-step fashion using the lessons provided below.

	4. Easy Coding
	1. PiDog Initialization

	2. Leg Move

	3. Head Move

	4. Tail Move

	5. Stop All Actions

	6. Do Preset Action

	7. PiDog Speak

	8. Read Distance

	9. PiDog RGB Strip

	10. IMU Read

	11. Sound Direction Detect

	12. Pat the PiDog’s Head

	13. More

 1. Quick Guide on Python

1. Quick Guide on Python

This section is to teach you how to install Raspberry Pi OS, configure wifi to Raspberry Pi, remote access to Raspberry Pi to run the corresponding code.

If you are familiar with Raspberry Pi and can open the command line successfully, then you can skip the first 3 parts and then complete the last part.

	1. What Do We Need?

	2. Installing the OS

	3. Power Supply for Raspberry Pi (Important)

	4. Setting Up Your Raspberry Pi

	5. Install All the Modules(Important)

	6. Check I2C and SPI Interface

	7. Servo Adjust(Importtant)

Video

In our assembly video from 3:40 to 7:23, there is also a detailed tutorial for this chapter. You can follow the video instructions directly.

 1. What Do We Need?

1. What Do We Need?

Required Components

Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs
into a computer monitor or TV, and uses a standard keyboard and mouse.
It is a capable little device that enables people of all ages to explore
computing, and to learn how to program in languages like Scratch and
Python.

[image: ../../_images/image10.jpeg]
Power Adapter

To connect to a power socket, the Raspberry Pi has a micro USB port (the
same found on many mobile phones). You will need a power supply which
provides at least 2.5 amps.

Micro SD Card

Your Raspberry Pi needs an Micro SD card to store all its files and the
Raspberry Pi OS. You will need a micro SD card with a capacity of at
least 8 GB

Optional Components

Screen

To view the desktop environment of Raspberry Pi, you need to use the
screen that can be a TV screen or a computer monitor. If the screen has
built-in speakers, the Pi plays sounds via them.

Mouse & Keyboard

When you use a screen , a USB keyboard and a USB mouse are also needed.

HDMI

The Raspberry Pi has a HDMI output port that is compatible with the HDMI
ports of most modern TV and computer monitors. If your screen has only
DVI or VGA ports, you will need to use the appropriate conversion line.

Case

You can put the Raspberry Pi in a case; by this means, you can protect
your device.

Sound or Earphone

The Raspberry Pi is equipped with an audio port about 3.5 mm that can be
used when your screen has no built-in speakers or when there is no screen operation.

 2. Installing the OS

2. Installing the OS

Required Components

	Raspberry Pi 5B

	A Personal Computer

	A Micro SD card

Installation Steps

	Visit the Raspberry Pi software download page at Raspberry Pi Imager [https://www.raspberrypi.org/software/]. Choose the Imager version compatible with your operating system. Download and open the file to initiate installation.

[image: ../../_images/os_install_imager.png]

	A security prompt may appear during installation, depending on your operating system. For example, Windows might display a warning message. In such cases, select More info and then Run anyway. Follow the on-screen guidance to complete the installation of the Raspberry Pi Imager.

[image: ../../_images/os_info.png]

	Insert your SD card into your computer or laptop’s SD card slot.

	Launch the Raspberry Pi Imager application by clicking its icon or typing rpi-imager in your terminal.

[image: ../../_images/os_open_imager.png]

	Click CHOOSE DEVICE and select your specific Raspberry Pi model from the list (Note: Raspberry Pi 5 is not applicable).

[image: ../../_images/os_choose_device.png]

	Select CHOOSE OS and then choose Raspberry Pi OS (Legacy).

Warning

	Please do not install the Bookworm version as the speaker will not work.

	You need to install the Raspberry Pi OS (Legacy) version - Debian Bullseye.

[image: ../../_images/os_choose_os.png]

	Click Choose Storage and select the appropriate storage device for the installation.

Note

Ensure you select the correct storage device. To avoid confusion, disconnect any additional storage devices if multiple ones are connected.

[image: ../../_images/os_choose_sd.png]

	Click NEXT and then EDIT SETTINGS to tailor your OS settings. If you have a monitor for your Raspberry Pi, you can skip the next steps and click ‘Yes’ to begin the installation. Adjust other settings later on the monitor.

[image: ../../_images/os_enter_setting.png]

	Define a hostname for your Raspberry Pi.

Note

The hostname is your Raspberry Pi’s network identifier. You can access your Pi using <hostname>.local or <hostname>.lan.

[image: ../../_images/os_set_hostname.png]

	Create a Username and Password for the Raspberry Pi’s administrator account.

Note

Establishing a unique username and password is vital for securing your Raspberry Pi, which lacks a default password.

[image: ../../_images/os_set_username.png]

	Configure the wireless LAN by providing your network’s SSID and Password.

Note

Set the Wireless LAN country to the two-letter ISO/IEC alpha2 code [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements] corresponding to your location.

[image: ../../_images/os_set_wifi.png]

	Click SERVICES and activate SSH for secure, password-based remote access. Remember to save your settings.

[image: ../../_images/os_enable_ssh.png]

	Confirm your selected settings by clicking Yes.

[image: ../../_images/os_click_yes.png]

	If the SD card contains existing data, ensure you back it up to prevent data loss. Proceed by clicking Yes if no backup is needed.

[image: ../../_images/os_continue.png]

	The OS installation process will commence on the SD card. A confirmation dialog will appear upon completion.

[image: ../../_images/os_finish.png]

	Insert the SD card set up with Raspberry Pi OS into the microSD card slot located on the underside of the Raspberry Pi.

[image: ../../_images/insert_sd_card.png]

 3. Power Supply for Raspberry Pi (Important)

3. Power Supply for Raspberry Pi (Important)

Charge

Insert the battery cable. Next, insert the USB-C cable to charge the battery.
You will need to provide your own charger; we recommend a 5V 3A charger, or your commonly used smartphone charger will suffice.

[image: ../../_images/BTR_IMG_1096.png]

Note

Connect an external Type-C power source to the Type-C port on the robot hat; it will immediately start charging the battery, and a red indicator light will illuminate.When the battery is fully charged, the red light will automatically turn off.

Power ON

Turn on the power switch. The Power indicator light and the battery level indicator light will illuminate.

[image: ../../_images/BTR_IMG_1097.png]
Wait for a few seconds, and you will hear a slight beep, indicating that the Raspberry Pi has successfully booted.

Note

If both battery level indicator lights are off, please charge the battery.
When you need extended programming or debugging sessions, you can keep the Raspberry Pi operational by inserting the USB-C cable to charge the battery simultaneously.

18650 Battery

[image: ../../_images/3pin_battery.jpg]

	VCC: Battery positive terminal, here there are two sets of VCC and GND is to increase the current and reduce the resistance.

	Middle: To balance the voltage between the two cells and thus protect the battery.

	GND: Negative battery terminal.

This is a custom battery pack made by SunFounder consisting of two 18650 batteries with a capacity of 2000mAh. The connector is XH2.54 3P, which can be charged directly after being inserted into the shield.

Features

	Battery charge: 5V/2A

	Battery output: 5V/5A

	Battery capacity: 3.7V 2000mAh x 2

	Battery life: 90min

	Battery charge time: 130min

	Connector:XH2.54 3P

 4. Setting Up Your Raspberry Pi

4. Setting Up Your Raspberry Pi

Setting Up with a Screen

Having a screen simplifies the process of working with your Raspberry Pi.

Required Components

	Raspberry Pi 5 Model B

	Power Adapter

	Micro SD card

	Screen Power Adapter

	HDMI cable

	Screen

	Mouse

	Keyboard

Steps:

	Connect the Mouse and Keyboard to the Raspberry Pi.

	Use the HDMI cable to connect the screen to the Raspberry Pi’s HDMI port. Ensure the screen is plugged into a power source and turned on.

	Power the Raspberry Pi using the power adapter. The Raspberry Pi OS desktop should appear on the screen after a few seconds.

[image: ../../_images/bullseye_desktop.png]

Setting Up Without a Screen

If you don’t have a monitor, remote login is a viable option.

Required Components

	Raspberry Pi 5 Model B

	Power Adapter

	Micro SD card

Using SSH, you can access the Raspberry Pi’s Bash shell, which is the default Linux shell. Bash offers a command-line interface for performing various tasks.

For those preferring a graphical user interface (GUI), the remote desktop feature is a convenient alternative for managing files and operations.

For detailed setup tutorials based on your operating system, refer to the following sections:

	For Mac OS X Users

	For Windows Users

	For Linux/Unix Users

	Remote Desktop Access for Raspberry Pi

 For Mac OS X Users

For Mac OS X Users

For Mac OS X users, SSH (Secure Shell) offers a secure and convenient method to remotely access and control a Raspberry Pi. This is particularly handy for working with the Raspberry Pi remotely or when it’s not connected to a monitor. Using the Terminal application on a Mac, you can establish this secure connection. The process involves an SSH command incorporating the Raspberry Pi’s username and hostname. During the initial connection, a security prompt will ask for confirmation of the Raspberry Pi’s authenticity.

	To connect to the Raspberry Pi, type the following SSH command:

ssh pi@raspberrypi.local

[image: ../../_images/mac_vnc14.png]

	A security message will appear during your first login. Respond with yes to proceed.

The authenticity of host 'raspberrypi.local (2400:2410:2101:5800:635b:f0b6:2662:8cba)' can't be established.
ED25519 key fingerprint is SHA256:oo7x3ZSgAo032wD1tE8eW0fFM/kmewIvRwkBys6XRwg.
Are you sure you want to continue connecting (yes/no/[fingerprint])?

	Input the password for the Raspberry Pi. Be aware that the password won’t display on the screen as you type, which is a standard security feature.

pi@raspberrypi.local's password:
Linux raspberrypi 5.15.61-v8+ #1579 SMP PREEMPT Fri Aug 26 11:16:44 BST 2022 aarch64

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Thu Sep 22 12:18:22 2022
pi@raspberrypi:~ $

 For Windows Users

For Windows Users

For Windows 10 or higher users, remote login to a Raspberry Pi can be achieved through the following steps:

	Search for powershell in your Windows search box. Right-click on Windows PowerShell and select Run as administrator.

[image: ../../_images/powershell_ssh1.png]

	Determine your Raspberry Pi’s IP address by typing ping -4 <hostname>.local in PowerShell.

ping -4 raspberrypi.local

[image: ../../_images/sp221221_145225.png]
The Raspberry Pi’s IP address will be displayed once it’s connected to the network.

	If the terminal displays Ping request could not find host pi.local. Please check the name and try again., verify the hostname you’ve entered is correct.

	If the IP address still isn’t retrievable, check your network or WiFi settings on the Raspberry Pi.

	Once the IP address is confirmed, log in to your Raspberry Pi using ssh <username>@<hostname>.local or ssh <username>@<IP address>.

ssh pi@raspberrypi.local

Warning

If an error appears stating The term 'ssh' is not recognized as the name of a cmdlet..., your system may not have SSH tools pre-installed. In this case, you need to manually install OpenSSH following Install OpenSSH via Powershell, or use a third-party tool as described in PuTTY.

	A security message will appear on your first login. Enter yes to proceed.

The authenticity of host 'raspberrypi.local (2400:2410:2101:5800:635b:f0b6:2662:8cba)' can't be established.
ED25519 key fingerprint is SHA256:oo7x3ZSgAo032wD1tE8eW0fFM/kmewIvRwkBys6XRwg.
Are you sure you want to continue connecting (yes/no/[fingerprint])?

	Enter the password you previously set. Note that the password characters won’t be displayed on the screen, which is a standard security feature.

Note

The absence of visible characters when typing the password is normal. Ensure you input the correct password.

	Once connected, your Raspberry Pi is ready for remote operations.

[image: ../../_images/sp221221_140628.png]

 For Linux/Unix Users

For Linux/Unix Users

	Locate and open the Terminal on your Linux/Unix system.

	Ensure your Raspberry Pi is connected to the same network. Verify this by typing ping <hostname>.local. For example:

ping raspberrypi.local

You should see the Raspberry Pi’s IP address if it’s connected to the network.

