

SunFounder Pico-4wd Car Kit

[image: _images/pico-4wd.png]
The Pico-4wd is a Raspberry Pi Pico based, cool, robot car kit that everyone can have.

Equipped with greyscale sensor module and ultrasonic module, it can perform line tracking, cliff detection, follow and obstacle avoidance functions. The RGB boards assembled at the bottom and rear of the car make it the coolest spirit in the dark.

We have provided sample code based on MicroPython so you can get started quickly.

In addition, you can also use an app - SunFounder Controller - to DIY your own control methods! Let’s Play!

Here is the Email: cs@sunfounder.com.

About the display language

In addition to English, we are working on other languages for this course. Please contact service@sunfounder.com if you are interested in helping, and we will give you a free product in return.
In the meantime, we recommend using Google Translate to convert English to the language you want to see.

The steps are as follows.

	In this course page, right-click and select Translate to xx. If the current language is not what you want, you can change it later.

[image: _images/translate1.png]

	There will be a language popup in the upper right corner. Click on the menu button to choose another language.

[image: _images/translate2.png]

	Select the language from the inverted triangle box, and then click Done.

[image: _images/translate3.png]
Source Code

SunFounder Pico-4wd Car Code [https://github.com/sunfounder/pico_4wd_car/archive/refs/heads/main.zip]

Or check out the code at Pico-4wd Car - GitHub

	Get Started
	1. Install Thonny IDE

	2. Install MicroPython on Your Pico

	3. Upload the Libraries to Pico

	4. Test the Modules

	5. Assemble the Car

	6. Examples

	Appendix
	Introduction to Raspberry Pi Pico

	Introduction to Pico RDP

	Schematic and Structure Drawing

	Thonny IDE Introduction

	FAQ
	Q1: NO MicroPython(Raspberry Pi Pico) Interpreter Option on Thonny IDE?

	Q2: Cannot open Pico code or save code to Pico via Thonny IDE?

	Thank You

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes, under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.

Get Started

In this section, you will learn all the hardware and software configurations needed to get Pico-4wd up and running, and it is recommended that you read them in order.

	1. Install Thonny IDE

	2. Install MicroPython on Your Pico

	3. Upload the Libraries to Pico

	4. Test the Modules
	Power up the Pico RDP

	Test the Motors

	Test the Ultrasonic Module

	Test the RGB Boards

	Test the Grayscale Sensor Module

	Test the Speed Module

	Test the Servo

	5. Assemble the Car

	6. Examples
	Motor Calibration

	Don’t Push Me

	Line Track

	Follow Your Hand

	Obstacle Avoid

	Control the Car with APP

1. Install Thonny IDE

Before you can start to program Pico with MicroPython, you need an integrated development environment (IDE), here we recommend Thonny. Thonny comes with Python 3.7 built in, just one simple installer is needed and you’re ready to learn programming.

Note

Since the Raspberry Pi Pico interpreter only works with Thonny version 3.3.3 or later, you can skip this chapter if you have it; otherwise, please update or install it.

	You can download it by visiting the Thonny website. Once open the page, you will see a light gray box in the upper right corner, click on the link that applies to your operating system.

[image: ../_images/download_thonny.png]

	The installers have been signed with a new certificate which hasn’t built up its reputation yet. You may need to click through your browser warning (e.g. choose “Keep” instead of “Discard” in Chrome) and Windows Defender warning (More info ⇒ Run anyway).

[image: ../_images/install_thonny1.png]

	Next, click Next and Install to finish installing Thonny.

[image: ../_images/install_thonny6.png]

2. Install MicroPython on Your Pico

MicroPython is a software implementation of a programming language largely compatible with Python 3, written in C, that is optimized to run on a microcontroller.

MicroPython consists of a Python compiler to bytecode and a runtime interpreter of that bytecode. The user is presented with an interactive prompt (the REPL) to execute supported commands immediately. Included are a selection of core Python libraries; MicroPython includes modules which give the programmer access to low-level hardware.

	Reference: MicroPython - Wikipedia

Now come to install MicroPython into Raspberry Pi Pico, Thonny IDE provides a very convenient way for you to install it with one click.

Note

If you do not wish to upgrade Thonny, you can use the Raspberry Pi official method by dragging and dropping an rp2_pico_xxxx.uf2 file into Raspberry Pi Pico.

	Open Thonny IDE.

[image: ../_images/set_pico1.png]

	Press and hold the BOOTSEL button and then connect the Pico to computer via a Micro USB cable. Release the BOOTSEL button after your Pico is mount as a Mass Storage Device called RPI-RP2.

[image: ../_images/bootsel_onboard.png]

	In the bottom right corner, click the interpreter selection button and select Install Micropython.

Note

If your Thonny does not have this option, please update to the latest version.

[image: ../_images/set_pico2.png]

	In the Target volume, the volume of the Pico you just plugged in will automatically appear, and in the Micropython variant, select Raspberry Pi.Pico/Pico H.

[image: ../_images/set_pico3.png]

	Click the Install button, wait for the installation to complete and then close this page.

[image: ../_images/set_pico4.png]

Congratulations, now your Raspberry Pi Pico is ready to go.

3. Upload the Libraries to Pico

Before using Pico-4wd Car, you need to upload its related libraries in Raspberry Pi Pico.

	Download the relevant code from the link below.

	SunFounder Pico-4wd Car Code [https://github.com/sunfounder/pico_4wd_car/archive/refs/heads/main.zip]

	Open Thonny IDE and plug the Pico into your computer with a micro USB cable and click on the “MicroPython (Raspberry Pi Pico).COMXX” interpreter in the bottom right corner.

[image: ../_images/sec_inter.png]

	In the top navigation bar, click View -> Files.

[image: ../_images/th_files.png]

	Switch the path to the folder where you downloaded the code package [https://github.com/sunfounder/pico_4wd_car/archive/refs/heads/main.zip] before, and then go to the pico_4wd_car_main/libs folder.

[image: ../_images/th_path.png]

	Select these 3 files, right-click and click Upload to, it will take a while to upload.

[image: ../_images/th_upload.png]

	Now you will see the files you just uploaded inside your drive Raspberry Pi Pico.

[image: ../_images/th_done.png]

4. Test the Modules

This chapter is suitable for usability testing of the modules before assembly; or for final commissioning and maintenance of the Pico-4wd after assembly has been completed.

Power up the Pico RDP

In order to make the module work, you need to power up the Pico RDP and turn the power switch to ON.

[image: ../_images/wiring_test_battery.png]

Test the Motors

	Connect the 4 motors according to the diagram below.

[image: ../_images/wiring_test_motor.png]

	Select Correct Interpreter

Plug the Pico into your computer with a micro USB cable and select the “MicroPython (Raspberry Pi Pico).COMXX” interpreter in the bottom right corner.

[image: ../_images/sec_inter.png]

	Go to the pico_4wd_car_main/tests path and double click on test_motor.py to open it.

[image: ../_images/code_test_motor.png]

	Click the Run current script button or just press F5 to run it.

[image: ../_images/run_test_motor.png]

Now, you can see the four motors work in a regular pattern. If you complete the assembly, this code will make the Pico-4wd perform five movements: forward, backward, left, right and stop.

Test the Ultrasonic Module

	Connect the ultrasonic module as shown below.

[image: ../_images/wiring_test_ultrasonic.png]

	Run the test_sonar.py file under the path pico_4wd_car_main/tests.

[image: ../_images/run_test_sonar.png]

After running the code, the distance of ultrasonic detection will be displayed in the Shell. If the distance changes when your hand is in front of the ultrasonic module, the module is working properly.

Test the RGB Boards

	As shown below, connect the 3 RGB boards.

[image: ../_images/wiring_test_rgb.png]

	Run the test_light.py file in pico_4wd_car_main/tests.

[image: ../_images/run_test_light.png]

After the code is run, the 24 LEDs (all on the 3 RGB boards) to emit red, green, blue and white light in turn.

Test the Grayscale Sensor Module

	Diagrammatically connect the Grayscale Sensor Module.

[image: ../_images/wiring_test_3ch.png]

	Run the test_grayscale.py file in pico_4wd_car_main/tests.

[image: ../_images/run_test_grayscale.png]
Upon running, you will see that the values in the Shell change when you place the grayscale module at a height of about 1cm above the different surfaces, indicating that it is working properly.

In general, the value for white surfaces > the value for black surfaces > the value for overhanging (grayscale module 10cm above the ground).

	Because light intensities differ in different environments, the factory-set contrast may not be suitable for your current environment, which means the grayscale module cannot identify white and black lines well, so it needs to be calibrated.

	Tape a small piece of black electrical tape to the ground or table.

	Hold the grayscale module 1 cm above the table (this is about the same height as after assembly, so you can use it directly after calibration).

	Keep test_grayscale.py running, then use a screwdriver to adjust the potentiometer on the grayscale module until the values printed on the Shell are relatively far apart. Based on the actual situation, your values should differ from mine.

[image: ../_images/cali_gray.png]

Test the Speed Module

	Follow the diagram below to connect the Speed Module.

[image: ../_images/wiring_test_speed.png]

	Run the test_speed.py file in pico_4wd_car_main/tests.

Note

The Thonny IDE contains a line graph tool, please open it by clicking View > Plotter in the navigation bar to help you see how the printed values are changing.

[image: ../_images/run_test_speed.png]

After the code runs, when you back and forth put the jammed paper into the U-shaped slot on the speed module/take it out.
The Shell in Thonny IDE will print the current speed.

If you have already mounted it, this code will make the Pico-4wd move forward at variable speed and print out the motor power (as a percentage) and the travel speed (cm/s).
To use it you should hover the car so that the motor rotation is not obstructed.

Test the Servo

	Connect the servo according to the following diagram.

[image: ../_images/wiring_test_servo.png]

	Run the test_servo.py file in pico_4wd_car_main/tests.

[image: ../_images/run_test_servo.png]

Insert a rocker arm first to observe the rotation of the servo. After clicking on the Run button, the servo will rotate left and right once and then stop at 0°.

Note

For the next chapter, 5. Assemble the Car, the servo must be held at 0°, so after this code run, do not turn the servo shaft until the car is complete.

In the event that you accidentally turn the servo shaft, remove the rocker arm, run this code again, and then reassemble the servo.

5. Assemble the Car

Note

When you assemble the ultrasonic module, you need to keep the servo at 0°, which is done in Test the Servo.

If you accidentally turn the servo shaft, please take down the rocker arm, run test_servo.py code again, and then continue to assemble.

	(PDF)Pico-4wd Assemble Instruction [https://github.com/sunfounder/sf-pdf/raw/master/assembly_file/a0000648-pico-4wd.pdf]

6. Examples

Here are some interesting and useful Pico-4wd projects you can follow the tutorials to accomplish.