	If the terminal shows a message like Ping request could not find host pi.local. Please check the name and try again., double-check the hostname you’ve entered.

	If you’re unable to retrieve the IP address, inspect your network or WiFi settings on the Raspberry Pi.

	Initiate an SSH connection by typing ssh <username>@<hostname>.local or ssh <username>@<IP address>. For instance:

ssh pi@raspberrypi.local

	On your first login, you’ll encounter a security message. Type yes to proceed.

The authenticity of host 'raspberrypi.local (2400:2410:2101:5800:635b:f0b6:2662:8cba)' can't be established.
ED25519 key fingerprint is SHA256:oo7x3ZSgAo032wD1tE8eW0fFM/kmewIvRwkBys6XRwg.
Are you sure you want to continue connecting (yes/no/[fingerprint])?

	Enter the password you previously set. Note that for security reasons, the password won’t be visible as you type.

Note

It’s normal for the password characters not to display in the terminal. Just ensure to enter the correct password.

	Once you’ve successfully logged in, your Raspberry Pi is now connected, and you’re ready to proceed to the next step.

 Remote Desktop Access for Raspberry Pi

Remote Desktop Access for Raspberry Pi

For those preferring a graphical user interface (GUI) over command-line access, the Raspberry Pi supports remote desktop functionality. This guide will walk you through setting up and using VNC (Virtual Network Computing) for remote access.

We recommend using VNC® Viewer [https://www.realvnc.com/en/connect/download/viewer/] for this purpose.

Enabling VNC Service on Raspberry Pi

VNC service comes pre-installed in the Raspberry Pi OS but is disabled by default. Follow these steps to enable it:

	Enter the following command in the Raspberry Pi terminal:

sudo raspi-config

	Navigate to Interfacing Options using the down arrow key, then press Enter.

[image: ../../_images/config_interface.png]

	Select VNC from the options.

[image: ../../_images/vnc.png]

	Use the arrow keys to choose <Yes> -> <OK> -> <Finish> and finalize the VNC service activation.

[image: ../../_images/vnc_yes.png]

Logging in via VNC Viewer

	Download and install VNC Viewer [https://www.realvnc.com/en/connect/download/viewer/] on your personal computer.

	Once installed, launch VNC Viewer. Enter the hostname or IP address of your Raspberry Pi and press Enter.

[image: ../../_images/vnc_viewer1.png]

	When prompted, enter your Raspberry Pi’s username and password, then click OK.

[image: ../../_images/vnc_viewer2.png]

	You’ll now have access to your Raspberry Pi’s desktop interface.

[image: ../../_images/bullseye_desktop.png]

 5. Install All the Modules(Important)

5. Install All the Modules(Important)

	Update your system.

Make sure you are connected to the Internet and update your system:

sudo apt update
sudo apt upgrade

Note

Python3 related packages must be installed if you are installing the Lite version OS.

sudo apt install git python3-pip python3-setuptools python3-smbus

	Install robot-hat module.

cd ~/
git clone -b v2.0 https://github.com/sunfounder/robot-hat.git
cd robot-hat
sudo python3 setup.py install

	Install vilib module.

cd ~/
git clone -b picamera2 https://github.com/sunfounder/vilib.git
cd vilib
sudo python3 install.py

	Download the code.

cd ~/
git clone https://github.com/sunfounder/pidog.git

	Install pidog module.

cd pidog
sudo python3 setup.py install

This step will take a little time, so please be patient.

	Run the script i2samp.sh.

Finally, you need to run the script i2samp.sh to install the components required by the i2s amplifier, otherwise the robot will have no sound.

cd ~/pidog
sudo bash i2samp.sh

[image: ../../_images/i2s.png]
Type y and press Enter to continue running the script.

[image: ../../_images/i2s2.png]
Type y and press Enter to run /dev/zero in the background.

[image: ../../_images/i2s3.png]
Type y and press Enter to restart the machine.

Note

If there is no sound after restarting, you may need to run the i2samp.sh script multiple times.

 6. Check I2C and SPI Interface

6. Check I2C and SPI Interface

We will be using Raspberry Pi’s I2C and SPI interfaces. These interfaces should have been enabled when installing the robot-hat module earlier. To ensure everything is in order, let’s check if they are indeed enabled.

	Input the following command:

sudo raspi-config

	Choose Interfacing Options by press the down arrow key on your keyboard, then press the Enter key.

[image: ../../_images/image282.png]

	Then I2C.

[image: ../../_images/image283.png]

	Use the arrow keys on the keyboard to select <Yes> -> <OK> to complete the setup of the I2C.

[image: ../../_images/image284.png]

	Go to Interfacing Options again and select SPI.

[image: ../../_images/image-spi1.png]

	Use the arrow keys on the keyboard to select <Yes> -> <OK> to complete the setup of the SPI.

[image: ../../_images/image-spi2.png]

 7. Servo Adjust(Importtant)

7. Servo Adjust(Importtant)

The angle range of the servo is -90~90, but the angle set at the factory is random, maybe 0°, maybe 45°; if we assemble it with such an angle directly, it will lead to a chaotic state after the robot runs the code, or worse, it will cause the servo to block and burn out.

So here we need to set all the servo angles to 0° and then install them, so that the servo angle is in the middle, no matter which direction to turn.

	To ensure that the servo has been properly set to 0°, first insert the servo arm into the servo shaft and then gently rotate the rocker arm to a different angle. This servo arm is just to allow you to clearly see that the servo is rotating.

[image: ../../_images/servo_arm.png]

	Now, run servo_zeroing.py in the examples/ folder.

cd ~/pidog/examples
sudo python3 servo_zeroing.py

Note

If you get an error, try re-enabling the Raspberry Pi’s I2C port, see: 6. Check I2C and SPI Interface.

	Next, plug the servo cable into the P11 port as follows, at the same time you will see the servo arm rotate to a position(This is the 0° position, which is a random location and may not be vertical or parallel.).

[image: ../../_images/servo_pin11.jpg]

	Now, remove the servo arm, ensuring the servo wire remains connected, and do not turn off the power. Then continue the assembly following the paper instructions.

Note

	Do not unplug this servo cable before fixing it with the servo screw, you can unplug it after fixing it.

	Do not rotate the servo while it is powered on to avoid damage; if the servo shaft is not inserted at the right angle, pull the servo out and reinsert it.

	Before assembling each servo, you need to plug the servo cable into PWM pin and turn on the power to set its angle to 0°.

 2. Calibrate the PiDog

2. Calibrate the PiDog

Introduction

Calibrating your PiDog is an essential step to ensure its stable and efficient operation. This process helps correct any imbalances or inaccuracies that might have arisen during assembly or from structural issues. Follow these steps carefully to ensure your PiDog walks steadily and performs as expected.

 3. Fun Python Projects

3. Fun Python Projects

Here, we delve into an exciting assortment of projects that showcase the versatility and capabilities of the PiDog.
From the basics of setting a wakeup routine in 1. Wake Up to the advanced dynamics of ball tracking in 13. Ball Track, each project offers a unique glimpse into the world of Python programming for robotics. Whether you’re keen on making your PiDog patrol an area, respond to commands, execute pushups, or even howl on command, there’s a project tailored for you. Furthermore, for those looking to extend their PiDog’s capabilities to computer interfaces, we have tutorials on keyboard and app control as well. Dive in, and embark on a journey of discovery and fun with these hands-on Python projects for your PiDog!

	1. Wake Up

	2. Function Demonstration

	3. Patrol

	4. Response

	5. Rest

	6. Be Picked Up

	7. Face Track

	8. Push Up

	9. Howling

	10. Balance

	11. Play PiDog with Keyboard

	12. Play PiDog with APP
	Control Pidog with app

	Autostart on Boot

	APP Program Configuration

	13. Ball Track

 1. Wake Up

1. Wake Up

This is PiDog’s first project. It will wake your PiDog from a deep sleep.

[image: ../_images/py_wakeup.gif]
Run the Code

cd ~/pidog/examples
sudo python3 1_wake_up.py

After the code is executed,
PiDog will perform the following actions in sequence:

Stretch, twist, sit, wag its tail, pant.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like pidog\examples. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
from pidog import Pidog
from time import sleep
from preset_actions import pant
from preset_actions import body_twisting

my_dog = Pidog(head_init_angles=[0, 0, -30])
sleep(1)

def wake_up():
 # stretch
 my_dog.rgb_strip.set_mode('listen', color='yellow', bps=0.6, brightness=0.8)
 my_dog.do_action('stretch', speed=50)
 my_dog.head_move([[0, 0, 30]]*2, immediately=True)
 my_dog.wait_all_done()
 sleep(0.2)
 body_twisting(my_dog)
 my_dog.wait_all_done()
 sleep(0.5)
 my_dog.head_move([[0, 0, -30]], immediately=True, speed=90)
 # sit and wag_tail
 my_dog.do_action('sit', speed=25)
 my_dog.wait_legs_done()
 my_dog.do_action('wag_tail', step_count=10, speed=100)
 my_dog.rgb_strip.set_mode('breath', color=[245, 10, 10], bps=2.5, brightness=0.8)
 pant(my_dog, pitch_comp=-30, volume=80)
 my_dog.wait_all_done()
 # hold
 my_dog.do_action('wag_tail', step_count=10, speed=30)
 my_dog.rgb_strip.set_mode('breath', 'pink', bps=0.5)
 while True:
 sleep(1)

if __name__ == "__main__":
 try:
 wake_up()
 except KeyboardInterrupt:
 pass
 except Exception as e:
 print(f"\033[31mERROR: {e}\033[m")
 finally:
 my_dog.close()

 2. Function Demonstration

2. Function Demonstration

This project shows you all of PiDog’s usual actions and sounds.

You can make PiDog make actions or make sounds by entering the serial number.

The motion/sound effects currently included in this example are listed below.

[image: ../_images/py_2.gif]

	Actions:

	Sound Effect:

	1.stand

	16.angry

	2.sit

	17.confused_1

	3.lie

	18.confused_2

	4.lie_with_hands_out

	19.confused_3

	5.trot

	20.growl_1

	6.forward

	21.growl_2

	7.backward

	22.howling

	8.turn_left

	23.pant

	9.turn_right

	24.single_bark_1

	10.doze_off

	25.single_bark_2

	11.stretch

	26.snoring

	12.pushup

	27.woohoo

	13.shake_head

	

	14.tilting_head

	

	15.wag_tail

	

Run the Code

cd ~/pidog/examples
sudo python3 2_function_demonstration.py

After running this example, you input 1 and press ENTER, PiDog will stand; input 2, PiDog will sit down; input 27, PiDog will issue “woohoo~ “.