The flowcharts in each examples and the API documentation can help you better understand the internal programming principles.

	Motor Calibration

	Don’t Push Me

	Line Track

	Follow Your Hand

	Obstacle Avoid

	Control the Car with APP

Motor Calibration

Because of assembly methods and other reasons, your motor may still need a calibration direction. Otherwise, when the car moves forward, it may turn left, turn right, or even go backwards. Please follow the following steps to complete the calibration.

How to do？

	Select Correct Interpreter. Plug the Pico into your computer with a micro USB cable and select the “MicroPython (Raspberry Pi Pico).COMXX” interpreter in the bottom right corner.

[image: ../_images/sec_inter.png]

	Go to the pico_4wd_car/examples path and double click on move_forward.py to open it. This is a very simple example, which will let the car go forward.

[image: ../_images/move_forward.png]

	Observe whether the wheels of the car are driving forward and marked the wrong motor.

	Open the pico_4wd.py file that was uploaded to the pico before, modify the wrong motor’s dir to reverse the value and save it.

[image: ../_images/rdp_dir.png]

	Run again move_forward.py, if the car is driving correctly, the calibration is completed.

Don’t Push Me

[image: ../_images/example_cliff.png]
Let us give Pico-4wd a little self-protection awareness and let it learn to use its own grayscale module to avoid rushing down the cliff.

In this example, the car will be dormant. If you push it to a cliff, it will be awakened urgently, then back up, and shake its head to express dissatisfaction.

How to do？

	Select Correct Interpreter

Plug the Pico into your computer with a micro USB cable and select the “MicroPython (Raspberry Pi Pico).COMXX” interpreter in the bottom right corner.

[image: ../_images/sec_inter.png]

	Go to the pico_4wd_car_main/examples path and double click on donot_push_me.py to open it.

[image: ../_images/do_push1.png]

	Click the Run current script button or just press F5 to run it.

[image: ../_images/run_donot_push.png]
After the code runs, if you push it to a cliff, it will be awakened urgently, then back up, and shake its head to express dissatisfaction.

Note

If the result is not satisfactory, please modify the fourth line car.GRAYSCALE_EDGE_REFERENCE = 1000.

This is a threshold that tells the car if the grayscale sensor detected values are below 1000, then it should be considered a cliff and can move backward.

This threshold can be obtained in the Test the Grayscale Sensor Module section, for example, in my test, the detected cliff value is basically around 700, so here it is set to 1000, as long as it is lower than 1000, it can be considered to detect a cliff.

	To enable Pico-4wd to run this code on boot, you need to save donot_push_me.py to the Raspberry Pi Pico as main.py, as follows.

	Stop the script from running and click File -> Save as.

[image: ../_images/do_push5.png]

	Select Raspberry Pi Pico in the popup window that appears.

[image: ../_images/do_push2.png]

	Set the file name to main.py.

[image: ../_images/do_push3.png]

	After clicking OK, the Raspberry Pi Pico will have an additional main.py file.

[image: ../_images/do_push4.png]

	Afterwards, you can unplug the USB cable, turn on the power switch on the car, and the script main.py will begin running.

How it Work?

[image: ../_images/flowchart_donot_push_me.png]

Line Track

[image: ../_images/example_line.png]
Let Pico-4wd walk on its exclusive avenue! Tape a line on a light-colored ground (or table) with black insulating tape. Run this script and you will see Pico-4wd track the line to forward.

Warning

When pasting this line, there should be no sharp turns so that the car does not drive off the path.

How to do?

	Open the line_track.py file under the path of pico_4wd_car_main\examples.

[image: ../_images/line_track1.png]

	The following value should be modified based on the results of the Test the Grayscale Sensor Module section. It should be between the values of black and white surfaces. For example, in my tests, black surfaces generally around 3000 and white surfaces are around 20000, so 10000 is the appropriate threshold value. According to the actual situation, you can modify it to other values according to the actual situation.

car.GRAYSCALE_LINE_REFERENCE = 10000

	Click File -> Save as or press Ctrl+Shift+S, and then select Raspberry Pi Pico in the popup window that appears.

[image: ../_images/line_track2.png]

	Set the file name to main.py. If you already have the main.py file in your Pico, it will prompt to overwrite the main.py file.

[image: ../_images/line_track3.png]

#. Now you can unplug the USB cable, place the car on the taped line, turn on the power switch and it will track the line. The script also includes some lighting effects: when the Pico-4wd is going straight, the taillight (the RGB panel on the tail) will light up green; when turning, one side of the taillight will light up yellow.
During sharp turns, one side of the taillight will light up red.

How it Works?

[image: ../_images/flowchart_line_track.png]

Follow Your Hand

[image: ../_images/example_follow.png]
Here, Pico-4wd will follow your hand moving forward.

How to do?

	Open the follow_hand.py file under the path of pico_4wd_car_main\examples.

[image: ../_images/bull_fight1.png]

	Click File -> Save as or press Ctrl+Shift+S to save donot_push_me.py to the Raspberry Pi Pico as main.py.

[image: ../_images/bull_fight2.png]

	Unplug the USB cable and turn on the power switch. When you put your hand in front of it, it will follow.

How it works?

[image: ../_images/flowchart_bull_fight.png]

Obstacle Avoid

[image: ../_images/example_avoid.png]
Let Pico-4wd do a challenging task: automatically avoid obstacles! When an obstacle is detected, instead of simply backing up, the radar scans the surrounding area and finds the widest way to move forward.

How to do?

	Open the obstacle_avoid.py file under the path of pico_4wd_car_main\examples.

[image: ../_images/obs_avoid1.png]

	Click File -> Save as or press Ctrl+Shift+S to save donot_push_me.py to the Raspberry Pi Pico as main.py.

[image: ../_images/obs_avoid2.png]

	Unplug the USB cable and turn on the power switch. When you place it on the ground, it avoids the obstacles and keeps going.

How it Works?

[image: ../_images/flowchart_obstacle_avoid.png]

Control the Car with APP

This section will guide you through building a remote project using the Sunfounder Controller APP, which means you can use your phone/tablet to control your Pico-4wd car.

1. Setup SunFounder Controller

	Install SunFounder Control APP from APP Store(iOS) or Google Play(Android).

	Open SunFounder Controller and click on the + to create a new controller.

[image: ../_images/app_control13.png]

	We have preset controller for Pico-4wd, you can choose it directly.

[image: ../_images/app_control4.png]

	Define a name for this Controller and click Confirm.

[image: ../_images/app_control5.png]

	Now that you are inside this preset controller, click the Grayscale Values widget’s Settings button to change its reference value.

[image: ../_images/app_control7.png]

	The following thresholds should be modified based on the values obtained in the Test the Grayscale Sensor Module section.

[image: ../_images/app_control8.png]

	Once you have set it up, click the Save button in the upper right corner to save it. If you need to make any changes, click the Edit button again.

[image: ../_images/app_control9.png]

2. Make the app_control.py file run on boot

In order for Pico-4wd to be able to run specific scripts without being connected to a computer, and then be controlled by SunFounder Controller. You need to save the specific script to the Raspberry Pi Pico with the name main.py, as follows.

	Open the app_control.py file under the path of pico_4wd_car_main\examples, then click “run current script” button or just press F5 to run it.

[image: ../_images/app_control11.png]

	If you run the code, you will see this IP in the shell; remember it, as it may be used to connect to SunFounder Controller later on.

[image: ../_images/app_control14.png]

	Stop the script from running and click File -> Save as or press Ctrl+Shift+S, then select Raspberry Pi Pico in the popup window that appears. If this pop-up does not appear on yours, make sure you have plugged the Pico into your computer with a micro USB cable and select the “MicroPython (Raspberry Pi Pico).COMXX” interpreter in the bottom right corner.

[image: ../_images/app_control21.png]

	Set the file name to main.py. If you already have the same file in your Pico, it will prompt to overwrite it.

[image: ../_images/app_control31.png]

Now you can unplug the USB cable, turn on the power switch of Pico-4wd, and Pico-4wd will automatically run this main.py script.

3. Connect to Pico 4WD car

	Find my_4wd_car on the WLAN of the mobile phone (tablet), enter the password 12345678 and connect to it.

[image: ../_images/seach_wifi1.jpg]

	The default connection mode in app_control.py is AP mode. So after you connect, there will be a prompt telling you that there is no Internet access on this WLAN network, please choose to continue connecting.

[image: ../_images/connect_anyway1.png]

	Now go back to SunFounder Controller, when you click the Connect button, it will automatically search for robots nearby.

[image: ../_images/app_control10.png]

	Click on the my_4wd_car.

[image: ../_images/app_control111.png]

Note

	You need to make sure that your mobile device is connected to the my_4wd_car LAN.

	If it doesn’t search automatically, you can also manually enter your car’s IP to connect.

[image: ../_images/app_control6.png]

Once you click on my_4wd_car, the message “Connected Successfully” will appear and the product name will appear in the upper right corner.

4. Run this Controller

Click the Run button to start the controller.

[image: ../_images/app_control12.png]
Here are the functions of the widgets.

	A: Drive the car at 0~100% power. Before controlling the car movement with the K widget, you must set the A widget to 30% or more.

	B: The display of the car moving speed, unit: cm/s.

	C: Display of car speed in digital format.

	D: Radar display of obstacles detected by ultrasonic module.

	G: Turn on/off WS2812 RGB board.

	H: Show the data of the three sensors on the grayscale module, which have three states: black block: black line detected; white: white detected; exclamation point: cliff detected.

	K: Control forward, backward, left, and right motions of the car.

Appendix

	Introduction to Raspberry Pi Pico

	Introduction to Pico RDP

	Schematic and Structure Drawing

	Thonny IDE Introduction

Introduction to Raspberry Pi Pico

[image: ../_images/pico.jpg]
The Raspberry Pi Pico is a microcontroller board based on the Raspberry Pi RP2040 microcontroller chip.

Whether you want to learn the MicroPython programming language, take the first step in physical computing, or want to build a hardware project, Raspberry Pi Pico –
and its amazing community – will support you every step of the way. In the project, it can control anything, from LEDs and buttons to sensors, motors, and even other microcontrollers.