Press Ctrl+C to exit the program.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like pidog\examples. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
from time import sleep
from pidog import Pidog
import os
import curses
import curses_utils

init pidog
======================================
my_dog = Pidog()
sleep(0.5)

global variables
======================================
actions = [
 # name, head_pitch_adjust(-1, use last_pitch), speed
 ['stand', 0, 50],
 ['sit', -30, 50],
 ['lie', 0, 20],
 ['lie_with_hands_out', 0, 20],
 ['trot', 0, 95],
 ['forward', 0, 98],
 ['backward', 0, 98],
 ['turn_left', 0, 98],
 ['turn_right', 0, 98],
 ['doze_off', -30, 90],
 ['stretch', 20, 20],
 ['push_up', -30, 50],
 ['shake_head', -1, 90],
 ['tilting_head', -1, 60],
 ['wag_tail', -1, 100],
]
actions_len = len(actions)

sound_effects = []
change working directory
abspath = os.path.abspath(os.path.dirname(__file__))
print(abspath)
os.chdir(abspath)
for name in os.listdir('../sounds'):
 sound_effects.append(name.split('.')[0])
sound_effects.sort()
sound_len = len(sound_effects)
limit sound quantity
if sound_len > actions_len:
 sound_len = actions_len
 sound_effects = sound_effects[:actions_len]

last_index = 0
last_display_index = 0
exit_flag = False
last_head_pitch = 0

STANDUP_ACTIONS = ['trot', 'forward', 'backward', 'turn_left', 'turn_right']

define pad size
======================================
curses_utils.PAD_Y = 22
curses_utils.PAD_X = 70

display fuctions
======================================
def display_head(subpad):
 title = "Function Demonstration"
 tip1 = "Input Function number to see how it goes."
 tip2 = "Actions will repeat 10 times."
 type_name_1 = "Actions:"
 type_name_2 = "Sound Effect:"
 tip3 = "(need to run with sudo)"

 curses_utils.clear_line(subpad, 0, color=curses_utils.BLACK_BLUE)
 subpad.addstr(0, 2, title, curses_utils.BLACK_BLUE | curses.A_BOLD)
 subpad.addstr(1, 2, tip1, curses_utils.GRAY)
 subpad.addstr(2, 2, tip2, curses_utils.GRAY)
 curses_utils.clear_line(subpad, 3, color=curses_utils.WHITE_GRAY)
 subpad.addstr(3, 2, type_name_1, curses_utils.WHITE_GRAY)
 subpad.addstr(3, 30, type_name_2, curses_utils.WHITE_GRAY)
 subpad.addstr(3, 31+len(type_name_2), tip3, curses_utils.YELLOW_GRAY)

def display_selection(subpad, index):
 global last_display_index
 # reset last selection
 if last_display_index > actions_len + sound_len-1 or last_display_index < 0:
 last_display_index = 0
 if last_display_index != index:
 if last_display_index < actions_len:
 subpad.addstr(last_display_index, 2, f"{last_display_index+1}. {actions[last_display_index][0]}", curses_utils.LIGHT_GRAY)
 else:
 sound_index = last_display_index-actions_len
 subpad.addstr(sound_index, 30, f"{last_display_index+1}. {sound_effects[sound_index]}", curses_utils.LIGHT_GRAY)
 last_display_index = index
 # highlight currernt selection
 if index > actions_len + sound_len-1 or index < 0:
 pass
 elif index < actions_len:
 subpad.addstr(index, 2, f"{index+1}. {actions[index][0]}", curses_utils.WHITE_BLUE)
 else:
 sound_index = index-actions_len
 subpad.addstr(sound_index, 30, f"{index+1}. {sound_effects[sound_index]}", curses_utils.WHITE_BLUE)

def display_actions(subpad):
 for i in range(actions_len):
 subpad.addstr(i, 2, f"{i+1}. {actions[i][0]}", curses_utils.LIGHT_GRAY)
 for i in range(sound_len):
 subpad.addstr(i, 30, f"{i+actions_len+1}. {sound_effects[i]}", curses_utils.LIGHT_GRAY)

def display_bottom(subpad):
 curses_utils.clear_line(subpad, 0, color=curses_utils.WHITE_GRAY)
 subpad.addstr(0, 0, "Enter function number: ", curses_utils.WHITE_GRAY)
 subpad.addstr(0, curses_utils.PAD_X-16, "Ctrl^C to quit", curses_utils.WHITE_GRAY)

def do_function(index):
 global last_index, last_head_pitch
 my_dog.body_stop()
 if index < 0:
 return
 if index < actions_len:
 name, head_pitch_adjust, speed = actions[index]
 # If last action is push_up, then lie down first
 if last_index < len(actions) and actions[last_index][0] in ('push_up'):
 last_head_pitch = 0
 my_dog.do_action('lie', speed=60)
 # If this action is trot, forward, turn left, turn right and backward, and, last action is not, then stand up
 if name in STANDUP_ACTIONS and last_index < len(actions) and actions[last_index][0] not in STANDUP_ACTIONS:
 last_head_pitch = 0
 my_dog.do_action('stand', speed=60)
 if head_pitch_adjust != -1:
 last_head_pitch = head_pitch_adjust
 my_dog.head_move_raw([[0, 0, last_head_pitch]], immediately=False, speed=60)
 my_dog.do_action(name, step_count=10, speed=speed, pitch_comp=last_head_pitch)
 last_index = index
 elif index < actions_len + sound_len:
 my_dog.speak(sound_effects[index - len(actions)], volume=80)
 last_index = index

def main(stdscr):
 # reset screen
 stdscr.clear()
 stdscr.move(4, 0)
 stdscr.refresh()

 # disable cursor
 curses.curs_set(0)

 # init color
 curses.start_color()
 curses.use_default_colors()
 curses_utils.init_preset_colors()
 curses_utils.init_preset__color_pairs()

 # init pad
 pad = curses.newpad(curses_utils.PAD_Y, curses_utils.PAD_X)

 # init subpad
 head_pad = pad.subpad(4, curses_utils.PAD_X, 0, 0)
 selection_pad = pad.subpad(actions_len, curses_utils.PAD_X, 4, 0)
 bottom_pad = pad.subpad(1, curses_utils.PAD_X, actions_len+4, 0)
 # add content to a
 display_head(head_pad)
 display_actions(selection_pad)
 display_head(head_pad)
 curses_utils.pad_refresh(pad)
 curses_utils.pad_refresh(selection_pad)

 # for i in range(2):
 # for i in range(30):
 # display_selection(selection_pad, i)
 # curses_utils.pad_refresh(selection_pad)
 # sleep(0.1)

 # enable cursor and echo
 curses.curs_set(0)
 curses.echo()

 while True:
 # draw bottom bar
 display_bottom(bottom_pad)
 curses_utils.pad_refresh(bottom_pad)
 # reset cursor
 stdscr.move(actions_len+4, 23)
 stdscr.refresh()
 # red key
 key = stdscr.getstr()
 try:
 index = int(key) - 1
 except ValueError:
 index = -1
 # display selection
 display_selection(selection_pad, index)
 curses_utils.pad_refresh(selection_pad)
 # do fuction
 do_function(index)

 sleep(0.2)

if __name__ == "__main__":
 try:
 curses.wrapper(main)
 except KeyboardInterrupt:
 pass
 except Exception as e:
 print(f"\033[31mERROR: {e}\033[m")
 finally:
 my_dog.close()

 3. Patrol

3. Patrol

In this project, PiDog makes a vivid behavior: patrolling.

PiDog will walk forward, if there is an obstacle in front of it, it will stop and bark.

[image: ../_images/py_3.gif]
Run the Code

cd ~/pidog/examples
sudo python3 3_patrol.py

After running this example, PiDog will wag its tail, scan left and right, and walk forward.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like pidog\examples. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
import time
from pidog import Pidog
from preset_actions import bark

t = time.time()
my_dog = Pidog()
my_dog.do_action('stand', speed=80)
my_dog.wait_all_done()
time.sleep(.5)

DANGER_DISTANCE = 15

stand = my_dog.legs_angle_calculation([[0, 80], [0, 80], [30, 75], [30, 75]])

def patrol():
 distance = round(my_dog.ultrasonic.read_distance(), 2)
 print(f"distance: {distance} cm", end="", flush=True)

 # danger
 if distance < DANGER_DISTANCE:
 print("\033[0;31m DANGER !\033[m")
 my_dog.body_stop()
 head_yaw = my_dog.head_current_angles[0]
 # my_dog.rgb_strip.set_mode('boom', 'red', bps=2)
 my_dog.rgb_strip.set_mode('bark', 'red', bps=2)
 my_dog.tail_move([[0]], speed=80)
 my_dog.legs_move([stand], speed=70)
 my_dog.wait_all_done()
 time.sleep(0.5)
 bark(my_dog, [head_yaw, 0, 0])

 while distance < DANGER_DISTANCE:
 distance = round(my_dog.ultrasonic.read_distance(), 2)
 if distance < DANGER_DISTANCE:
 print(f"distance: {distance} cm \033[0;31m DANGER !\033[m")
 else:
 print(f"distance: {distance} cm", end="", flush=True)
 time.sleep(0.01)
 # safe
 else:
 print("")
 my_dog.rgb_strip.set_mode('breath', 'white', bps=0.5)
 my_dog.do_action('forward', step_count=2, speed=98)
 my_dog.do_action('shake_head', step_count=1, speed=80)
 my_dog.do_action('wag_tail', step_count=5, speed=99)

if __name__ == "__main__":
 try:
 while True:
 patrol()
 time.sleep(0.01)
 except KeyboardInterrupt:
 pass
 except Exception as e:
 print(f"\033[31mERROR: {e}\033[m")
 finally:
 my_dog.close()

 4. Response

4. Response

In this project, PiDog will interact with you in an interesting way.

If you reach out and grab PiDog’s head from the front, it will bark vigilantly.

[image: ../_images/py_4-2.gif]
But if you reach out from behind it and pet its head, it will enjoy it very much.

 5. Rest

5. Rest

PiDog will doze off on the ground, and when it hears sounds around it, it will stand up in confusion to see who woke it up.

[image: ../_images/py_5.gif]
Run the Code

cd ~/pidog/examples
sudo python3 5_rest.py

After the program runs, PiDog will get down on the ground, shake its head and tail as if dozing off.
At the same time, its sound direction sensor module is working. If PiDog hears noise, it will stand up, look around, and then make a confused look.
Then it’ll doze off again.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like pidog\examples. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
from pidog import Pidog
from time import sleep
from preset_actions import shake_head

my_dog = Pidog()
sleep(0.1)

def loop_around(amplitude=60, interval=0.5, speed=100):
 my_dog.head_move([[amplitude,0,0]], immediately=True, speed=speed)
 my_dog.wait_all_done()
 sleep(interval)
 my_dog.head_move([[-amplitude,0,0]], immediately=True, speed=speed)
 my_dog.wait_all_done()
 sleep(interval)
 my_dog.head_move([[0,0,0]], immediately=True, speed=speed)
 my_dog.wait_all_done()

def is_sound():
 if my_dog.ears.isdetected():
 direction = my_dog.ears.read()
 if direction != 0:
 return True
 else:
 return False
 else:
 return False

def rest():
 my_dog.wait_all_done()
 my_dog.do_action('lie', speed=50)
 my_dog.wait_all_done()

 while True:
 # Sleeping
 my_dog.rgb_strip.set_mode('breath', 'pink', bps=0.3)
 my_dog.head_move([[0,0,-40]], immediately=True, speed=5)
 my_dog.do_action('doze_off', speed=92)
 # Cleanup sound detection
 sleep(1)
 is_sound()

 # keep sleeping
 while is_sound() is False:
 my_dog.do_action('doze_off', speed=92)
 sleep(0.2)

 # If heard anything, wake up
 # Set light to yellow and stand up
 my_dog.rgb_strip.set_mode('boom', 'yellow', bps=1)
 my_dog.body_stop()
 my_dog.do_action('stand', speed=90)
 my_dog.head_move([[0, 0, 0]], immediately=True, speed=80)
 my_dog.wait_all_done()
 # Look arround
 loop_around(60, 1, 60)
 sleep(0.5)
 # tilt head and being confused
 my_dog.speak('confused_3', volume=80)
 my_dog.do_action('tilting_head_left', speed=80)
 my_dog.wait_all_done()
 sleep(1.2)
 my_dog.head_move([[0, 0, -10]], immediately=True, speed=80)
 my_dog.wait_all_done()
 sleep(0.4)
 # Shake head , mean to ignore it
 shake_head(my_dog)
 sleep(0.2)

 # Lay down again
 my_dog.rgb_strip.set_mode('breath', 'pink', bps=1)
 my_dog.do_action('lie', speed=50)
 my_dog.wait_all_done()
 sleep(1)

if __name__ == "__main__":
 try:
 rest()
 except KeyboardInterrupt:
 pass
 except Exception as e:
 print(f"\033[31mERROR: {e}\033[m")
 finally:
 my_dog.close()

 6. Be Picked Up

6. Be Picked Up

Try lifting your PiDog from the ground, PiDog will feel like it can fly, and it will cheer in a superman pose.