Features

	21 mm × 51 mm form factor

	RP2040 microcontroller chip designed by Raspberry Pi in the UK

	Dual-core Arm Cortex-M0+ processor, flexible clock running up to 133 MHz

	264KB on-chip SRAM

	2MB on-board QSPI Flash

	26 multifunction GPIO pins, including 3 analog inputs

	2 × UART, 2 × SPI controllers, 2 × I2C controllers, 16 × PWM channels

	1 × USB 1.1 controller and PHY, with host and device support

	8 × Programmable I/O (PIO) state machines for custom peripheral support

	Supported input power 1.8–5.5V DC

	Operating temperature -20°C to +85°C

	Castellated module allows soldering direct to carrier boards

	Drag-and-drop programming using mass storage over USB

	Low-power sleep and dormant modes

	Accurate on-chip clock

	Temperature sensor

	Accelerated integer and floating-point libraries on-chip

Pico’s Pins

[image: ../_images/pico_pin.jpg]

	Name

	Description

	Function

	GP0-GP28

	General-purpose input/output pins

	Act as either input or output and have no fixed purpose of their own

	GND

	0 volts ground

	Several GND pins around Pico to make wiring easier.

	RUN

	Enables or diables your Pico

	Start and stop your Pico from another microcontroller.

	GPxx_ADCx

	General-purpose input/output or analog input

	Used as an analog input as well as a digital input or output – but not both at the same time.

	ADC_VREF

	Analog-to-digital converter (ADC) voltage reference

	A special input pin which sets a reference voltage for any analog inputs.

	AGND

	Analog-to-digital converter (ADC) 0 volts ground

	A special ground connection for use with the ADC_VREF pin.

	3V3(O)

	3.3 volts power

	A source of 3.3V power, the same voltage your Pico runs at internally, generated from the VSYS input.

	3v3(E)

	Enables or disables the power

	Switch on or off the 3V3(O) power, can also switches your Pico off.

	VSYS

	2-5 volts power

	A pin directly connected to your Pico’s internal power supply, which cannot be switched off without also switching Pico off.

	VBUS

	5 volts power

	A source of 5 V power taken from your Pico’s micro USB port, and used to power hardware which needs more than 3.3 V.

The best place to find everything you need to get started with your Raspberry Pi Pico [https://www.raspberrypi.com/documentation/microcontrollers/raspberry-pi-pico.html].

Or you can click on the links below:

	Raspberry Pi Pico product brief [https://datasheets.raspberrypi.org/pico/pico-product-brief.pdf]

	Raspberry Pi Pico datasheet [https://datasheets.raspberrypi.org/pico/pico-datasheet.pdf]

	Getting started with Raspberry Pi Pico: C/C++ development [https://datasheets.raspberrypi.org/pico/getting-started-with-pico.pdf]

	Raspberry Pi Pico C/C++ SDK [https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-c-sdk.pdf]

	API-level Doxygen documentation for the Raspberry Pi Pico C/C++ SDK [https://raspberrypi.github.io/pico-sdk-doxygen/]

	Raspberry Pi Pico Python SDK [https://datasheets.raspberrypi.org/pico/raspberry-pi-pico-python-sdk.pdf]

	Raspberry Pi RP2040 datasheet [https://datasheets.raspberrypi.org/rp2040/rp2040-datasheet.pdf]

	Hardware design with RP2040 [https://datasheets.raspberrypi.org/rp2040/hardware-design-with-rp2040.pdf]

	Raspberry Pi Pico design files [https://datasheets.raspberrypi.org/pico/RPi-Pico-R3-PUBLIC-20200119.zip]

	Raspberry Pi Pico STEP file [https://datasheets.raspberrypi.org/pico/Pico-R3-step.zip]

Introduction to Pico RDP

The Pico Robotics Development Platform (RDP) is a Wi-Fi extension module for the Raspberry Pi Pico designed by SunFounder.

It integrates industry-leading Wi-Fi solutions, rich peripheral interfaces, and supports multiple compilers for development.

It also has IO expansion interface circuitry, LED power indicator circuitry, voltage measurement circuitry, and an on-board 4-channel DC motor driver circuit.

When you use Pico RDP for development and debugging, you can connect peripherals as needed, and the rich external interfaces can make your projects more interesting.

Features

	Microcontroller: Raspberry Pi Pico module

	Wi-Fi: ESP8266 Wi-Fi module, 802.11 b/g/n (802.11n, speeds up to 150 Mbps), 2.4 GHz ~ 2.5 GHz frequency range

	RUN button: reset button

	Input voltage: 7.0-30.0V (PH2.0-2P)

	Output voltage: 7.0-30.0V (PH2.0-2P), 5.0V, 3.3V

	Output current: 5V/5A, 3.3V/1A

	One channel SH1.0-4P port: I2C port.

	Four channel XH2.54-4P port: DC motor port

	12 x PWM channel, 3 x ADC channel, 4 x GPIO pins.

	One channel SH1.0-4P port: I2C port. Compatible with QwIIC and STEMMA QT

Pico RDP’s Pins

[image: ../_images/pico_drp_pin.png]
Here is the schematic of the Pico RDP: PDF Pico RDP Schematic [https://github.com/sunfounder/sf-pdf/raw/master/schematic/pico-rdp.pdf].

Schematic and Structure Drawing

Schematic

	Grayscale Module [https://github.com/sunfounder/sf-pdf/raw/master/schematic/3ch-grayscale-module.pdf]

	RGB Board [https://github.com/sunfounder/sf-pdf/raw/master/schematic/8-bit-ws2812b-rgb.pdf]

	Pico RDP [https://github.com/sunfounder/sf-pdf/raw/master/schematic/pico-rdp.pdf]

	Speed Module [https://github.com/sunfounder/sf-pdf/raw/master/schematic/speed-module.pdf]

Structure Drawing

	Lower Plate [https://github.com/sunfounder/sf-pdf/raw/master/structural_drawing/pico-4wd/lower-plate.PDF]

	Upper Plate [https://github.com/sunfounder/sf-pdf/raw/master/structural_drawing/pico-4wd/upper-plate.PDF]

	The Whole Car [https://github.com/sunfounder/sf-pdf/raw/master/structural_drawing/pico-4wd/pico-4wd-car.PDF]

Thonny IDE Introduction

	Ref: realpython

[image: ../_images/thonny_ide.jpg]

	A: The menu bar that contains the file New, Save, Edit, View, Run, Debug, etc.

	B: This paper icon allows you to create a new file.

	C: The folder icon allows you to open files that already exist in your computer or Raspberry Pi Pico, if your Pico is already plugged into your computer.

	D: Click on the floppy disk icon to save the code. Similarly, you can choose whether to save the code to your computer or to the Raspberry Pi Pico.

	E: The play icon allows you to run the code. If you have not saved the code, save the code before it can run.

	F: The Debug icon allows you to debug your code. Inevitably, you will encounter errors when writing code. Errors can take many forms, sometimes using incorrect syntax, sometimes incorrect logic. Debugging is the tool for finding and investigating errors.

Note

The Debug tool cannot be used when MicroPython (Raspberry Pi Pico) is selected as the interpreter.

If you want to debug your code, you need to select the interpreter as the default interpreter and save as to your computer after debugging.

Finally, select the MicroPython (Raspberry Pi Pico) interpreter again, click the save as button, and re-save the debugged code to your Raspberry Pi Pico.

	The G, H and I arrow icons allow you to run the program step by step, but can only be started after clicking on the Degug icon. As you click on each arrow, you will notice that the yellow highlighted bar will indicate the line or section of Python that is currently evaluating.

	G: Take a big step, which means jumping to the next line or block of code.

	H: Take a small step means expressing each component in depth.

	I: Exit out of the debugger.

	J: Click it to return from debug mode to play mode.

	K: Use the stop icon to stop running code.

	L: Script Area, where you can write your Python code.

	M: Python Shell, where you can type a single command, and when you press the Enter key, the single command will run and provide information about the running program. This is also known as REPL, which means “Read, Evaluate, Print, and Loop.”

	N: Interpreter, where the current version of Python used to run your program is displayed, can be changed manually to another version by clicking on it.

Note

NO MicroPython(Raspberry Pi Pico) Interpreter Option ?

	Check that your Pico is plugged into your computer via a USB cable.

	The Raspberry Pi Pico interpreter is only available in version 3.3.3 or higher version of Thonny. If you are running an older version, please update.

FAQ

Q1: NO MicroPython(Raspberry Pi Pico) Interpreter Option on Thonny IDE?

[image: _images/interepter_thonny.png]

	Check that your Pico is plugged into your computer via a USB cable.

	Check that you have installed MicroPython for Pico (2. Install MicroPython on Your Pico).

	The Raspberry Pi Pico interpreter is only available in version 3.3.3 or higher version of Thonny. If you are running an older version, please update (1. Install Thonny IDE).

	Plug in/out the micro USB cable sveral times.

Q2: Cannot open Pico code or save code to Pico via Thonny IDE?

[image: _images/save_to_pico.png]

	Check that your Pico is plugged into your computer via a USB cable.

	Check that you have selected the Interpreter as MicroPython (Raspberry Pi Pico).

Thank You

Thanks to the evaluators who evaluated our products, the veterans who provided suggestions for the tutorial, and the users who have been following and supporting us.
Your valuable suggestions to us are our motivation to provide better products!

Particular Thanks

	Len Davisson

	Kalen Daniel

	Juan Delacosta

Now, could you spare a little time to fill out this questionnaire?

正在加载…
Note

After submitting the questionnaire, please go back to the top to view the results.

Index

About Sunfounder Controller

Page Introduction

Start the Sunfounder Controller.

[image: ../../_images/arduino_app2.png]
Click the middle button to add a new controller.

[image: ../../_images/arduino_app3.png]
Sunfounder Controller is a platform that can add custom controllers. It reserves many widget interfaces. There are a total of 17 areas from A to Q. Each area has selectable widgets.

[image: ../../_images/arduino_app4.png]
The available widgets in the large square area include joystick and D-Pad.

[image: ../../_images/arduino_app5.png]
The available widgets in the small square area include button, digital display and switch.

[image: ../../_images/arduino_app6.png]
The available widgets for the rectangular area include slider, dial, ultrasonic radar and grayscale detection tool.

[image: ../../_images/arduino_app7.png]

Widgets List

The control widgets are shown in the table:

[image: ../../_images/control_widget.png]
The data widgets are shown in the table:

[image: ../../_images/show_widget.png]

7. APP Control

This section will guide you through building a remote project using the Sunfounder Controller APP, which means you can use your phone/tablet to control your Pico-4wd car.

	Install Sunfounder Controller

	First-time Use the APP

	EXAMPLE - Control the Car with APP

	About Sunfounder Controller
	Page Introduction

	Widgets List

	How app_test.py Works?

	Data transfer between APP and Pico

How app_test.py Works?

The communication between Pico-4wd and Sunfounder Controller is based on the websocket protocol.

	WebSocket - Wikipedia

Its function has been written in ws.py, we have loaded it in the chapter 3. Upload the Libraries to Pico.