[image: ../_images/py_6.gif]
Run the Code

cd ~/pidog/examples
sudo python3 6_be_picked_up.py

After the program runs, the 6-DOF IMU Module will always calculate the acceleration in the vertical direction.
If PiDog is calculated to be in a state of weightlessness, PiDog assumes a superman pose and cheers.
Otherwise, consider PiDog to be on flat ground and make a standing pose.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like pidog\examples. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
from pidog import Pidog
from time import sleep

my_dog = Pidog()
sleep(0.1)

def fly():
 my_dog.rgb_strip.set_mode('boom', color='red', bps=3)
 my_dog.legs.servo_move([45, -45, 90, -80, 90, 90, -90, -90], speed=60)
 my_dog.do_action('wag_tail', step_count=10, speed=100)
 my_dog.speak('woohoo', volume=80)
 my_dog.wait_legs_done()
 sleep(1)

def stand():
 my_dog.rgb_strip.set_mode('breath', color='green', bps=1)
 my_dog.do_action('stand', speed=60)
 my_dog.wait_legs_done()
 sleep(1)

def be_picked_up():
 isUp = False
 upflag = False
 downflag = False

 stand()

 while True:
 ax = my_dog.accData[0]
 print('ax: %s, is up: %s' % (ax, isUp))

 # gravity : 1G = -16384
 if ax < -18000: # if down, acceleration is in the same direction as gravity, ax < -1G
 my_dog.body_stop()
 if upflag == False:
 upflag = True
 if downflag == True:
 isUp = False
 downflag = False
 stand()

 if ax > -13000: # if up, acceleration is the opposite of gravity, ax will > -1G
 my_dog.body_stop()
 if upflag == True:
 isUp = True
 upflag = False
 fly()
 if downflag == False:
 downflag = True

 sleep(0.02)

if __name__ == "__main__":
 try:
 be_picked_up()
 except KeyboardInterrupt:
 pass
 except Exception as e:
 print(f"\033[31mERROR: {e}\033[m")
 finally:
 my_dog.close()

 7. Face Track

7. Face Track

PiDog will sit quietly in place. You applaud it, it looks your way, and if it sees you, it says hello.

 8. Push Up

8. Push Up

PiDog is an exercise-loving robot that will do push-ups with you.

[image: ../_images/py_8.gif]
Run the Code

cd ~/pidog/examples
sudo python3 8_pushup.py

After the program runs, PiDog will perform a plank, then cycle through push-ups and barks.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like pidog\examples. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
from pidog import Pidog
from time import sleep
from preset_actions import push_up, bark

my_dog = Pidog()

sleep(0.5)

def main():
 my_dog.legs_move([[45, -25, -45, 25, 80, 70, -80, -70]], speed=50)
 my_dog.head_move([[0, 0, -20]], speed=90)
 my_dog.wait_all_done()
 sleep(0.5)
 bark(my_dog, [0, 0, -20])
 sleep(0.1)
 bark(my_dog, [0, 0, -20])

 sleep(1)
 my_dog.rgb_strip.set_mode("speak", color="blue", bps=2)
 while True:
 push_up(my_dog, speed=92)
 bark(my_dog, [0, 0, -40])
 sleep(0.4)

if __name__ == "__main__":
 try:
 main()
 except KeyboardInterrupt:
 pass
 except Exception as e:
 print(f"\033[31mERROR: {e}\033[m")
 finally:
 my_dog.close()

 9. Howling

9. Howling

PiDog is not only a cute puppy, but also a mighty dog. Come hear it howl!

[image: ../_images/py_9.gif]
Run the Code

cd ~/pidog/examples
sudo python3 9_howling.py

After the program runs, PiDog will sit on the ground and howl.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like pidog\examples. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3
from pidog import Pidog
from time import sleep
from preset_actions import howling

my_dog = Pidog()

sleep(0.5)

def main():
 my_dog.do_action('sit', speed=50)
 my_dog.head_move([[0, 0, 0]], pitch_comp=-40, immediately=True, speed=80)
 sleep(0.5)
 while True:
 howling(my_dog)

if __name__ == "__main__":
 try:
 main()
 except KeyboardInterrupt:
 pass
 except Exception as e:
 print(f"\033[31mERROR: {e}\033[m")
 finally:
 my_dog.close()

 10. Balance

10. Balance

Because PiDog is equipped with a 6-DOF IMU module, it has a great sense of balance.

In this example, you can make PiDog walk smoothly on the table, even if you lift one side of the table, PiDog will walk smoothly on the gentle slope.

[image: ../_images/py_10.gif]
Run the Code

cd ~/pidog/examples
sudo python3 10_balance.py

After the program is running, you will see a printed keyboard on the terminal.
You can control PiDog to walk smoothly on the ramp by typing the below keys.

	Keys

	Function

	W

	Forward

	E

	Stand

	A

	Turn Left

	S

	Backward

	D

	Turn Right

	R

	Each press slightly lifts the body; multiple presses are needed for a noticeable rise.

	F

	Each press lowers the body a bit; it takes multiple presses for a noticeable descent.

Code

Please find the code in 10_balance.py - Github.

 11. Play PiDog with Keyboard

11. Play PiDog with Keyboard

In this example, we will use the keyboard to control PiDog. You can press these keys in the terminal to make it act.

	Keys

	Function

	Keys

	Function

	Keys

	Function

	1

	doze off

	q

	bark harder

	a

	turn left

	2

	push-up

	w

	forward

	s

	backward

	3

	howling

	e

	pant

	d

	turn right

	4

	twist body

	r

	wag tail

	f

	shake head

	5

	scratch

	t

	hake head

	g

	high five

	u

	head roll

	U

	head roll+

	z

	lie

	i

	head pitch

	I

	head pitch+

	x

	stand up

	o

	head roll

	O

	head roll+

	c

	sit

	j

	head yaw

	J

	head yaw+

	v

	stretch

	k

	head pitch

	K

	head pitch+

	m

	head reset

	l

	head yaw

	L

	head yaw+

	W

	trot

Run the Code

cd ~/pidog/examples
sudo python3 11_keyboard_control.py

After the program runs, you will see a printed keyboard on the terminal. Now you can control PiDog with keyboard in terminal.

Code

Please find the code in 11_keyboard_control.py - Github.

 12. Play PiDog with APP

12. Play PiDog with APP

In this example, we will use SunFounder Controller APP to control PiDog.

 13. Ball Track

13. Ball Track

PiDog will sit quietly in place.
You put a red ball in front of it, it will stand, and then chase the ball.

 4. Easy Coding

4. Easy Coding

Here, we delve into various functions, breaking them down for a comprehensive understanding.
Each sub-topic is dedicated to a specific function, making it easier for you to grasp and implement them.
Whether it’s initiating parameters, controlling specific movements, or incorporating sensory inputs, we’ve covered them all.
Navigate through the sub-topics below to kickstart your coding journey with Pidog.

	1. PiDog Initialization

	2. Leg Move

	3. Head Move

	4. Tail Move

	5. Stop All Actions

	6. Do Preset Action

	7. PiDog Speak

	8. Read Distance

	9. PiDog RGB Strip

	10. IMU Read

	11. Sound Direction Detect

	12. Pat the PiDog’s Head

	13. More

 1. PiDog Initialization

1. PiDog Initialization

The functions of PiDog are written in the Pidog class, and the prototype of this class is shown below.

Class: Pidog()

__init__(leg_pins=DEFAULT_LEGS_PINS,
 head_pins=DEFAULT_HEAD_PINS,
 tail_pin=DEFAULT_TAIL_PIN,
 leg_init_angles=None,
 head_init_angles=None,
 tail_init_angle=None)

PiDog must be instantiated in one of several ways, as shown below.

	Following are the simplest steps of initialization.

Import Pidog class
from pidog import Pidog

instantiate a Pidog
my_dog = Pidog()

	PiDog has 12 servos, which can be initialized when we instantiate it.

Import Pidog class
from pidog import Pidog

instantiate a Pidog with custom initialized servo angles
my_dog = Pidog(leg_init_angles = [25, 25, -25, -25, 70, -45, -70, 45],
 head_init_angles = [0, 0, -25],
 tail_init_angle= [0]
)

In the Pidog class, the servos are divided into three groups.

	leg_init_angles : In this array, 8 values determine the angles of eight servos, with the servos (pin numbers) they control being 2, 3, 7, 8, 0, 1, 10, 11. From the foldout, you can see where these servos are located.

	head_init_angles : There is an array with 3 values, controllers for PiDog-head yaw, roll, pitch servos (no. 4, 6, 5) which react to yaw, roll, pitch, or Deflection of the body.

	tail_init_angle : In this array, there is only one value, which is dedicated to controlling the tail servo, which is 9.

	Pidog allows you to redefine the serial number of the servos when instantiating the robot if your servo order is different.

Import Pidog class
from pidog import Pidog

instantiate a Pidog with custom initialized pins & servo angles
my_dog = Pidog(leg_pins=[2, 3, 7, 8, 0, 1, 10, 11],
 head_pins=[4, 6, 5],
 tail_pin=[9],
 leg_init_angles = [25, 25, -25, -25, 70, -45, -70, 45],
 head_init_angles = [0, 0, -25],
 tail_init_angle= [0]
)

 2. Leg Move

2. Leg Move

PiDog’s leg movements are implemented by the following functions.

Pidog.legs_move(target_angles, immediately=True, speed=50)

	target_angles: It is a two-dimensional array composed of an array of 8 servo angles (referred to as angle group) as elements. These angle groups will be used to control the angles of the 8 foot servos. If multiple angle groups are written, the unexecuted angle groups will be stored in the cache.

	immediately : When calling the function, set this parameter to True, the cache will be cleared immediately to execute the newly written angle group; if the parameter is set to False, the newly written The incoming angular group is added to the execution queue.

	speed : The speed at which the angular group is executed.

Some common usages are listed below:

	Take action immediately.

from pidog import Pidog
import time

my_dog = Pidog()

half stand
my_dog.legs_move([[45, 10, -45, -10, 45, 10, -45, -10]], speed=50)

	Add some angular groups to the execution queue.

from pidog import Pidog
import time

my_dog = Pidog()

half stand
my_dog.legs_move([[45, 10, -45, -10, 45, 10, -45, -10]], speed=50)

multiple actions
my_dog.legs_move([[45, 35, -45, -35, 80, 70, -80, -70],
 [90, -30, -90, 30, 80, 70, -80, -70],
 [45, 35, -45, -35, 80, 70, -80, -70]], immediately=False, speed=30)

	Perform repetitions within 10 seconds.

from pidog import Pidog
import time

my_dog = Pidog()

half stand
my_dog.legs_move([[45, 10, -45, -10, 45, 10, -45, -10]], speed=50)

pushup preparation
my_dog.legs_move([[45, 35, -45, -35, 80, 70, -80, -70]], immediately=False, speed=20)

pushup
for _ in range(99):
 my_dog.legs_move([[90, -30, -90, 30, 80, 70, -80, -70],
 [45, 35, -45, -35, 80, 70, -80, -70]], immediately=False, speed=30)

keep 10s
time.sleep(10)

stop and half stand
my_dog.legs_move([[45, 10, -45, -10, 45, 10, -45, -10]], immediately=True, speed=50)

PiDog’s leg control also has the following functions that can be used together:

Pidog.is_legs_done()

This function is used to determine whether the angle group in the cache has been executed. If yes, return True; otherwise, return False.

Pidog.wait_legs_done()

Suspends the program until the angle groups in the cache have been executed.

Pidog.legs_stop()

Empty the angular group in the cache.

 3. Head Move

3. Head Move

The control of PiDog’s head servo is implemented by the following functions.

Pidog.head_move(target_yrps, roll_comp=0, pitch_comp=0, immediately=True, speed=50)

	target_angles : It is a two-dimensional array composed of an array of 3 servo angles (referred to as angle group) as elements. These angle groups will be used to control the angles of the 8 foot servos. If multiple angle groups are written, the unexecuted angle groups will be stored in the cache.

	roll_comp : Provides angular compensation on the roll axis.

	pitch_comp : Provides angle compensation on the pitch axis.

	immediately : When calling the function, set this parameter to True, the cache will be cleared immediately to execute the newly written angle group; if the parameter is set to False, the newly written The incoming angular group is added to the execution queue.

	speed : The speed at which the angular group is executed.

PiDog’s head servo control also has some supporting functions:

Pidog.is_head_done()

Whether all the head actions in the buffer to be executed

Pidog.wait_head_done()

Wait for all the head actions in the buffer to be executed

Pidog.head_stop()

Clear all the head actions of leg in the buffer, to make head servos stop

Here are some common use cases:

	Nod five times.

from pidog import Pidog
import time

my_dog = Pidog()

for _ in range(5):
 my_dog.head_move([[0, 0, 30],[0, 0, -30]], speed=80)
 my_dog.wait_head_done()
 time.sleep(0.5)

	Shake your head for 10 seconds.

from pidog import Pidog
import time

my_dog = Pidog()

for _ in range(99):
 my_dog.head_move([[30, 0, 0],[-30, 0, 0]], immediately=False, speed=30)

keep 10s
time.sleep(10)

my_dog.head_move([[0, 0, 0]], immediately=True, speed=80)

	Whether sitting or half standing, PiDog keeps its head level when shaking its head.

from pidog import Pidog
import time

my_dog = Pidog()

action list
shake_head = [[30, 0, 0],[-30, 0, 0]]
half_stand_leg = [[45, 10, -45, -10, 45, 10, -45, -10]]
sit_leg = [[30, 60, -30, -60, 80, -45, -80, 45]]

while True:
 # shake head in half stand
 my_dog.legs_move(half_stand_leg, speed=30)
 for _ in range(5):
 my_dog.head_move(shake_head, pitch_comp=0, speed=50)
 my_dog.wait_head_done()
 time.sleep(0.5)

 # shake head in sit
 my_dog.legs_move(sit_leg, speed=30)
 for _ in range(5):
 my_dog.head_move(shake_head, pitch_comp=-30, speed=50)
 my_dog.wait_head_done()
 time.sleep(0.5)

 4. Tail Move

4. Tail Move

Following are the functions that control PiDog’s tail. This function is similar to 2. Leg Move.

Pidog.tail_move(target_angles, immediately=True, speed=50)

	target_angles : It is a two-dimensional array composed of an array of 1 servo angles (referred to as angle group) as elements. These angle groups will be used to control the angles of the 8 foot servos. If multiple angle groups are written, the unexecuted angle groups will be stored in the cache.

	immediately : When calling the function, set this parameter to True, the cache will be cleared immediately to execute the newly written angle group; if the parameter is set to False, the newly written The incoming angular group is added to the execution queue.

	speed : The speed at which the angular group is executed.

PiDog’s tail servo control also has some supporting functions:

Pidog.is_tail_done()

whether all the tail actions in the buffer to be executed

Pidog.wait_tail_done()

wait for all the tail actions in the buffer to be executed

Pidog.tail_stop()

clear all the tail actions of leg in the buffer, to make tail servo stop

Here are some common usages:

	Wag tail for 10 seconds.

from pidog import Pidog
import time

my_dog = Pidog()

for _ in range(99):
 my_dog.tail_move([[30],[-30]], immediately=False, speed=30)

keep 10s
time.sleep(10)

my_dog.tail_stop()

 5. Stop All Actions

5. Stop All Actions

After the previous chapters, you can find that the servo control of PiDog is divided into three threads.
This allows PiDog’s head and body to move at the same time, even with two lines of code.

Here are a few functions that work with the three servo threads:

Pidog.wait_all_done()

Wait for all the actions in the leg actions buffer, head buffer and tail buffer to be executed

Pidog.body_stop()

Stop all the actions of legs, head and tail

Pidog.stop_and_lie()

Stop all the actions of legs, head and tail, then reset to “lie” pose

Pidog.close()

Stop all the actions, reset to “lie” pose, and close all the threads, usually used when exiting a program

Here are some common usages:

from pidog import Pidog
import time

my_dog = Pidog()

try:
 # pushup prepare
 my_dog.legs_move([[45, 35, -45, -35, 80, 70, -80, -70]], speed=30)
 my_dog.head_move([[0, 0, 0]], pitch_comp=-10, speed=80)
 my_dog.wait_all_done() # wait all the actions to be done
 time.sleep(0.5)

 # pushup
 leg_pushup_action = [
 [90, -30, -90, 30, 80, 70, -80, -70],
 [45, 35, -45, -35, 80, 70, -80, -70],
]
 head_pushup_action = [
 [0, 0, -30],
 [0, 0, 20],
]

 # fill action buffers
 for _ in range(50):
 my_dog.legs_move(leg_pushup_action, immediately=False, speed=50)
 my_dog.head_move(head_pushup_action, pitch_comp=-10, immediately=False, speed=50)

 # show buffer length
 print(f"legs buffer length (start): {len(my_dog.legs_action_buffer)}")

 # keep 5 second & show buffer length
 time.sleep(5)
 print(f"legs buffer length (5s): {len(my_dog.legs_action_buffer)}")

 # stop action & show buffer length
 my_dog.stop_and_lie()
 print(f"legs buffer length (stop): {len(my_dog.legs_action_buffer)}")

except KeyboardInterrupt:
 pass
except Exception as e:
 print(f"\033[31mERROR: {e}\033[m")
finally:
 print("closing ...")
 my_dog.close() # close all the servo threads

 6. Do Preset Action

6. Do Preset Action

Some commonly used actions have been pre-written in PiDog’s library.
You can call the following function to make PiDog do these actions directly.

Pidog.do_action(action_name, step_count=1, speed=50)

	action_name : Action name, the following strings can be written.

	"sit"

	"half_sit"

	"stand"

	"lie"

	"lie_with_hands_out"

	"forward"

	"backward"

	"turn_left"

	"turn_right"

	"trot"

	"stretch"

	"pushup"

	"doze_off"

	"nod_lethargy"

	"shake_head"

	"tilting_head_left"

	"tilting_head_right"

	"tilting_head"

	"head_bark"

	"head_up_down"

	"wag_tail"

	step_count : How many times to perform this action.

	speed : How fast to perform the action.

Here is an example of usage:

	Do ten push-ups, then sit on the floor and act cute.

from pidog import Pidog
import time

my_dog = Pidog()

try:
 # pushup
 my_dog.do_action("half_sit", speed=60)
 my_dog.do_action("pushup", step_count=10, speed=60)
 my_dog.wait_all_done()

 # act cute
 my_dog.do_action("sit", speed=60)
 my_dog.do_action("wag_tail", step_count=100,speed=90)
 my_dog.do_action("tilting_head", step_count=5, speed=20)
 my_dog.wait_head_done()

 my_dog.stop_and_lie()

except KeyboardInterrupt:
 pass
except Exception as e:
 print(f"\033[31mERROR: {e}\033[m")
finally:
 print("closing ...")
 my_dog.close()

 7. PiDog Speak

7. PiDog Speak

PiDog can make sound, it is actually playing a piece of audio.

These audios are saved under pidog\sounds path, you can call the following function to play them.

Pidog.speak(name)

	name : Filename (without suffix), such as "angry". Pidog provides the following audio.

	"angry"

	"confused_1"

	"confused_2"

	"confused_3"

	"growl_1"

	"growl_2"

	"howling"

	"pant"

	"single_bark_1"

	"single_bark_2"

	"snoring"

	"woohoo"

Here is an example of usage:

!/usr/bin/env python3
''' play sound effecfs
 Note that you need to run with "sudo"
API:
 Pidog.speak(name, volume=100)
 play sound effecf in the file "../sounds"
 - name str, file name of sound effect, no suffix required, eg: "angry"
 - volume int, volume 0-100, default 100
'''
from pidog import Pidog
import os
import time

change working directory
abspath = os.path.abspath(os.path.dirname(__file__))
print(abspath)
os.chdir(abspath)

my_dog = Pidog()

print("\033[033mNote that you need to run with \"sudo\", otherwise there may be no sound.\033[m")

my_dog.speak("angry")
time.sleep(2)

for name in os.listdir('../sounds'):
 name = name.split('.')[0] # remove suffix
 print(name)
 my_dog.speak(name)
 # my_dog.speak(name, volume=50)
 time.sleep(3) # Note that the duration of each sound effect is different
print("closing ...")
my_dog.close()

 8. Read Distance

8. Read Distance

Through the Ultrasonic Module in its head, PiDog can detect obstacles ahead.

An ultrasonic module can detect objects between 2 and 400 cm away.

With the following function, you can read the distance as a floating point number.

Pidog.ultrasonic.read_distance()

Here is an example of usage:

from pidog import Pidog
import time

my_dog = Pidog()
while True:
 distance = my_dog.ultrasonic.read_distance()
 distance = round(distance,2)
 print(f"Distance: {distance} cm")
 time.sleep(0.5)

 9. PiDog RGB Strip

9. PiDog RGB Strip

There is an RGB Strip on PiDog’s chest, which PiDog can use to express emotions.

You can call the following function to control it.

Pidog.rgb_strip.set_mode(style='breath', color='white', bps=1, brightness=1):

	style : The lighting display mode of RGB Strip, the following are its available values.

	breath

	boom

	bark

	color : The lights of the RGB Strip show the colors. You can enter 16-bit RGB values, such as #a10a0a, or the following color names.

	"white"

	"black"

	"white"

	"red"

	"yellow"

	"green"

	"blue"

	"cyan"

	"magenta"

	"pink"

	brightness : RGB Strip lights display brightness, you can enter a floating-point value from 0 to 1, such as 0.5.

	delay : Float, display animation speed, the smaller the value, the faster the change.

Use the following statement to disable RGB Striping.

Pidog.rgb_strip.close()

Here are examples of their use:

from pidog import Pidog
import time

my_dog = Pidog()

while True:
 # style="breath", color="pink"
 my_dog.rgb_strip.set_mode(style="breath", color='pink')
 time.sleep(3)

 # style:"boom", color="#a10a0a"
 my_dog.rgb_strip.set_mode(style="bark", color="#a10a0a")
 time.sleep(3)

 # style:"boom", color="#a10a0a", brightness=0.5, bps=2.5
 my_dog.rgb_strip.set_mode(style="boom", color="#a10a0a", bps=2.5, brightness=0.5)
 time.sleep(3)

 # close
 my_dog.rgb_strip.close()
 time.sleep(2)

 10. IMU Read

10. IMU Read

Through the 6-DOF IMU Module, PiDog can determine if it’s standing on a slope, or if it’s being picked up.

The 6-DOF IMU Module is equipped with a 3-axis accelerometer and a 3-axis gyroscope, allowing acceleration and angular velocity to be measured in three directions.

Note

Before using the module, make sure that it is correctly assembled. The label on the module will let you know if it is reversed.

You can read their acceleration with:

ax, ay, az = Pidog.accData

With the PiDog placed horizontally, the acceleration on the x-axis (ie ax) should be close to the acceleration of gravity (1g), with a value of -16384.
The values of the y-axis and x-axis are close to 0.

Use the following way to read their angular velocity:

gx, gy, gz = my_dog.gyroData

In the case where PiDog is placed horizontally, all three values are close to 0.

Here are some examples of how 6-DOF Module is used:

	Read real-time acceleration, angular velocity

from pidog import Pidog
import time

my_dog = Pidog()

my_dog.do_action("pushup", step_count=10, speed=20)

while True:
 ax, ay, az = my_dog.accData
 gx, gy, gz = my_dog.gyroData
 print(f"accData: {ax/16384:.2f} g ,{ay/16384:.2f} g, {az/16384:.2f} g gyroData: {gx} °/s, {gy} °/s, {gz} °/s")
 time.sleep(0.2)
 if my_dog.is_legs_done():
 break

my_dog.stop_and_lie()

my_dog.close()

	Calculate the lean angle of PiDog’s body.

from pidog import Pidog
import time
import math

my_dog = Pidog()

while True:
 ax, ay, az = my_dog.accData
 body_pitch = math.atan2(ay,ax)/math.pi*180%360-180
 print(f"Body Degree: {body_pitch:.2f} °")
 time.sleep(0.2)

my_dog.close()

	While leaning, PiDog keeps its eyes level.

from pidog import Pidog
import time
import math

my_dog = Pidog()

while True:
 ax, ay, az = my_dog.accData
 body_pitch = math.atan2(ay,ax)/math.pi*180%360-180
 my_dog.head_move([[0, 0, 0]], pitch_comp=-body_pitch, speed=80)
 time.sleep(0.2)

my_dog.close()

 11. Sound Direction Detect

11. Sound Direction Detect

The PiDog has a Sound Direction Sensor Module that detects where sound is coming from, and we can trigger it by clapping near it.