The specific workflow of APP Control gameplay is as follows:

[image: ../../_images/flowchart_app_control.png]
Code

from ws import WS_Server
import json
import time
import pico_4wd as car

NAME = 'my_4wd_car'

Client Mode
WIFI_MODE = "sta"
SSID = "YOUR SSID HERE"
PASSWORD = "YOUR PASSWORD HERE"

AP Mode
WIFI_MODE = "ap"
SSID = ""
PASSWORD = "12345678"

ws = WS_Server(name=NAME, mode=WIFI_MODE, ssid=SSID, password=PASSWORD)
ws.start()

def on_receive(data):
 # write control codes here.
 pass

 # write sensor codes here.
 pass

ws.on_receive = on_receive

def main():
 print("start")
 while True:
 ws.loop()

try:
 main()
finally:
 car.move("stop")
 car.set_light_off()

This code constitutes the basic framework of APP control. Here, you need to pay attention to the following two parts:

	Setup websocket

There are two connection mode between Sunfounder Controller and Pico-4wd car: One is AP mode, the other is STA mode.

	AP Mode: You need to connect Sunfounder Contorller to the hotspot released by Pico-4wd car.

	STA Mode: You need to connect Sunfounder Controller and Pico-4wd car to the same LAN.

The default connection mode is AP Mode: The car releases the hotspot (the Wifi name is NAME in the code, here is my_4wd_car), the mobile phone (tablet) is connected to this WLAN.
This mode allows you to remotely control Pico-4wd in any situation, but will make your phone (tablet) temporarily unable to connect to the Internet.

NAME = 'my_4wd_car'

Client Mode
WIFI_MODE = "sta"
SSID = "YOUR SSID HERE"
PASSWORD = "YOUR PASSWORD HERE"

AP Mode
WIFI_MODE = "ap"
SSID = ""
PASSWORD = "12345678"

ws = WS_Server(name=NAME, mode=WIFI_MODE, ssid=SSID, password=PASSWORD)
ws.start()

You can also use STA mode: Let Pico-4wd car connects to your home WLAN, and your mobile phone (tablet) should also be connected to the same WLAN.

This mode is opposite to the AP mode and will not affect the normal use of the mobile phone (tablet), but will limit your Pico-4wd car from leaving the WLAN radiation range.

The way to start this mode is to comment out the three lines under ## AP Mode, uncomment the three lines under ## Client Mode, and change the SSID and PASSWORD to your home WIFI at the same time.

NAME = 'my_4wd_car'

Client Mode
WIFI_MODE = "sta"
SSID = "Sunfounder"
PASSWORD = "12345678"

AP Mode
WIFI_MODE = "ap"
SSID = ""
PASSWORD = "12345678"

ws = WS_Server(name=NAME, mode=WIFI_MODE, ssid=SSID, password=PASSWORD)
ws.start()

After completing the connection mode settings, Websocket will set up and start the server.

ws = WS_Server(name=NAME, mode=WIFI_MODE, ssid=SSID, password=PASSWORD)
ws.start()

	Responding

The specific operation code of Pico-4wd and Sunfounder Controller is written on the on_receive() function. Usually, we need to write the codes for APP to control Pico-4wd on the front and the codes for APP to show Pico-4wd sensor data on the back.

def on_receive(data):
 # write control codes here.
 pass

 # write sensor codes here.
 pass

ws.on_receive = on_receive

As shown below, we have written the controls code for the H area slider to control the number of lights on the RGB Board; and the sensor codes for the D area to show the radar detection results.

def on_receive(data):
 # write control codes here.
 num = int(data['H_region']*9/100)
 for i in range(0,num):
 car.write_light_color_at(i, [80, 50, 0])
 for i in range(num,8):
 car.write_light_color_at(i, [0, 0, 0])
 car.light_excute()

 # write sensor codes here.
 data = car.get_radar_distance()
 print(data)
 ws.send_dict['D_region'] = data

ws.on_receive = on_receive

Finally, on_receive() will be assigned to ws.on_receive and then called by ws.loop.

First-time Use the APP

This section will guide you to complete the communication between Sunfounder Controller APP and Pico, you can read the value of the potentiometer on the APP, and you can also control the LED on and off through the APP.

How to do?

	Run app_test.py file.

Double click the app_test.py file under the pico_4wd_car_main\tests path, then click “run current script” button or just press F5 to run it.

If you run the code, you will see this IP in the shell; remember it, as it may be used to connect to SunFounder Controller later on.

[image: ../../_images/run_test.png]

	Connect to Pico 4WD car.

Find my_4wd_car on the WLAN of the mobile phone (tablet), enter the password (12345678) and connect to it.

[image: ../../_images/seach_wifi.jpg]
The default used in app_test.py is AP mode. So after you connect, there will be a prompt telling you that there is no Internet access on this WLAN network, please choose to continue connecting.

[image: ../../_images/connect_anyway.png]

	Connect to SunFounder Controller.

Now open SunFounder Controller and click Disconnected in the upper right corner.

[image: ../../_images/click-disconnect.jpg]
Because it is AP mode, it will connect automatically here.

Note

If the connection has not been successful, please make sure the app_test.py file is running properly and connect your device’s Wi-Fi to my_4wd_car.

[image: ../../_images/auto_connect.jpg]
After the connection is successful, the Thonny script will show the IP of the newly connected device:

>>> %Run -c $EDITOR_CONTENT
 Connecting
 WebServer started on ws://192.168.4.1:8765
 start
 Connected from 192.168.4.3

	Create a controller.

Click the + button in the middle of the page, then the Create controller page will pop up. Enter the name of the controller, select Blank -> Dual Stick and click Confirm.

[image: ../../_images/create_controller.jpg]
You will be able to see boxes (some are rectangles, some are squares), we need to adjust them to apply to app_test.py.

Click on area D and select the radar scanning widget.

[image: ../../_images/sec_radar.jpg]
Click on area H and sclect the Slider widget.

[image: ../../_images/sec_slide.jpg]

	Save and Run the controller.

Click the Save/Edit button and the controller will be saved. At the same time it enters the working state, and the empty widget box is hidden.

Then click the Run/Stop button to get this controller running！

[image: ../../_images/run_save.jpg]

	You will be able to see that the Pico-4wd radar is scanning, and the D box on the Sunfounder Controller will show the scan results.

	If you flip the slider of the H box, the RGB Board at the rear of the car will lights up the corresponding lights.

Note

If it does not work as expected, or if it shows disconnected, make sure that the app_test.py file is running properly and that your mobile device’s Wi-Fi is connected to the my_4wd_car.

FAQ

	Error during running code.

	When the following error occurs, please check if the Pico 4WD car connection is stable.

Traceback (most recent call last):
File "<stdin>", line 43, in <module>
File "<stdin>", line 41, in main
File "ws.py", line 115, in loop
File "ws.py", line 46, in read
UnicodeError:

	Then hit Stop to stop running the code, and then run the code again.

	Each time you re-run the code, you need to reconnect your device (phone/tablet) WIFI to my_4wd_car, and then go to SunFounder Controller and click Disconnnected to reconnect.

	If the connection has not been successful, or suddenly disconnect.please make sure the app_test.py file is running properly and your mobile device is connected to my_4wd_car.

Install Sunfounder Controller

Open App Store (iOS) or Google Play(Android), then search and download Sunfounder Controller.

[image: ../../_images/arduino_app1.png]

EXAMPLE - Control the Car with APP

How to do？

	Make the app_control.py file run on boot.

为了让Pico-4wd能够在不连接电脑的情况下，也能运行特定的脚本，然后被SunFounder Controller控制。你需要将特定的脚本以名字main.py存储到树莓派Pico中，具体步骤如下：

	Open the app_control.py file under the path of pico_4wd_car_main\examples.

[image: ../../_images/app_control1.png]

	Press Ctrl+Shift+S and select Raspberry Pi Pico in the popup window that appears. If this pop-up does not appear on yours, make sure you have plugged the Pico into your computer with a micro USB cable and select the “MicroPython (Raspberry Pi Pico).COMXX” interpreter in the bottom right corner.

[image: ../../_images/app_control2.png]

	Set the file name to main.py. If you already have the same file in your Pico, it will prompt to overwrite it.

[image: ../../_images/app_control3.png]

	现在你就可以拔掉USB线，打开Pico-4wd的电源开关，Pico-4wd将自动运行这个 main.py 脚本。

	Create a controller.

Now, please open the app_control.py in examples and try the complete APP remote control gameplay!

[image: ../../_images/app_control_example.jpg]

	Connect to Pico-4wd.

Data transfer between APP and Pico

From APP to Pico-4wd

Let’s take a look at what kind of data Pico-4wd will get from the APP. Print data directly in on_receive.

Note

	Open the app_test.py file under the path of pico_4wd_car_main\tests or copy this code into Thonny.

	Rewrite the on_receive(data) function to only print data as shown below.

	Then click “Run Current Script” or simply press F5 to run it.

	Don’t forget to click on the “MicroPython (Raspberry Pi Pico)” interpreter in the bottom right corner.

	Each time you rerun the code, you need to connect your device’s Wi-Fi to my_4wd_car , then turn on SunFounder Controller and reconnect.

from ws import WS_Server
import json
import time
import pico_4wd as car

NAME = 'my_4wd_car'

Client Mode
WIFI_MODE = "sta"
SSID = "YOUR SSID HERE"
PASSWORD = "YOUR PASSWORD HERE"

AP Mode
WIFI_MODE = "ap"
SSID = ""
PASSWORD = "12345678"

ws = WS_Server(name=NAME, mode=WIFI_MODE, ssid=SSID, password=PASSWORD)
ws.start()

def on_receive(data):
 # write control codes here.
 print(data)

 # write sensor codes here.
 pass

ws.on_receive = on_receive

def main():
 print("start")
 while True:
 ws.loop()

try:
 main()
finally:
 car.move("stop")
 car.set_light_off()

You will be able to see the following string:

{'J': None, 'A': None, 'L': None, 'K': None, 'F': None, 'M': None, 'H': 50, 'Q': None, 'G': None, 'I': None, 'B': None, 'D': None, 'C': None, 'N': None, 'E': None, 'P': None, 'O': None}

As we can see, the value of H Box is 50 ('H': 50), and the others are None.
This is because we only add one control widget (H Box), and the slide widget was dragged to the 50 position.
The widget in the D area is not used for control but only for show.

We can also add other control widgets, and use the same method to view the values ​​sent by these widgets to Pico-4wd.

You can get the value of the corresponding widget by just using the label.
Let’s rewrite on_receive(data) again. As shown below, print the value of the H Box widget:

def on_receive(data):
 # write control codes here.
 print(data['H'])

 # write sensor codes here.
 pass

>>> %Run -c $EDITOR_CONTENT
 Connecting
 WebServer started on ws://192.168.4.1:8765
 start
 Connected from 192.168.4.3
 50
 50
 50

The values obtained from the app can be used to control the car.
Rewrite on_receive(data) once again. As shown below, use the obtained H Box widget (Slider) value to control the RGB Board at the rear of the car.

def on_receive(data):
 # write control codes here.
 num = int(data['H']*9/100)
 for i in range(0,num):
 car.write_light_color_at(i, [80, 50, 0])
 for i in range(num,8):
 car.write_light_color_at(i, [0, 0, 0])
 car.light_excute()

You can use API file to help you understand the functions in the code.

From Pico-4wd to APP

Now let’s see what kind of data Pico-4wd will send to the APP.
Rewrite on_receive(data) as shown below.
The following code is used to obtain the ultrasonic detection distance.

from ws import WS_Server
import json
import time
import pico_4wd as car

NAME = 'my_4wd_car'

Client Mode
WIFI_MODE = "sta"
SSID = "YOUR SSID HERE"
PASSWORD = "YOUR PASSWORD HERE"

AP Mode
WIFI_MODE = "ap"
SSID = ""
PASSWORD = "12345678"

ws = WS_Server(name=NAME, mode=WIFI_MODE, ssid=SSID, password=PASSWORD)
ws.start()

def on_receive(data):
 # write sensor codes here.
 data = car.get_radar_distance()
 print(data)

ws.on_receive = on_receive

def main():
 print("start")
 while True:
 ws.loop()

try:
 main()
finally:
 car.move("stop")
 car.set_light_off()

>>> %Run -c $EDITOR_CONTENT
 Connecting
 WebServer started on ws://192.168.4.1:8765
 start
 Connected from 192.168.4.2
 [-10, 49.249]
 [-20, 37.417]
 [-30, 38.947]
 [-40, 36.193]
 [-50, 40.12]
 [-60, 36.431]

You can use API file to help you understand the functions in the code.

Now, Rewrite on_receive(data), use the send_dict function to show the distance value in D Widget.

def on_receive(data):
 # write sensor codes here.
 data = car.get_radar_distance()
 print(data)
 ws.send_dict['D'] = data

 _images/translate3.png
Arabic
Ammenian
e
Bangls
Basaue
Belsrusian
gosmian
Bulgarian
Bumese

Catalan

Japanese

Language to translate into

& e *
X

_images/wiring_test_3ch.png

_images/translate1.png
Back
Forward

Reload

Save as.
Print..
Cast..
Search images with Google Lens

Creste OR Code for this page.

Transiate to BHE

View page source

Inspect

AlteLeft Amow
Alt-Right Arrow
R

Cirl+s
Ctrl+p

iy

_images/translate2.png
& = x

oo e () x

Choose another language |

Googh T ays ransate Engiish

Never translate English
Never translate this site

Page is not in English

_images/app_control21.png
[

File Edit View

DEd O

Files

Run Tools

This computer

E:\ Basic Kits \ Raspberry Pi
Robots \ Pico-dwd \

pico_4wd car.main \ ecamples
& app_controlpy.
@ donot push_me.py
& follow_handpy
line trackpy
& obstacle_svoidpy

Raspberry Pi Pico

main.py
@ pico_dwd.py
pico_rdp.py

Suspy

complesipp... — O X
Help
o=
oo contoly
T Wheretosaveto? % bpver -
This computer o
Raspbery PiPico
Shell
Pi Pico with RP2040 ~

Type "help()" for more information.

>>>

MicroPython (Raspberry Pi Pico) » COME6

_images/app_control3.png
T Thonr| T Save to Raspbery Pi Pico x| %
Fle Edit
5| |ewberyripico -
Neme Size (bytes)
Files - § (bytes)
e 2550 =
Tiscom| | @ picodwdoy sl
Reboter| | G Peodoey w2
pico_dwe wspy 3985
J [oc | e |
Pi Pico with RP2040 T A

Type "help()" for more information.

>>> v

MicroPython (Raspberry Pi Pico) » COMS5

_images/app_control14.png
T Thonny - EABasic Kits\Raspbery Pi Robots\Pico-4uwel pice_4wd_car-main\examples\app_..

o x
Fle Edit View Run Tools Help
DE |0 o=
Files app_controlpy
This computer = - ~
E: \ Basic Kits \ Raspberry Pi 53
Robots \ Pico-duwd \ 54 hue = car.mapping(car.speed(), ¢
pico_4wd_car-main \ examples 55 rgb = car.hue2rgb(hue)
&) app_controlpy 56

car.set_light_bottom_color(rgb)
@ donot_push_mepy

& follow_handpy
& fine tackpy o
& cbstact_avoidpy

57 elsq

Shell
Raspberry Pi Pico, = [al[>>>
@ espi2sh testpy Connecting
@ pico_dwd.py WebServer started on ws://{]92 168.4.1):87¢
& pico rdppy s
wspy start

MicroPython (Raspberry Pi Pico) » COM6

_images/wiring_test_battery.png

_images/app_control2.png
[

File Edit View

DEd O

Files

Run Tools

This computer

E:\ Basic Kits \ Raspberry Pi
Robots \ Pico-dwd \

pico_4wd car.main \ ecamples
& app_controlpy.
@ donot push_me.py
& follow_handpy
line trackpy
& obstacle_svoidpy

Raspberry Pi Pico

main.py
@ pico_dwd.py
pico_rdp.py

Suspy

complesipp... — O X
Help
o=
oo contoly
T Wheretosaveto? % bpver -
This computer o
Raspbery PiPico
Shell
Pi Pico with RP2040 ~

Type "help()" for more information.

>>>

MicroPython (Raspberry Pi Pico) » COME6

_images/wiring_test_motor.png

_images/app_control5.png
PiCrawler

_images/app_control6.png
2 Inputdevice IP:

192.168.18.140 |

3

=

_images/app_control31.png
T Thonr| T Save to Raspbery Pi Pico x| %
Fle Edit
5| |ewberyripico -
Neme Size (bytes)
Files - § (bytes)
e 2550 =
Tiscom| | @ picodwdoy sl
Reboter| | G Peodoey w2
pico_dwe wspy 3985
J [oc | e |
Pi Pico with RP2040 T A

Type "help()" for more information.

>>> v

MicroPython (Raspberry Pi Pico) » COMS5

_images/app_control4.png
Create controller X

Blank PiCrawler

Template:

Dual Stick Single Stick

_images/app_control7.png
5

3 \\\\ I //// o]
— sl s
S0 ™ e T Speed Sonar
Power A =0 = 100 B Mileage c
4+ e
E F Light G Greyscale Values I
&

L I M
K N O | P

_images/app_control8.png
Name: Greyscale Values

Cliff_Ref: 1000

Line_Ref: 10000

_images/th_upload.png
T Thonny - <untitied> @ 1:1

File Edit View Run Tools Help

Lsd O o=
Files <untitied> -
This comnuter 1

pico_dwd_car-main \ lios

Openin Thonny
Openin default external app
Configure py files...
Show hidden files

New file.
New directory..
cut

o

h RP204¢

8

for more

forma

MicroPython (Raspberry Pi Pico) - COMsS

_images/thonny_ide.jpg
T Thonny
File Edit View Run Tools Help |A

s @
BCDEFGHI JK

4 on 2021-01-21; Raspberry Pi

ype "help()" for ation
> M

MicroPython (Respbery PiPico)

_images/th_files.png
T Thonny

File Edit View Run Tools Help

Assistant
Exception
A

Heap.

_images/th_path.png
T Thonny - <untitled> @ 1:1 - o x
File Edit View Run Tools Help

Lsd O o=

Files <untitied>

T computr . 1

pico_4wd_car-main \ libs

& pico Awcipy
& picordpy
S Shet

Raspberry Pi Pico

>>>

MicroPython (Raspberry Pi Pico) - COMsS

_images/app_control9.png
Power

Pico-4wd

Light G Greyscale Values

Sonar

nav.xhtml

 Table of Contents

 		
 SunFounder Pico-4wd Car Kit

 		
 Get Started

 		
 1. Install Thonny IDE

 		
 2. Install MicroPython on Your Pico

 		
 3. Upload the Libraries to Pico

 		
 4. Test the Modules

 		
 Power up the Pico RDP

 		
 Test the Motors

 		
 Test the Ultrasonic Module

 		
 Test the RGB Boards

 		
 Test the Grayscale Sensor Module

 		
 Test the Speed Module

 		
 Test the Servo

 		
 5. Assemble the Car

 		
 6. Examples

 		
 Motor Calibration

 		
 Don’t Push Me

 		
 Line Track

 		
 Follow Your Hand

 		
 Obstacle Avoid

 		
 Control the Car with APP

 		
 Appendix

 		
 Introduction to Raspberry Pi Pico

 		
 Introduction to Pico RDP

 		
 Schematic and Structure Drawing

 		
 Thonny IDE Introduction

 		
 FAQ

 		
 Q1: NO MicroPython(Raspberry Pi Pico) Interpreter Option on Thonny IDE?

 		
 Q2: Cannot open Pico code or save code to Pico via Thonny IDE?

 		
 Thank You

_images/arduino_app2.png
SunFounder Controller

_images/arduino_app3.png
@ It

SunFounder Controller

_images/app_control_example.jpg
\\\\\\ L I////

Disconnected @
A

> &

50

A\\

*
o

K

_images/arduino_app1.png
5:43 PM Fri Nov 20

Filters v Q_ Sunfounder Controller

Sunfounder Controller
Education GET

Game
Games

[
Arcade
@ Arcac

=T @ v 88% @m)

Cancel

_images/arduino_app6.png
Add controls

99.8 OEE

_images/arduino_app7.png
AN

_images/arduino_app4.png
K

large square area

sunfounder nolink @

G H J

rectangular area

N o Q

small square area

_images/arduino_app5.png
If you want
to delete the
widget, click
it.