Using this module is as simple as calling these functions.

Pidog.ears.isdetected()

Returns True if sound is detected, False otherwise.

Pidog.ears.read()

This function returns the direction of the sound source, with a range of 0 to 359; if the sound comes from the front, it returns 0; if it comes from the right, it returns 90.

An example of how to use this module is as follows:

from pidog import Pidog

my_dog = Pidog()

while True:
 if my_dog.ears.isdetected():
 direction = my_dog.ears.read()
 print(f"sound direction: {direction}")

 12. Pat the PiDog’s Head

12. Pat the PiDog’s Head

The Touch Swich on the head of PiDog can detect how you touch it. You can call the following functions to use it.

Pidog.dual_touch.read()

	Touch the module from left to right (front to back for PiDog’s orientation), it will return "LS".

	Touch the module from right to left, it will return "RS".

	Touch the module If the left side of the module is touched, it will return "L".

	If the right side of the module is touched, it will return "R".

	If the module is not touched, it will return "N".

Here is an example of its use:

from pidog import Pidog
import time

my_dog = Pidog()
while True:
 touch_status = my_dog.dual_touch.read()
 print(f"touch_status: {touch_status}")
 time.sleep(0.5)

 13. More

13. More

The following address will explain the use of PiDog’s more basic functions:

	Vilib Library [https://vilib-rpi.readthedocs.io/en/latest/]

Vilib is a library developed by SunFounder for Raspberry Pi camera.

It contains some practical functions, such as taking pictures, video recording, pose detection, face detection, motion detection, image classification and so on.

	SunFounder Controller [https://docs.sunfounder.com/projects/sf-controller/en/latest/index.html]

SunFounder Controller is an application that allows users to customize the controller for controlling their robot or as an IoT platform.

 Hardware

Hardware

When you are writing code, you may need to know how each module works or the role of each pin, then please see this chapter.

In this chapter you will find a description of each module’s function, technical parameters and working principle.

	Robot HAT

	Camera Module

	Sound Direction Sensor

	6-DOF IMU

	Dual Touch Sensor

	11-channel Light Board

	Ultrasonic Module

	18650 Battery

 Robot HAT

Robot HAT

Robot HAT is a multifunctional expansion board that allows Raspberry Pi to be quickly turned into a robot.
An MCU is on board to extend the PWM output and ADC input for the Raspberry Pi,
as well as a motor driver chip, I2S audio module and mono speaker.
As well as the GPIOs that lead out of the Raspberry Pi itself.

It also comes with a Speaker,
which can be used to play background music, sound effects and implement TTS functions to make your project more interesting.

Accepts 7-12V PH2.0 5pin power input with 2 battery indicators, 1 charge indicator and 1 power indicator.
The board also has a user available LED and a button for you to quickly test some effects.

[image: ../_images/O1902V40RobotHAT.png]

	Power Port
	
	7-12V PH2.0 3pin power input.

	Powering the Raspberry Pi and Robot HAT at the same time.

	Power Switch
	
	Turn on/off the power of the robot HAT.

	When you connect power to the power port, the Raspberry Pi will boot up. However, you will need to switch the power switch to ON to enable Robot HAT.

	Type-C USB Port
	
	Insert the Type-C cable to charge the battery.

	At the same time, the charging indicator lights up in red color.

	When the battery is fully charged, the charging indicator turns off.

	If the USB cable is still plugged in about 4 hours after it is fully charged, the charging indicator will blink to prompt.

	Digital Pin
	
	4-channel digital pins, D0-D3.

	ADC Pin
	
	4-channel ADC pins, A0-A3.

	PWM Pin
	
	12-channel PWM pins, P0-P11.

	Left/Right Motor Port
	
	2-channel XH2.54 motor ports.

	The left port is connected to GPIO 4 and the right port is connected to GPIO 5.

	I2C Pin and I2C Port
	
	I2C Pin: P2.54 4-pin interface.

	I2C Port: SH1.0 4-pin interface, which is compatible with QWIIC and STEMMA QT.

	These I2C interfaces are connected to the Raspberry Pi’s I2C interface via GPIO2 (SDA) and GPIO3 (SCL).

	SPI Pin
	
	P2.54 7-pin SPI interface.

	UART Pin
	
	P2.54 4-pin interface.

	RST Button
	
	The RST button, when using Ezblock, serves as a button to restart the Ezblock program.

	If not using Ezblock, the RST button does not have a predefined function and can be fully customized according to your needs.

	USR Button
	
	The functions of USR Button can be set by your programming. (Pressing down leads to a input “0”; releasing produces a input “1”.)

	Battery Indicator
	
	Two LEDs light up when the voltage is higher than 7.6V.

	One LED lights up in the 7.15V to 7.6V range.

	Below 7.15V, both LEDs turn off.

	Speaker and Speaker Port
	
	Speaker: This is a 2030 audio chamber speaker.

	Speaker Port: The Robot HAT is equipped with onboard I2S audio output, along with a 2030 audio chamber speaker, providing a mono sound output.

 Camera Module

Camera Module

Description

[image: ../_images/camera_module_pic.png]
This is a 5MP Raspberry Pi camera module with OV5647 sensor. It’s plug and play, connect the included ribbon cable to the CSI (Camera Serial Interface) port on your Raspberry Pi and you’re ready to go.

The board is small, about 25mm x 23mm x 9mm, and weighs 3g, making it ideal for mobile or other size and weight-critical applications. The camera module has a native resolution of 5 megapixels and has an on-board fixed focus lens that captures still images at 2592 x 1944 pixels, and also supports 1080p30, 720p60 and 640x480p90 video.

Note

The module is only capable of capturing pictures and videos, not sound.

Specification

	Static Images Resolution: 2592×1944

	Supported Video Resolution: 1080p/30 fps, 720p/ 60fps and 640 x480p 60/90 video recording

	Aperture (F): 1.8

	Visual Angle: 65 degree

	Dimension: 24mmx23.5mmx8mm

	Weight: 3g

	Interface: CSI connector

	Supported OS: Raspberry Pi OS(latest version recommended)

Assemble the Camera Module

On the camera module or Raspberry Pi, you will find a flat plastic connector. Carefully pull out the black fixing switch until the fixing switch is partially pulled out. Insert the FFC cable into the plastic connector in the direction shown and push the fixing switch back into place.

If the FFC wire is installed correctly, it will be straight and will not pull out when you gently pull on it. If not, reinstall it again.

[image: ../_images/connect_ffc.png]
[image: ../_images/1.10_camera.png]

Warning

Do not install the camera with the power on, it may damage your camera.

 Sound Direction Sensor

Sound Direction Sensor

[image: ../_images/cpn_sound.png]
This is a sound direction recognition module. It is equipped with 3 microphones, which can detect sound sources from all directions, and is equipped with a TR16F064B, which is used to process sound signals and calculate the sound source direction. The minimum reconnaissance unit of this module is 20 degrees, and the data range is 0~360.

Data transmission process: the main controller pulls up the BUSY pin, and TR16F064B starts to monitor the direction. When 064B recognizes the direction, it will pull down the BUSY pin;
When the main control detects that BUSY is low, it will send 16bit arbitrary data to 064B (follow the MSB transmission), and accept 16bit data, which is the sound direction data processed by 064B.
After completion, the main control will pull the BUSY pin high to detect the direction again.

Specifications

	Power supply: 3.3V

	Communication: SPI

	Connector: PH2.0 7P

	Sound recognition angle range 360°

	Voice recognition angular accuracy ~10°

Pin Out

	GND - Ground Input

	VCC - 3.3V Power Supply Input

	MOSI - SPI MOSI

	MISO - SPI MISO

	SCLK - SPI clock

	CS - SPI Chip Select

	BUSY - busy detection

 6-DOF IMU

6-DOF IMU

[image: ../_images/cpn_imu.png]
The 6-DOF IMU is based on the SH3001.

SH3001 is a six-axis IMU (Inertial measurement unit). It integrates a three-axis gyroscope and a three-axis accelerometer. It is small in size and low in power consumption. It is suitable for consumer electronics market applications and can provide high-precision real-time angular velocity and linear acceleration data. The SH3001 has excellent temperature stability and can maintain high resolution within the operating range of -40°C to 85°C.

It is typically used in smartphones, tablet computers, multi-rotor drones, smart sweepers, page-turning laser pointers, AR/VR, smart remote controls, smart bracelets and other products.

Specifications

	Power Supply: 3.3V

	Communication: IIC

	Connector: SH1.0 4P

Pin Out

	GND - Ground Input

	VCC - Power Supply Input

	SDA - IIC SDA

	SCL - IIC SCL

 Dual Touch Sensor

Dual Touch Sensor

[image: ../_images/cpn_touchswitch.png]
Dual channel touch sensor, based on two ttp223 touch sensors.
When a touch signal is detected, the corresponding pin level will be pulled low.

TTP223 is a touch pad detector IC that provides 1 touch key.
The touch detection IC is specially designed to replace the traditional direct keys with different pad sizes.
It features low power consumption and wide operating voltage.

Specifications

	Power Supply: 2.0V~5.5V

	Signal Output: Digital signal

	Connector: SH1.0 4P

Pin Out

	GND - Ground Input

	VCC - Power Supply Input

	SIG1 - Touch signal 1, low level means touch

	SIG2 - Touch signal 2, low level means touch

 11-channel Light Board

11-channel Light Board

[image: ../_images/cpn_lightboard.png]
This is an 11-channel RGB LED module, which is equipped with 11 RGB LEDs controlled by the SLED1735 chip.

SLED1734 can drive up to 256 LEDs and 75 RGB LEDs.
In the LED matrix controlled by SLED1734, each LED has on/off, blinking, breathing light and automatic synchronization and many other functions.
The chip has built-in PWM (pulse width modulation) technology, which can provide 256 levels of brightness adjustment. It also has a 16-level dot correction function.

Specifications

	Power supply: 3.3V

	Communication: IIC

	Connector: SH1.0 4P

	LEDs: 3535 RGB LEDs

Pin Out

	GND - Ground Input

	VCC - Power Supply Input

	SDA - IIC SDA

	SCL - IIC SCL

 Ultrasonic Module

Ultrasonic Module

[image: ../_images/ultrasonic_pic.png]

	TRIG: Trigger Pulse Input

	ECHO: Echo Pulse Output

	GND: Ground

	VCC: 5V Supply

This is the HC-SR04 ultrasonic distance sensor, providing non-contact measurement from 2 cm to 400 cm with a range accuracy of up to 3 mm. Included on the module is an ultrasonic transmitter, a receiver and a control circuit.

You only need to connect 4 pins: VCC (power), Trig (trigger), Echo (receive) and GND (ground) to make it easy to use for your measurement projects.

Features

	Working Voltage: DC5V

	Working Current: 16mA

	Working Frequency: 40Hz

	Max Range: 500cm

	Min Range: 2cm

	Trigger Input Signal: 10uS TTL pulse

	Echo Output Signal: Input TTL lever signal and the range in proportion

	Connector: XH2.54-4P

	Dimension: 46x20.5x15 mm

Principle

The basic principles are as follows:

	Using IO trigger for at least 10us high level signal.

	The module sends an 8 cycle burst of ultrasound at 40 kHz and detects whether a pulse signal is received.

	Echo will output a high level if a signal is returned; the duration of the high level is the time from emission to return.

	Distance = (high level time x velocity of sound (340M/S)) / 2

[image: ../_images/ultrasonic_prin.jpg]

Formula:

	us / 58 = centimeters distance

	us / 148 = inch distance

	distance = high level time x velocity (340M/S) / 2

Application Notes

	This module should not be connected under power up, if necessary, let the module’s GND be connected first. Otherwise, it will affect the work of the module.

	The area of the object to be measured should be at least 0.5 square meters and as flat as possible. Otherwise, it will affect results.

 18650 Battery

18650 Battery

[image: ../_images/2battery.jpg]

	VCC: Battery positive terminal, here there are two sets of VCC and GND is to increase the current and reduce the resistance.

	Middle: To balance the voltage between the two cells and thus protect the battery.

	GND: Negative battery terminal.

This is a custom battery pack made by SunFounder consisting of two 18650 batteries with a capacity of 2000mAh. The connector is PH2.0-5P, which can be charged directly after being inserted into the Robot HAT.

Features

	Battery charge: 5V/2A

	Battery output: 5V/3A

	Battery capacity: 3.7V 2000mAh x 2

	Battery life: <90min

	Battery charge time: >130min

	Connector: PH2.0, 5P

 Appendix

Appendix

	Filezilla Software

	Get the IP address

	Install OpenSSH via Powershell

	PuTTY

 Filezilla Software

Filezilla Software

[image: ../_images/filezilla_icon.png]
The File Transfer Protocol (FTP) is a standard communication protocol used for the transfer of computer files from a server to a client on a computer network.

Filezilla is an open source software that not only supports FTP, but also FTP over TLS (FTPS) and SFTP. We can use Filezilla to upload local files (such as pictures and audio, etc.) to the Raspberry Pi, or download files from the Raspberry Pi to the local.

Step 1: Download Filezilla.

Download the client from Filezilla’s official website [https://filezilla-project.org/], Filezilla has a very good tutorial, please refer to: Documentation - Filezilla [https://wiki.filezilla-project.org/Documentation].

Step 2: Connect to Raspberry Pi

After a quick install open it up and now connect it to an FTP server [https://wiki.filezilla-project.org/Using#Connecting_to_an_FTP_server]. It has 3 ways to connect, here we use the Quick Connect bar. Enter the hostname/IP, username, password and port (22), then click Quick Connect or press Enter to connect to the server.

[image: ../_images/filezilla_connect.png]

Note

Quick Connect is a good way to test your login information. If you want to create a permanent entry, you can select File-> Copy Current Connection to Site Manager after a successful Quick Connect, enter the name and click OK. Next time you will be able to connect by selecting the previously saved site inside File -> Site Manager.

[image: ../_images/ftp_site.png]

Step 3: Upload/download files.

You can upload local files to Raspberry Pi by dragging and dropping them, or download the files inside Raspberry Pi
files locally.

[image: ../_images/upload_ftp.png]

 Get the IP address

Get the IP address

There are many ways to know the IP address, and two of them are listed as follows.

Checking via the router

If you have permission to log in the router(such as a home network), you can check the addresses assigned to Raspberry Pi on the admin interface of router.

The default hostname of the Raspberry Pi OS is raspberrypi, and you need to find it. (If you are using ArchLinuxARM system, please find alarmpi.)

Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry Pi. You can apply the software, Advanced IP scanner and so on.

Scan the IP range set, and the name of all connected devices will be displayed. Similarly, the default hostname of the Raspberry Pi OS is raspberrypi, if you haven’t modified it.

 Install OpenSSH via Powershell

Install OpenSSH via Powershell

When you use ssh <username>@<hostname>.local (or ssh <username>@<IP address>) to connect to your Raspberry Pi, but the following error message appears.

ssh: The term 'ssh' is not recognized as the name of a cmdlet, function, script file, or operable program. Check the
spelling of the name, or if a path was included, verify that the path is correct and try again.

It means your computer system is too old and does not have OpenSSH [https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse?tabs=gui] pre-installed, you need to follow the tutorial below to install it manually.

	Type powershell in the search box of your Windows desktop, right click on the Windows PowerShell, and select Run as administrator from the menu that appears.

[image: ../_images/powershell_ssh.png]

	Use the following command to install OpenSSH.Client.

Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0

	After installation, the following output will be returned.

Path :
Online : True
RestartNeeded : False

	Verify the installation by using the following command.

Get-WindowsCapability -Online | Where-Object Name -like 'OpenSSH*'

	It now tells you that OpenSSH.Client has been successfully installed.

Name : OpenSSH.Client~~~~0.0.1.0
State : Installed

Name : OpenSSH.Server~~~~0.0.1.0
State : NotPresent

Warning

If the above prompt does not appear, it means that your Windows system is still too old, and you are advised to install a third-party SSH tool, like PuTTY.

	Now restart PowerShell and continue to run it as administrator. At this point you will be able to log in to your Raspberry Pi using the ssh command, where you will be prompted to enter the password you set up earlier.

[image: ../_images/powershell_login.png]

 PuTTY

PuTTY

If you are a Windows user, you can use some applications of SSH. Here, we recommend PuTTY [https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html].

Step 1

Download PuTTY.

Step 2

Open PuTTY and click Session on the left tree-alike structure. Enter
the IP address of the RPi in the text box under Host Name (or IP
address) and 22 under Port (by default it is 22).

[image: ../_images/image25.png]
Step 3

Click Open. Note that when you first log in to the Raspberry Pi with
the IP address, there prompts a security reminder. Just click Yes.

Step 4

When the PuTTY window prompts "login as:", type in
"pi" (the user name of the RPi), and password: "raspberry"
(the default one, if you haven’t changed it).

Note

When you input the password, the characters do not display on window accordingly, which is normal. What you need is to input the correct password.

If inactive appears next to PuTTY, it means that the connection has been broken and needs to be reconnected.

[image: ../_images/image26.png]
Step 5

Here, we get the Raspberry Pi connected and it is time to conduct the next steps.

 Index

Index

 3. Quick Play with the App

3. Quick Play with the App

Now that your PiDog is all set up and raring to go, this section is perfect for those eager to dive in and explore all its features in a jiffy. We’ll walk you through the process of installing the app, seamlessly connecting your PiDog with your mobile device, and unleashing the myriad of fun functionalities it offers, all at your fingertips. By the end of this chapter, you’ll be confidently navigating and playing with your PiDog using your device. Let’s get started and immerse ourselves in the world of interactive robotics!

	Install sunfounder-controller module.

The robot-hat, vilib, and picar-x modules need to be installed first, for details see: 5. Install All the Modules(Important).

cd ~
git clone https://github.com/sunfounder/sunfounder-controller.git
cd ~/sunfounder-controller
sudo python3 setup.py install

	Run the following commands:

cd ~/pidog/bin
sudo bash pidog_app_install.sh

	Restart PiDog.

	Install SunFounder Controller [https://docs.sunfounder.com/projects/sf-controller/en/latest/] from APP Store(iOS) or Google Play(Android).

	Connect to pidog WLAN.

Now, connect your mobile device to the local area network (LAN) broadcast by the PiDog. This way, your mobile device and the PiDog will be on the same network, which will facilitate communication between the applications on your mobile device and the PiDog.

	Find pidog on the WLAN of the mobile phone (tablet), enter the password 12345678 and connect to it.

	The default connection mode is AP mode. So after you connect, there will be a prompt telling you that there is no Internet access on this WLAN network, please choose to continue connecting.

[image: ../_images/app_no_internet.png]

	Open the Sunfounder Controller APP. Click the + icon to add a remote.

[image: ../_images/app1.png]

	Preset controllers are available for some products, here we choose PiDog. Give it a name, or simply tap Confirm.

[image: ../_images/app_preset.jpg]

	Once inside, the app will automatically search for the Mydog. After a moment, you will see a prompt saying “Connected Successfully.”

[image: ../_images/app_auto_connect.jpg]

Note

	You can also manually click the [image: app_connect] button. Wait a few seconds, MyDog(IP) will appear, click it to connect.

[image: ../_images/sc_mydog.jpg]

	

	Run the Controller.

	When the “Connected Successfully” prompt appears, tap the ▶ button in the upper-right corner.

	The camera feed will appear on the APP, and now you can control your PiDog with these widgets.

[image: ../_images/sc_run.jpg]

Here are the functions of the widgets.

	A: Detect the obstacle distance, that is, the reading of the ultrasonic module.

	C: Turn on/off face detection.

	D: Control PiDog’s head tilt angle (tilt head).

	E: Sit.

	F: Stand.

	G: Lie down.

	I: Scratch PiDog’s head.

	N: Bark.

	O: Wag tail.

	P: Pant.

	K: Control PiDog’s movement (forward, backward, left, and right).

	Q: Controls the orientation of PiDog’s head.

	J: Switch to voice control mode. It supports the following voice commands:

	forward

	backward

	turn left

	turn right

	trot

	stop

	lie down

	stand up

	sit

	bark

	bark harder

	pant

	wag tail

	shake head

	stretch

	doze off

	push-up

	howling

	twist body

	scratch

	handshake

	high five

APP Program Configuration

You can input the following commands to modify the APP mode’s settings.

pidog_app <OPTION> [input]

	OPTION
	
	-h help : help, show this message

	start restart : restart pidog_app service

	stop : stop pidog_app service

	disable : disable auto-start app_controller program on bootstrap

	enable : enable auto-start app_controller program on bootstrap

	close_ap : close hotspot, disable auto-start hotspot on boot and switch to sta mode

	open_ap : open hotspot, enable auto-start hotspot on boot

	ssid : set the ssid (network name) of the hotspot

	psk : set the password of the hotspot

	country : set the country code of the hotspot

_images/app_auto_connect.jpg
Sit

Legs Movement

Distance

Bark

PiDog

N wag Tail

OFF

Face Detect...

O Ppant

C HeadRoll

Scratch

P Head Movement

Voice Control

J

_images/app_connect.jpg

_images/O1902V40RobotHAT.png
Left Motor
Port

12C Pin

SPI Pin

Chip Work
Indicator

UART Pin

Battery Indicator

Charge Indicator
User LED

12C Port

Power Indicator

aoaRAAn

RST Button

ppopgon
i i
1

USR Button

Right Motor
Port

PWM Pin

J

&

ADC Pin

=
I
!
{
I

Digital Pin

Type-C USB Port

Power Switch

Power Port

(7 ~12V)

_images/app1.png
@ T

SunFounder Controller

_images/auto_start.png
laicylraspherrypiz sudo bash pidog_app_install.sh ~
:cript version 1.

laisy

‘home /daisy

it:1 http://raspbian.raspherrypi.org/rasphian bullseye InRelease

{it:2 http://archive.raspberrypi.org/debian bullseye InRelease

Reading package 1ists... Done

Reading package lists_.. Done

Building dependency tree... Done

Reading state information .. Done

nsnasq is already the mewest version (2.85-1).

ostapd is already the mewest version (2i2.9.8°21).

he Following package was automatically installed and is no longer required:
ibfuse2

Jse *sudo apt autoremove’ to remove it.

3 upgraded, B newly installed, B to remove and 148 not upgraded.

Reading package lists... Done

Building dependency tree... Done

Reading state information .. Done

iptables—persistent is already the newest version <1.8.15).

etFilter-persistent is already the newest version (i.6.153.

he following package was automatically installed and is no longer required:
ibfuse2

Jse *sudo apt autoremove’ to remove it.