_images/auto_connect.jpg
Automatic connection 0 X

Connected successfully,

_images/bootsel_onboard.png

_images/bull_fight1.png
T Thonny - E\Basic Kits\Raspberry Pi Robots\Pico-dwd\pico_4wd_car-mainexamples\follov_.. o x
Fle Edt View Run Toos Help
DEd O o=
Files follow_hand.py
This computer = Bl inport pico dwd ~
E:\ Basic Kits \ Raspberry Pi B el [REIGI 69 GRTE
Robots \ Pico-dud \
pico fwd_car-main \ examples © car.RADAR_REFERENCE = 25
@ app.controley 4 car.RADAR_MAX_ANGLE = 45
@ donot push_me.py 5 car.RADAR_MIN_ANGLE = -45
@ follow_handpy 5 car.RADAR_STEP_ANGLE = 10
g“'*—"'* Py 7 MOTOR_FORWARD_POMER = 40
obstacle_svoidpy 2 MOTOR_TURNING_POWER = 40
9
Raspbeny PiPico - Bl e main():
1 while True:
@ app_control.py - . L v
& apprestpy
& mainpy Shell
@ pico_dwd.py -
@ pico_rdp.py
Swspy
>>> v

MicroPython (Raspberry Pi Pico) » COM6

_images/click-disconnect.jpg
Disconnected @ l/'

Controller

_images/code_test_motor.png
T Thonny - EA\Basic Kits\Respberry Pi Robots\Pico-4wd\pico_4wd_car-mainitestsitest mot.. — O X
File Edit View Run Tools Help

DBSHE 0 o=
Files <untitled> - test_motor.py
This computer =8 1 import pico_dwd as car @
2 import time
pico_4wd_car-main \ tests 3
@ test_grayscalepy 4 def test_motor():
testTight py 5 speed = 50
@ test motor.py 6 act_list = [
& test servopy .| = *forward®,
Raspbery PiPico 8 “backward",
& pico_dwdpy o ity v
& pico_rdppy et
wspy

MicroPython (Raspberry Pi Pico) - COMsS

_images/bull_fight2.png
T Thonny - EABasic Kits\Raspbery Pi Robots\Pico-4uwel pice_4wd_car-main\examples\follow..
Fie Edit View Run ‘Tele

Save to Respberry PiPico

DmE 0% |® poery

Files - Raspberry Pi Pico =

This computer

E:\ Basic Kits \ Raspbery | N2 Size (bytes)

Robots \ Pico-dud | @ app_controlpy 2%

ico Awlcar-main \ e a0

& app_contrlpy a5
5166
a2
2905

Raspbery PiPico

@ appcomoley | e [raner | o | ‘

MicroPython v1.19.1 on 2022-66-18; Raspberry P &
i Pico with RP2040

Type
>>>

elp()" for more information.

MicroPython (Raspberry Pi Pico) = COM86

_images/cali_gray.png
T Thonny - EABasic Kits\Raspbery Pi Robots\Pico-4uwl pico_4wd_car-main\tests\test_gray...

o x
File Edt View Run Tools Help
DEE 0 @=
Files test grayscolepy [pico_rdppy] [pico_dwdpy]
This computer a 1 import pico_4wd as car .
oo 2 import time
pico_4wd_car-main \ tests - M
& app_testpy
@ light effectpy Shell
& pico_dwd_test.py White [Tefz:23477, middie: right:23557] ~
S testpy
@ test_grayscalepy Black 328, right
test_light.p left:2624, middle:44597, right:23621]
ight.py g
v e£t:2048, middle:704, right:640
Raspberry Pi Pico = tyif [[°E8:720, middle:720, right:608)
M hese:736, miadie:6s6, rignt:e4ol

@ app_controloy

b4 6452, right:14547
3pp_testpy 6484, right:13715

pico_dwclpy 4735, rignt:11042
@ picordpry

MicroPython (Raspberry Pi Pico) » COME6

_images/control_widget.png
Widget Trigger event Data (type)
Hold True(boolean)
Release False(boolean)
Open (ON) True(boolean)
Close (OFF) False(boolean)
laxis array[x,y]
Move the middle cursor|x range:-100~100(int)

y range:-100~100(int)
hold n *forward" (string)
hold u *backward" (string)
hotd @l “left*(string)
hold i) *right”(string)

Range:0~100(int)

Sliding Range can be modified through|

Range:0~100 (int)

Push and Pull

Range can be modified through|

_images/create_controller.jpg
Create controller >4

Nemepioow |

Preset:

Blank

Template:

|
Dual Stick Single Stick

_images/connect_anyway.png
Connected (nn Internet accecs)

5 This WLAN network has no Internet access. Connect anyway?

CANCEL

Saved, encrypted (no Internet access)

_images/connect_anyway1.png
Connected (nn Internet accecs)

5 This WLAN network has no Internet access. Connect anyway?

CANCEL

Saved, encrypted (no Internet access)

_images/do_push2.png
File Edit View Run Tools
DEd O

Files

This computer

E:\ Basic Kits \ Raspberry Pi
Robots \ Pico-dwd \
ico_dwd_car-main \ examples

@ app_controlpy
it

bstacle_avoid.py

Raspberry Pi

& app_contrlpy

@ app_testpy
manpy

& picoAucipy

& picordpy
by

 Awd. es\donot o x
o=
donot_push_mepy
1 import pico_dwd as car ~
T Whereto saveto? x
EFERENCE = 1000
This computer
ge(0, 90, 10):
Raspberry Pi Pico, %s "%angle)
t_angle(angle)
.01)

MicroPython (Raspberry Pi Pico) »+ COMES

_images/do_push3.png
Th Thonny - E\Basic Kits\Raspberry Pi Robots\Pico-éwel\pico_4w_car-main\ examples\donot..

- o x
Fie Edit View Run Tools Help
De o o=
Files - T Save to Raspberry Pi Pico X
This computer
€\ Basic its\ Rasp
Robots \ Pico-dud \ | | Respberry PiPico -
ico_wd_car-main
= M Neme Size (bytes)
@ovpcontoloy | | @1, comrolpy 55
apptestpy %0
@ pico twdpy 5756
pico_rdp.py e
Sy 3985
Raspberry Pi Pico
@ app_controlpy
File name: | [main.pyl] [ok | | cancel|
Type "help()" for more information.
>>> v

MicroPython (Raspberry Pi Pico) = COM86

_images/do_push1.png
T Thonny - EABasic Kits\Respberry Pi Robots\Pico-dwd\pico_4wd_car-main\eamplesidonot... — O X
File Edit View Run Tools Help

DEd O o=
Files donot_push_me.py
This computer = 1 import pico_dwd as car @
. _ 2 import time
pico_4wd_car-main \ examples 3
@ app._controlpy 4 car.GRAYSCALE_EDGE_REFERENCE = 1000
& bull ighty 5 MOTOR_POMER = 5
& donot_push_me.py 6
g“'*—"'*k-mn 7 def shake_head():

obstacle_svoidpy 8 for angle in range(@, 90, 10):

9 print(“angle:%s "%angle)

Raspberry Pi Pico = — i
& pico_twdpy
& pico_rdppy shell

wspy -

>>> v

MicroPython (Raspberry Pi Pico) » COMSS

_images/download_thonny.png
Thonny

Python IDE for beginners

Fie Edit View Run Tools Help

DBHE 0% 2329 @
factorialpy - Varisbles
def fact(n Neme Value
i
= e R
. 3

elser
return fact(n-1) * n
fact(3)

_images/example_avoid.png

_images/do_push4.png
T Thonny - Respberry PiPico: /mainpy @ 37:1 - o x
File Edit View Run Tools Help

DEd O o=
Files. [main.py]
This computer = 1 import pico_dwd as car @
£\ Basi kits \ Raspberry i g
Robots \ Pico-dwd \ impos me
pico fwd_car-main \ examples 3
@ app.controley 4 car.GRAYSCALE_EDGE_REFERENCE = 1000
& bull ighty 5 MOTOR_POMER = 5
& donot_push_me.py 6
g“'*—"'*k-mn 7 def shake_head():
obstacle_svoidpy 8 for angle in range(@, 90, 10):
9 print(“angle:%s "%angle)
sy i ico . 10 c?r'.SE;vo.setiangle(angle)
& app_contolpy = | time.sleepd.0l) | .
Shell
Swspy
>>> v

MicroPython (Raspberry Pi Pico) » COM6

_images/do_push5.png
T Thonny - EA\Basic Kits\Respberry Pi Robots\Pico-4wd\pico_ 4wd_car-main\eamplesidon.. — O X
File] Edit View Run Tools Help

) New CtrleN. e
25 Open... Ctis0
Recent files » [onot_push_me.py
Close Crew import pico_4wd as car a
Closeall CuleShittsW | 2 import time
sl Save Ctrl+S. 3
4 car.GRAYSCALE_EDGE_REFERENCE = 1000
5 MOTOR_POWER = 50
7 def shake_head(): v
Cuiep ben
Bt AleFe FeyboardInterrupt: S
@ pico swdpy
pico_rdp.py
wepy
>>> v

MicroPython (Raspberry Pi Pico) + COMS1

_images/example_line.png

_images/example_cliff.png

_images/example_follow.png

_images/flowchart_donot_push_me.png
Set the Pico-4wd
working condition

s greyscale on
edge?

Move back! Stop move

Emit a red light

Light off

Shake head twice

_images/flowchart_line_track.png
Set the Pico-4wd
working condition

s it on the
straight?

4 motors in
positive rotation

Taillight bright
green

s it on a rig|
turn?

Left motors in
positive direction,
right motors stop

nghttallll ht
bright yellow

it on a sharp
right turn?

Left motors in
positive direction,
right motors in
reverse direction

S it on a sharp
left turn?

Right motors work
in positive
direction and right
motors stop

ht taillig| ht

Left motors work in
right re

positive direction and

- . right motors work in
Left ta)'llg c’,“:lb"'ght Geverse direction

ng

Left taillight bright
red

_images/flowchart_app_control.png
Select connection
method

Configure
websocket server

Websocket start

Set the on_receive
function

Execute the loop
(Call
on_receive)

On_receive

y

Control Pico-
4wd from APP

Show Pico-4wd
sensor data on
APP

_images/flowchart_bull_fight.png
Set the Pico-4wd
working condition

Radar scan

an finish?

S

C

Data processing

Rle there any iten
within area?

Locate the

biggest item

S it on the
left? N>$_N

>

_images/install_thonny6.png
ey Setup - Thonny
B 0% o
ey

1 im andom

2 n randir
3

4 guess ~int(input
6 while n !- "guest
7 if guess < n:
8 print("g
9 guess = i
) elif guess >
1 print("g
2 guess = i
3 else:

4 print("yc

Great success!

Thonny is now upgraded. Run it via shortaut o right-cick a
=.py fle and select Edit with Thonny .

‘Computers are useless. They can orly give you

—Pablo icasso

=

_images/interepter_thonny.png
T Thonny

File Edit View Run Tools Help

D&

- o x

‘The same interpreter which runs Thonny (default)
Alternative Python 3 interpreter o virtual environment
v MicroPytt)

Configure interpreter.

_images/flowchart_obstacle_avoid.png
Get radar status

ects obstach
Scan finish? and not in
DANGER

Set status to
SAVE Set status to

DANGER

Get direction Caiion)

Servo tums right

Car turns left

Servo tums right

Set scan angle

Servo tums left

FORWARD pr

Set radar scan

angle to 50 Carturns right

Car moves
forward

Servo tums left
25°

Get direction

Convert radar data to a
string

Split the string with 0",
leaves free path

Calculate width of each

Get the widest
path position

Divide all path
into 3 parts

I widest path
on..