3 upgraded, B newly installed, B to remove and 148 not upgraded.

un—parts
run-parts

executing /usr/share/netfilter—persistent/plugins.d/15-ipdtables save
executing /usr/share/netfilter—persistent/plugins .d/25-ipétables save

A SR s s)

e e A e T) ot conti:) Mg -,
e e YRR

e

AR S et s e e
S e o
AT,

_images/bullseye_desktop.png
Wastebasket ar

_images/app_no_internet.png
Connected (nn Internet accecs)

5 This WLAN network has no Internet access. Connect anyway?

CANCEL

Saved, encrypted (no Internet access)

_images/app_preset.jpg
Pico 4WD Car V2 » ' - Pico 4WD Car

Template:

_images/calibration_1.png
pifipidogol:~/pidog/examples $ sudo python3 @_calibration.py

Calib

Press coresponding key to select servo,
[W] and [5] to adjust the servo

Lol
-1 D «[e]
[218] 31141
[611s1 u 71181
=1
7
1~8: legservos MW: increase angle
9 : Head yaw & S: decreases angle
© : Head roll o
- ¢ Head pitch ¢
= : Tail

_images/camera_module_pic.png
H SunFéunder Ga o
Revilj "}f

‘ = O H“"l (. ,__g;]

_images/config_interface.png
Raspberry Pi Software Configuration Tool (raspi-config)

1 System Options Configure system settings

2 Display Options Configure display settings

3 Interface Opti Con ure connections to peripherals
4 Performance Options Configure performance settings

5 Localisation Options Configure language and regional settings
6 Advanced Options Configure advanced settings

8 Update Update this tool to the latest version

5

About raspi-config Information about this configuration tool

<Select> <Finish>

nav.xhtml

 Table of Contents

 		
 SunFounder Raspberry Pi Robot - PiDog

 		
 Assemble Videos

 		
 Play with Python

 		
 1. Quick Guide on Python

 		
 1. What Do We Need?

 		
 2. Installing the OS

 		
 3. Power Supply for Raspberry Pi (Important)

 		
 4. Setting Up Your Raspberry Pi

 		
 5. Install All the Modules(Important)

 		
 6. Check I2C and SPI Interface

 		
 7. Servo Adjust(Importtant)

 		
 2. Calibrate the PiDog

 		
 3. Fun Python Projects

 		
 1. Wake Up

 		
 2. Function Demonstration

 		
 3. Patrol

 		
 4. Response

 		
 5. Rest

 		
 6. Be Picked Up

 		
 7. Face Track

 		
 8. Push Up

 		
 9. Howling

 		
 10. Balance

 		
 11. Play PiDog with Keyboard

 		
 12. Play PiDog with APP

 		
 13. Ball Track

 		
 4. Easy Coding

 		
 1. PiDog Initialization

 		
 2. Leg Move

 		
 3. Head Move

 		
 4. Tail Move

 		
 5. Stop All Actions

 		
 6. Do Preset Action

 		
 7. PiDog Speak

 		
 8. Read Distance

 		
 9. PiDog RGB Strip

 		
 10. IMU Read

 		
 11. Sound Direction Detect

 		
 12. Pat the PiDog’s Head

 		
 13. More

 		
 Hardware

 		
 Robot HAT

 		
 Camera Module

 		
 Sound Direction Sensor

 		
 6-DOF IMU

 		
 Dual Touch Sensor

 		
 11-channel Light Board

 		
 Ultrasonic Module

 		
 18650 Battery

 		
 Appendix

 		
 Filezilla Software

 		
 Get the IP address

 		
 Install OpenSSH via Powershell

 		
 PuTTY

_images/cpn_lightboard.png
464623A_Y230

_images/cpn_sound.png
°
=
2
3
o

o
w
c
@
w

und Direction

_images/connect_ffc.png
B P Bt

Find the FFC slot Pull up the division plate Insert the FFC cable Push to fasten the
division plate

_images/cpn_imu.png

_images/filezilla_icon.png

_images/ftp_site.png
General Advanced TransferSettings Charset

botoot[SFTP - S Fi TarstrPrtoce

How [1s2teied0 Jpo| |

Logon Type: |Normal N

e @]

Password: [sesessses]
Newsite New folder
NewBookmark | | Rename
Delte Duplicate

Comnect oK Cancel

_images/cpn_touchswitch.png

_images/filezilla_connect.png
Sftp://pi@192.168.18.40 - FleZilla
File Edit View Transfer Sever Bookmarks Help

TRoROWLIFTAH

Host: [sftpi// Username: [pi

| Password: |

Status: Connected to 192.166.18.40
Status: Retrieving directory it
Status: Listing directory /home/pi
Status: Directory lsting of "/home/pi" successful

_images/i2s.png
File "/usr/local/lib/python3.7/dist-packages/rabot_hat-1.0.0-py3.7.eqg/rabot_bl
ac/zobot.py", line 91, in serve move

Time.sleep (step_delay)
xeyboardnterrups

[pieraspberrypi:~/pisioth § sudo bash i2samp.sh
suppore for your cperating system is experimental. Please visit
[rorums.adafruic.com if you experience issues with this product.

This script will install everything needed to use
125 amplifier

Warning —-—-

a1ways be careful when running scripts and commands
copied from the internet. Ensure they are from a
crusted source.

1 you want to see what this script does before
running it, you should run:
\curl -sS github.com/adafruit/Raspberry-Pi-Installer-Scripts/i2samp

Do you wish to continue? [y/N] I

_images/i2s2.png
running it, you should run:
\curl -sS github.com/adafruit/Raspberry-Pi-Installer-Scripts/i2samp

Do you wish to continue? [y/N] ¥

[checking nardware requirements

[2ading Device Tree Entry to /boot/config.txt
[acoveriay=niriverry-dac

atoverlay=i2s-mmap

commenting out Blacklist entry in
/etc/moaprobe. d/raspi-blacklist.cont

Disabling default sound driver
R

1nstalling aplay systemd unic
[vou can optionally activate '/dev/zero’ playback in

che background at boot. This will remove all
popping/clicking but does use some processor time.

[accivate '/dev/zero' playback in background? [RECOMMENDED] [v/N] [l

_images/i2s3.png
/etc/modprobe. d/raspi-blacklist.cont

[D152b11ng defaulc souna ariver
contiguring sound cutput

1nstalling aplay systemd unic
[vou can optionally activate '/dev/zero’ playback in
[che background at boot. This will remove all
popping/clicking but does use some processor time.

activate '/dev/zero’ playback in background? [RECOMMENDED] [v/N] ¥

created symlink /etc/systemd/system/multi-user.target.wants/aplay.service - /etd]
/systena/systen/aplay. service.

211 done:!
50y your new 12s amplifier!

some changes made to your system require
[vour computer to reboot to take effect.

[ou1d you like to reboot now? [y/N) I

_images/image10.jpeg
Choice of RAM

More powerful
processor

Power
sueply GIGABIT
ETHERNET
MICRO HDMI PORTS ‘\ usB3

Supporting 2 x 4K displays usB 2

_images/image25.png
#R PuTTY Configuration

Category:

- Session Basic options for your PuTTY session
Logging

L oot ‘Specify the destination you wantto connectto

I Keyboard HostName (or IP address) Port

Bell 192.168.0.101 2

i Features. e)

= Windoy ©Raw () Telnet ()Riogin © SSH

Appearance
Behaviour Load, save or delete a stored session
Translation
Seoction Saved Sessions
Colours

- Connection Defaul Setings
Data 02
Proxy
Telnet
Riogin
ssH
Serial

Close window on exit
JAways (O)Never) Only on clean exit

_images/image-spi1.png
——— Raspberry Pi Software Configuration Tool (raspi-config) ———

11 Legacy Camera Enable/disable legacy camera support

12 SsH Enable/disable remote command line access using SSH
13 VNG Enable/disable graphical remote access using RealVNC
15 12C Enable/disable automatic loading of 12C kernel module
16 Serial Port Enable/disable shell messages on the serial connection
17 1-wire Enable/disable one-wire interface

18 Remote GPIO Enable/disable remote access to GPIO pins

<select> <Back>

_images/image-spi2.png
Would you Like the SPI interface to be enabled?

<No>

_images/image283.png
Raspberry Pi Software Configuration Tool (raspi-config)

11 Legacy Camera Enable/disable legacy camera support

12 SsH Enable/disable remote command line access using SSH
13 WNC Enable/disable graphical remote access using RealVNC
14 SPT Enable/disable automatic loading of SPI kernel module

16 Serial Port Enable/disable shell messages on the serial connection
17 1-Wire Enable/disable one-wire interface
18 Remote GPIO Enable/disable remote access to GPIO pins

<select> <Back>

_images/image284.png
Would you like the ARM I2C interface to be enabled?

<No>

_images/image26.png
pieio2. 16w T2ses pmuom:raspberry

[The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

[permitted by applicable law.
Last 1ogin: Tue Feb 21 02:54:55 2017

ieraspbersypi:- s I

_images/image282.png
Raspberry Pi Software Configuration Tool (raspi-config)

System Options Configure system settings
2 Display Options Configure display settings

4 Performance Options Configure performance settings
5 Localisation Options Configure language and regional settings
6 Advanced Options Configure advanced settings

8 Update Update this tool to the latest version

9 About raspi-config Information about this configuration tool

<select> <Finish>

_images/mac_vnc14.png
(] [mac — -bash — 80x24

Last login: Tue Jan 3 16:25:07 on ttyseee 8
—bash: $: command not found

The default interactive shell is now zsh.

To update your account to use zsh, please run ‘chsh —-s /bin/zsh".

For more details, please visit https://support.apple.com/kb/HT208050.
MacdeMBP:~ mac$[ssh pi@raspberrypi.localll

_images/os_choose_device.png
8, Raspbery Pi Imager v1.8.4

Nofiltering
‘Show every possible image

Raspbery Pi5.
‘The latest Raspberry Pi, Raspberry Pi 5

Raspbeny Pi4
Models B, 400, and Compute Modules 4,45

Raspberry Pi Zero 2 W
The Raspberry Pi Zero 2 W

_images/insert_sd_card.png

_images/os_click_yes.png
Use 0S customisation?

Would you like to apply OS customisation settings?

EDITSETTIN NO, CLEAR SETTINGS

_images/os_continue.png
All existing data on 'Generic STORAGE DEVICE USB Device' will be
erased.

Are you sure you want to continue?

_images/os_choose_os.png
& Raspberry Pi Imager v1.8.1 - o X

Operating System x

Raspberry Pi OS (64-bit)
A port of Debian Bookworm with the Respberry Pi Desktop (Recommended)
Released: 20231205
Online - 1.1 68 domload

Raspberry Pi S (32-bit)
A port of Debian Bookworm with the Raspberry Pi Desktop
Released: 20231205

Online - 1.2 68 domload

Released: 2023-12-05
Online - 0.9 GB download

Other Raspberry Pi OS based images

_images/os_choose_sd.png
& Raspberry PiImager v1.8.1 - o X

Storage X

Mounted as D:\

‘ '.I_' ‘Generic STORAGE DEVICE USB Device-7.9 GB

_images/os_finish.png
Raspberry Pi

Write Successful

Raspberry Pi OS (64-bit) has been witten to Generic STORAGE

DEVICE USB Device

You can now remove the SD card from the reader

NEXT

_images/os_enable_ssh.png
¥ 05 Customisation -

GENERAL SERVICES OPTIONS

able SSH
(@ Use password authentication /

(O Allow public-key authentication only

Set authorized keys for 'pi’

RUN SSH-KEYGEN

_images/os_enter_setting.png
Use 0S customisation?

2 Would you like to apply OS customisation settings?

_images/os_open_imager.png
B Raspbery Pilmager v1.81

@ Raspberry Pi

_images/os_set_hostname.png
& s Customisation -

GENERAL SERVICES OPTIONS

Sethostname: faspberrypi| /Jm.

‘Set username and password

Usernase:

Password:

_images/os_info.png
Windows protected your PC

Microsoft Defender SmartScreen prevented an unrecognized app from
starting. Running this app might put your PC at risk.
More info

_images/os_install_imager.png
Download for Windows

Download for macOS

Download for Ubuntu for x86

_images/pidog.jpg

_images/powershell_login.png
indovs Povershell
opyright (C) Microsoft Corporation. All rights reserved.

S C:\Windovs\systen32)| ssh pi@raspberrypi. local
key_load public: invalid tormat
Load key “C:\\Users\\Daisy/. ssh/;
pilraspberrypi. local’ s passvord
Linux raspberzypi 5. 15.61—vT+ #1579 SIP Fri Aug 26 11:

walid fornat

159 BST 2022 arnv7l

e prograns included with the Debian GNU/Linux system are free software
the exact distribution terns for each progran are described in the
individual files in /usr/share/doc/*/copyrieht.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
pernitted by applicable lav.
B rshed Tl 10 2

112 2023 £ron 192.168.6.149

_images/os_set_username.png
¥ 05 Customisation -

GENERAL SERVICES OPTIONS

Sethostname: raspberrypi ~local
‘Set username and password

Usornaso: Pi

e
[

_images/os_set_wifi.png
onfigure wireless LAN

Password:

Show password Hidden SSID
prcless Lt comiry: 6B €+ /

Setlocale settings

Tise zone: Asia/Shanghai

Keyboard layout: US

s —
Vel

_images/powershell_ssh.png
3 Windows PowerShell
App

Apps
@ Microsoft PowerPoint 2010

» Windows PowerShell (x86)

% 24

Run as administrator
‘Open file location
Pin to start

Pin to taskbar

_images/powershell_ssh1.png
3 Window