MIDDLE

Return FORWARD

_images/install_thonny1.png
Windows protected your PC

Microsoft Defender SmartScreen prevented an unrecognized app from
starting. Running this app might put your PC at risk.

App: thonny-400.xe
Publisher: Aivar Annamaa

_images/line_track1.png
T Thonny - EABasic Kits\Raspberry Pi Robots\Pico-4wd\pico_ 4wd_car-main\eamplesiiine tra.. = O X
File Edit View Run Tools Help

DEd O o=
Files line trsckpy
Thiscomputer = 3 MOTOR_POWER = 100 o
——" 4 car.GRAYSCALE_LINE_REFERENCE = 10000
pico_dwd_car-main \ examples 5
@ app_controlpy G def main():
@ bul fightpy 7 while True
& donot_push_me.py 8 gs_data = car.get_greyscale_statu
@)line trackpy 9 if gs_data == [0, 1, 0]:
@ obtacle_svoidpy 10 car.set_motor_power(MOTOR_POW
11 car.set_light_bottom_color([0
Rospbery Pipico 12 elif es data == [0. 1. 11: v
& app_controlpy S 2
@ app testpy Shell
pico_dulpy eyposcuTITs ey -
& pico_rdppy
wepy
>>> v

MicroPython (Raspberry Pi Pico) » COMBS

_images/line_track2.png
asic Kits\Raspl

File Edit View Run Tools Help

Dzd o o=

Files line_track.py

This computer = 1 import pico_4wd as car @
:\ Basic Kits \ Raspberry Pi

Robots \ Pico-duwd \ Th Whereto save to? %
pico_4wd_car-main \ examples
app_controlpy - EFERENCE = 10000
@ bul fightpy)
& comot poam mepy This computer
.get_greyscale_statu
Raspbery Pi Pico E [0, 1, 0]:
Raspberry Pi Pico motor_power (MOTOR_POW
@ app_controlpy 3 o oo e
Shell
i Mic 1 v1.19.1
@ pico.rippy i Pico with RP2040
Type "help()" for
>>>

MicroPython (Raspberry Pi Pico) »+ COMES

_static/minus.png

_static/file.png

_static/plus.png

_images/app_control111.png

_images/app_control12.png
« Pico-4wd my_4wd_car m P4

%8 \\\\‘ H ’//// Speed Sonar
NS
* S 80
Power A —0 > 100 — B Mileage c D

- 5489

Light G Greyscale Values

_images/app_control10.png
Pico-4wd >

_images/app_control11.png
T Thonny - EA\Basic Kits\Respberry Pi Robots\Pico-4wd\pico 4wd_car-main\eamplesiapp_.. — O X
File Edit View Run Tools Help

DBSHE 0 o=
Files app_controlpy
This computer = 1 from ws import WS_Server =
:\ Basic Kits \ Rasperry Pi Bl oort 5
Robots \ Pico-dwd \ import json
ico_dwdl car-main \ examples 3 import time
e 4 import pico_dwd as car
Gonot_push_mepy 5
& follow_hand.py 6 NAME = 'my_dwd_car'
& line rackpy 7
& obstacle_avoidpy 5 |
9 2
Raspberry Pi Pico, = Al Fonen
>>> v

MicroPython (Raspberry Pi Pico) » COMBS

_images/app_control13.png
@ It

SunFounder Controller

_images/obs_avoid2.png
T Thonny| T Save to Raspberry Pi Pico X X
Fle dt
D5 | [Remberypipico -
| nome Sie oyt
& app_contrlpy 2% -
g K T2 —
Robots . P
s\ pico_Awcipy 766
& picordpy a2
g:m‘:‘, wepy 3085
@ donol
S ine
& obei
| riereme [y | [oc] [Gone]
aspbery s
@ app._controlpy < >
@ app_testpy
& mainpy Shell -
@ pico_dwd.py MicroPython v1.19.1 on 2022-06-18; Raspberry P A
Spicordppy i Pico with RP2040
&
wspy

Type "help()" for more information.

>>> v

MicroPython (Raspberry Pi Pico) » COMG5.

_images/pico-4wd.png

_images/move_forward.png
T Thonny - FA0D00000-AARAAAA-TRETZH#\PICO-4WD CARpico_dwd _car\code\pico dwd_careamples\move f.. — O X
Fle Edt View Run Tools Help

dan 0

“This computer

& donot_push_me.py
@ follow_hand py

@ line_track py

@ move_forward.py
@ obstacle_avoidpy

Raspbery Pi Pico
& pico_awd.py
& pico_rdp.py
® wspy

Files %

F:\, 0000000-AAAAAAAT5 I 5TH
\ PICO-4WD CAR \ pico_dwd_car
\ code \ pico_4wd_car \ examples

s). 4 e

(=)
|

1 import pico_4wd as car
2 import time

try:
while True:

time.sleep(1)
finally:
car.move("stop")

VWONOU AW

car.move|(“forward"”,

50)

e

>>>

MicroPython v1.17 on 2021-09-02;

co with RP2040

Raspberry Pi Pi

Type "help()" for more information.

>>>

MicroPython (Raspberry Pi Pico)

_images/obs_avoid1.png
T Thonny - EA\Basic Kits\Respberry Pi Robots\Pico-4wd\pico_4wd_car-main\eamplesiobstacl.. — O X
File Edit View Run Tools Help

DEE 0 o=
Files obstacle_avaid py
This computer = 1 import pico_dwd as car .
:\ Basic Kits \ Raspberry Pi . :
Robots \ Pico-4wd \ [iuport time
pico_4wd_car-main \ examples 3
@ spp_controlpy 4 car.RADAR_REFERENCE = 20
& bull fightpy 5 car.RADAR_STEP_ANGLE = 10
& donot push mepy 6 MOTOR_FORWARD_POWER = 30
@ line trackpy 7 MOTOR_TURNING_POWER = 50
@) obstacle_avoid.py g
S FORWARD_SCAN_ANGLE = 5

Respheryiico [P
& app._controlpy z >
& apptestpy
& mainpy Shell
@ pico_dwd.py -
@ pico_rdp.py
Suspy

>>> v

MicroPython (Raspberry Pi Pico) + COM86

_images/pico_pin.jpg
[ro i1
[cr1] !
 Gno JE3
EAaE
EAas
[pa I
s 17
En s
[Gps)
[cr7 |]
[crs | i)
[Gro Bl
o BEY
[cp10]]
P11} L]
ep12]]
8
G 18
Eum
cPaski]

O Respherry

40 [EH
39 [58
38 @3
37
36
£
34 (977 IETIEN
B onol Ao}
32 (577 TSN
31 (527 T
%0
29 [5771
28 @R
b Jop2i)
26 [721]
25 [0
24 [0
=Y oo
2 [530
2 [0

_images/app_control1.png
T Thonny - EA\Basic Kits\Respberry Pi Robots\Pico-4wd\pico 4wd_car-main\eamplesiapp_.. — O X
File Edit View Run Tools Help

DBSHE 0 o=
Files app_controlpy
This computer = 1 from ws import WS_Server =
:\ Basic Kits \ Rasperry Pi Bl oort 5
Robots \ Pico-dwd \ import json
ico_dwdl car-main \ examples 3 import time
e 4 import pico_dwd as car
Gonot_push_mepy 5
& follow_hand.py 6 NAME = 'my_dwd_car'
& line rackpy 7
& obstacle_avoidpy 5 |
9 2
Raspberry Pi Pico, = Al Fonen
>>> v

MicroPython (Raspberry Pi Pico) » COMBS

_images/rdp_dir.png
T Thonny - Raspberry Pi Pico : /pico_4wdpy @ 9:45

File Edit View Run Tools Help

dan 0

les X move forward.py 3
:“;‘mﬂ mam# 1 from plcoTr‘dp.lmport Iflotor‘, Speed, Servo, Ultrasonic, W
\ PICO-4WD CAR \ pico_dwd_car 2 from machine import Pin, ADC
\ code \ pico_4wdlcar \ examples 3 import time
& donot_push_me.py 4
@ follow_hand.py 5 LIGHT_REAR =
@ line_trackpy & LIGHT_BOTTOM_LEFT =
€ move_forwardpy 7 LIGHT_BOTTOM_RIGHT =
@ obstacle_avoidpy 8
9 left_front = Motor(17,
7|l 18 right_front = Motor(15,
e “| 11 left_rear = Motor(13,
@ pico_dwd.py 12 right_rear = Motor(il,
@ pico_rdp.py 13 motors = [left_front, right_front, left_rear, right_rear
& wspy 14 -

»

>>>

MicroPython (Raspberry Pi Pico)

_images/pico.jpg

_images/pico_drp_pin.png
L J Power
EJ Indicator

INB1'IO1‘6

id

wgpegs

A o
B Mo
INA3L 1013
=
INB3;1012]

_images/run_donot_push.png
T Thonny - EABasic Kits\Respberry Pi Robots\Pico-dwd\pico_4wd_car-main\eamplesidonot... — O X

File Edit View Run Tools Help

DEd (o @=
s o cUment 2Bt 5] . o, ey

This computer 1 import pico_dwd as car @
&\ BasicKits\ Raspberry Pi g
Robots \ Pco-tud import tine
pico_dwd_car-main \ examples 3
& app_controlpy 4 car.GRAYSCALE_EDGE_REFERENCE = 1000
& bu 5 MOTOR_POMER = 5
6
b4 7 def shake_head():
obstacle_svoidpy 8 for angle in range(@, 90, 10):
9 print("angle:%s "%angle)
. 10 car.servo.set anele(anele) v

Raspberry Pi Pico

& app_contrlpy

@ app_testpy
ico Awcipy

& picordpy
by

MicroPython (Raspberry Pi Pico) + COM86

_images/wiring_test_servo.png
=

_images/wiring_test_rgb.png

_images/wiring_test_ultrasonic.png

_images/wiring_test_speed.png

_images/line_track3.png
T Thonny| T Save to Raspberry Pi Pico
Fle dt
D5 | [Remberypipico
| nome Sie oyt
& app_contrlpy 2%
This comp ren S
E:\ Basic 0 PPIEELEY
Roboi 8 56 e e e
Py gpmmw a2
3pP_¢ ws. 3985
& buil P
& donol
Sine
& obut tu
Fiename: | [ramey | [oc] [Et] bow
Raspberry o
@ app._controlpy < >
@ app_testpy
ey Shell -
@ pico_dwd.py MicroPython v1.19.1 on 2022-06-18; Raspberry P A
& pico.rdppy i Pico with RP2040
wspy

Type "help()" for more information.
>>>

MicroPython (Raspberry Pi Pico) = COME6

_images/run_test_motor.png
T Thonny - EA\Basic Kits\Respberry Pi Robots\Pico-4wd\pico_4wd_car-mainitestsitest mot.. — O X
File Edit View Run Tools Help

Lz 4|0 o=

Run currentserpt (5],

Files nttled> ~ test_motorpy
This computer ~ 1 import pico_dwd as car @
:\ Basic Kits \ Rasperry Pi B . :
Robote \ Pico-dud 2 import time
pico_4wd._car-main \ tests 3
@ test_grayscalepy 4 def test_motor():
testTight py 5 speed = 50
@ test motorpy 6 act_list = [
& test servopy o orard®
Raspberry Pi Pico = 8 ackward
& pico_dwdpy 2 ety v
& pico_rdppy et
ey forward ~
backward
lefe
right

MicroPython (Raspbery.

ico) - COMBS

_images/run_test_servo.png
T Thonny - EABasic Kits\Raspberry

bots\Pico-dwd\pico_dwd_car-mainitestsitest serv.. — O X
File Edit View Run Tools Help

Lz 4o o=

[Run current script (73]

Files servopy
This computer ~ 1 import pico_dwd as car @
:\ Basic Kits \ Rasperry Pi Bl eport i
Robots \ Pico-dwd \ impos me
pico_4wd._car-main \ tests 3
@ test_grayscalepy 4
S testTightpy 5 def test_servo():
motorpy angle in range(0, 90):
@ test_mot 6 £ le i 0, 90
L print("angle:%s "%angle
guw = int("angle:%s “Kangl
0::—;‘;‘:"’ 8 car.servo.set_angle(angle)
Lepeedey vl 9 ‘time.sleep(0.005) .
Raspberry Pi Pico, Shel
@ app_controlpy angrezs .
& apptestpy angle:26
pico_4wd.py angle:27
& pico_rdppy angle:28
v angle:29 v

MicroPython (Raspberry Pi Pico) » COMBS

_images/run_test_grayscale.png
T Thonny - EABasic Kits\Raspbery Pi Robots\Pico-4uwl pico_4wd_car-main\tests\test_gray...
Fie Edit View Run Tools Help

=20 [v] o=

Files

- o x

rayscale.py

import pico_dwd as car =
import time

This computer L)
:\ Basic Kits \ Rasperry Pi
Robots \ Pico-duwd \
pico_4wd._car-main \ tests

@ app_testpy

@ light_effectpy def test_grayscale():

@ pico_4wd testpy while True: .
S testpy

@) test grayscalepy Shell

@ testlightpy

Raspberry Pi Pico, . right:656
. right:656

& app_contrlpy

@ app_testpy
ico Awcipy

S ricordpy

MicroPython (Raspberry Pi Pico) + COM86

_images/run_test_light.png
T Thonny - EABasic Kits\Respberry Pi Robots\Pico-dwd\pico_4wd_car-mainiteststest ight... — O X
File Edit View Run Tools Help

[AR=2=] [} o=
Files [Run current script (FS)| CTightpy
This computer = 1 import pico_dwd as car @
:\ Basic Kits \ Rasperry Pi Bl eport i
Robots \ Pico-dwd \ impos me
pico_4wd_car-main \ tests 3
@ app_testpy &
@ light_effectpy 5 def test_light():
& pico_dwd testpy 6 print("red") .
Srestpy
@ test grayscalepy Shell
@ test ightpy ~
v o
Raspberry Pi Pico =4 red
@ app_controlpy green
& app_testpy blue
pico_4wdpy white
& pico_rdppy ol s>

MicroPython (Raspberry Pi Pico) + COM86

_images/save_to_pico.png
Th Thonny - <untitled>

1:27 - o x

File Edit View Run Tools Help

Dsd 0

<untitied> *

1 55 p

@
T Wheretosaveto? %
This computer
spberr
Raspbeny PiPico

_images/seach_wifi.jpg
< Wi-Fi

Use Wi-Fi

O i e e e’
€ T
EETa

v

* EETL LT

* maa

v 'WLEE s

B s e R EY R P

-+ Add network

P P P P P P P B

_images/run_test_sonar.png
T Thonny - EABasic Kits\Respberry Pi Robots\Pico-4wd\pico 4wd_car-mainiteststest sone.. — 0 X
File Edit View Run Tools Help

Do
Files R coment st G5, 4oty

This computer)
E:\ Basic Kits \ Raspberry Pi

Robots \ Pico-dwd \
pico_dwd_car-main \ tests

1

2

& spp restpy 3
@ ight_effectpy 4 def test_sonar():

5

6

import pico_4wd as car
import time

S masstor while True:

Stestpy v
Raspberry Pi Pico distance = car.son

@ app_controloy <

@ app_testpy
igwid

& pico.ripoy distance:111.979 0
wspy distance:23.698

>
Shell

MicroPython (Raspberry Pi Pico) + COM86

_images/run_test_speed.png
T Thonny - EABasic Kits\Respberry Pi Robots)\Pico-4w\pico_4wd_car-mainitestsltest speed.py @ 4: 1 - o x

File Edit View Run Tools Help
DEd O

Files

o=
e e B g

This computer = 1
E:\ Basic Kits \ Raspberry Pi

Robots \ Pico-dwd \
pico_dwd_car-main \ tests

3

@ app_testpy &
& ight ciecty 5
& pico Awd testpy 6
7

8

9

Sty
& testgrayscoleny
et igniy

Raspberry Pi Pico <

& app_contrlpy

@ app_testpy
ico Awcipy

& picordpy
by

Shell

Power (3)
Power (3)
Power (3)
Power (3)
Power (3)
Power (3)
Power (3)
Power (3)
Power (3)

:30
:30
40
40
40
40
40
40
40

def test_speed():
def helper(power):

import pico_dwd as car
2 import time

power = round(power / 10) * 10

car.move("forvard",

Specd(em/s)
specd(em/s)
specd(em/s)
specd(em/s)
specd(em/s)
specd(em/s)
specd(em/s)
specd(em/s)
specd(em/s)

:25.
:25.
23,
:25.
31,
31,
28,
28,
31,

92
92
32
92
10
10
51
51
10

power) ~ .
>
)
£
2
-0
v 0 Power(%):e Speed(cm/s):e

MicroPython (Raspberry Pi Pico) - COM86

_images/run_save.jpg
C’:}--QDZ
/

RUN/STOP /
SAVE/EDIT
D

e

_images/run_test.png
Th Thonny - Foisimii s MBS i ke b b ca\pico dwd_canteste\app testpy.. — O X
Fie Edit View Run Tools Help

L R) o

data = car.get_radar_distance()

“This computer
[

31
e TR L [P ws.send_dict['D'] = data
B =
picowd.carpicodnd.ar || 34 us_on_receive = on_receive
35
36 def main():
@ light effect.py 37 print("start")
& pico_4wd_testpy 38 while True:
Y| 39 ws . loop()
Raspberry Pi Pico =T
@ pico_dwd.py 41 try: |
@ pico_rdppy [[snen>c |
@ wspy MicroPython v1.17 on 2021-09-02; Raspberry Pi Pico with
RP2040

Type "help()" for more information.
>>> %Run -c $EDITOR_CONTENT
Connecting

WebServer started on ws://192.168.4.1:8765
start

MicroPython (Raspberry Pi Pico)

_images/set_pico2.png
T Thonny - <untitled> @ 1:1 - o x

File Edit View Run Tools Help

DEH O]

<untitied> -

ams\Thonny\python

+ Local Python 3 - Thonny's Python

Install MicroPyth
InstallCircuitPythor

Configure interpreter..

Local Python 3 + Thonny's Python |

_images/set_pico3.png
Install MicroPython

Here you can install or update MicroPython for devices having an UF2 bootloader
(this includes most boards meant for beginners).

1. Put your device into bootloader mode:
- some devices have to be plugged in while holding the BOOTSEL button,
- some require double-tapping the RESET button with proper rythm.

2. Wait for couple of seconds until the target volume appears.

3. Select desired variant and version.

4. Click 'Install' and wait for some seconds until done.

5. Close the dialog and start programming!

Target volume /Volumes/RPI-RP2
family RP2

MicroPython variant | Raspberry Pi - Pico / Pico H ,\

version 1.19.1

info https://micropython.org/download/rp2-pico

_images/sec_slide.jpg

_images/set_pico1.png
T Thonny - <untitied> @ 1:1

- o x
File Edit View Run Tools Help
DEH O o=
<untitied> -
1
Shell -
Python 3.10.6 (D e
xe)
>>>

Local Python 3 « Thonny's Python

_images/th_done.png
T Thonny - <untitied> @ 1:1

- o x
File Edit View Run Tools Help

D=Ed o o=

Files <untitled>

This computer

1
C:\ Users \ Daisy \ Downloads \
pico_4wd_car-main \ libs
E rdp.py.
i Shell

Raspbery PiPico
@ pico.twiry

& pico.ripoy o
i

MicroPython (Raspberry Pi Pico) - COMsS

_images/set_pico4.png
Install MicroPython

Here you can install or update MicroPython for devices having an UF2 bootloader
(this includes most boards meant for beginners).

1. Put your device into bootloader mode:
- some devices have to be plugged in while holding the BOOTSEL button,
- some require double-tapping the RESET button with proper rythm.

2. Wait for couple of seconds until the target volume appears.

3. Select desired variant and version.

4. Click 'Install' and wait for some seconds until done.

5. Close the dialog and start programming!

Target volume /Volumes/RPI-RP2
family RP2

MicroPython variant Raspberry Pi - Pico / Pico H

version 1.19.1

info https://micropython.org/download/rp2-pico

Waiting for the port...
Found 2e8a:0005 at /dev/cu.usbmodem143301

Done!

_images/show_widget.png
Widget

Data (type)

Display

99.8

-1000.00~1000.00(float)

Cannot be modified

0~100(int)

Range can be modified through|

Array with 3 elements

(float)

Element value<110: A
-
Element value<400:

Element value>= 400:no pattern

(can be modified)

Array with 2 elements

(float)

The first element: the angle value|

The second element: distance
value

_images/sec_inter.png
T Thonny - <untitied> @ 1:1 - O
File Edt View Run Tools Help

DEH O]

<untitied> -

1

Shell -

Python 3.16.6 (D:\Users\Daisy\AppData\Local\Programs\Thonny\python.e
xe)

>>>

_images/sec_radar.jpg

_images/seach_wifi1.jpg
& Wi-Fi Q

Use Wi-Fi

® el S s &
¥ EEmaET . &
EETRR

