

SunFounder PiCar-S Smart Car Kit for Raspberry Pi

About the PiCar-S

The PiCar-S is a cool smart car that can work with Raspberry Pi 3
model B, 3 model B+, and 4 model B. Equipped with three sensor modules
including ultrasonic obstacle avoidance, light follower, and line
follower, you can better learn the programming on how to control the
car.

In this manual, we will show you how to build the PiCar-S via
description, illustrations of physical components, in both hardware and
software respects. You will enjoy learning how all this work. You can
view the latest PDF user manual or clone the code by click the link:
https://github.com/sunfounder/SunFounder_PiCar-S/tree/V3.0.

If you want to learn another projects which we don’t have, please feel free to send Email and we will update to our online tutorials as soon as possible, any suggestions are welcomed.

Here is the Email: cs@sunfounder.com.

	Components List
	Structure Plates

	SunFounder SF006C Servo x 1

	Mechanical Fasteners

	Wires

	PCB

	Other Components

	Tools

	Self-provided Components

	Introduction

	Building the Car
	Front Half Chassis

	Front Wheels

	Steering Part

	Upper Plate

	Battery Holder

	Rear Wheels (Screws)

	PCB Assembly

	Rear Wheels (Driving)

	Circuits Building
	Connect the Power

	Connect the Modules

	Connect the Servo

	Connect the Motor

	Get Started with Raspberry Pi
	Installing the OS

	Power on the Raspberry Pi

	Get the IP Address

	Use the SSH Remote Control

	Servo Configuration
	Get Source Code

	Go to the Code Directory

	Install the Environment via Script

	Set the Servo to 90 Degrees

	Build the Rest of the Car

	Calibration
	Calibrate the Servo

	Calibrate the Motors

	Arming the Car!
	Obstacle Avoidance

	Light Following

	Line Following

	Combination

	Appendix
	Installing Manually

	Modules

	Thank You

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes, under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.

Components List

Structure Plates

[image: 图片101]

	Upper Plate x 1

	Front Half Chassis x 1

	Hex Front Wheel Fixing Plate x 8

	Ultrasonic Support x 1

	Bearing Shield x 8

	Steering Linkage x 1

	Steering Connector x 2

	Ultrasonic Connector x 1

	Back Half Chassis x 1

	Sensor Connector x 1

SunFounder SF006C Servo x 1

[image: 舵机图]

	Servo x 1

	1-arm Rocker Arm x 1

	arm Rocker Arm x 1

	4-arm Rocker Arm x 1

	Rocker Arm Fixing Screw x 1

	Rocker Arm Screw

Mechanical Fasteners

[image: _images/image200.png]

Wires

[image: _images/image201.png]

PCB

[image: _images/image202.png]
[image: _images/image203.png]

Other Components

[image: _images/image204.png]

Tools

[image: _images/image205.png]

Self-provided Components

The following components are not included in this kit.

[image: _images/image206.png]

Note

1. You are recommend to use 18650 batteries without a protective
board. Otherwise, the car may be cut power and stop running because
of the overcurrent protection of the protective board.

2. For unprotected batteries, please purchase those with the anode
bulged out (as shown below), so that it can ensure the well
connection with the battery holder.

[image: _images/image207.png]
3. In order to keep the car working for a long time, use large-capacity
batteries as much as possible.

Introduction

The PiCar-S is a SMART SENSOR car robot based on Raspberry Pi, which
comes with three sensor modules, including the light follower, line
follower and ultrasonic obstacle avoidance. With these modules, this
smart car is capable of some simple automatic actions. Thus, you can
learn some basics of programming in Python to control the car with these
sensors. Let’s start with building this smart car!

[image: 图片1008]

Building the Car

Extremely excited when opening the box and checking so many components?
Keep your patience and take it easy. Please note that some details in
the following steps need CAREFUL observation. You should
double-check your work based on the figures in the manual after
finishing each step. Don’t worry! Kindly reminders will be given in some
particular steps. Just follow the tutorial step by step. Okay, with no
further ado, now let’s start!

Front Half Chassis

Assemble the Front Half Chassis with four M3x25 copper standoffs
and four M3 nuts as shown below:

[image: _images/image208.png]

Front Wheels

Note

Please pay attention to the direction of Steering Connector before assembling.

Insert an M4x25 screw through a Steering Connector, 3 Bearing
Shields, 3 Hex Front Wheel Fixing Plates, and a front wheel,
into an M4 Self-locking Nut (note the direction) as shown below:

[image: _images/image209.png]
You can use the Cross Socket Wrench to secure the M4 Self-locking
Nut, then use the screwdriver to tighten the M4x25 screw.

[image: _images/image52.jpeg]

Note

The Self-locking Nut should be screwed tight enough. It would be better
to tighten the screw until the wheel and Steering Connector cannot move
first, then loosen the screw a little, so that the Steering Plate can
just move. Thus, the wheel can turn flexibly when the connection would
not be too loose.

Assemble the other front wheel in the same way, but bear in mind the
Steering Connector on the wheel should be symmetric with the previous
one:

[image: _images/image210.png]
Now two front wheels have finished assembly.

Steering Part

Connect the Steering Linkage and the 1-arm Rocker Arm with the
M1.5x4 Self-tapping Screw.

Note

Insert it into the FIRST hole of the arm (as indicated by the arrow below) which is the farthest from the gears.

[image: _images/image211.png]

Note

Fasten them as tightly as possible, and then loosen the screw a little so the Steering Linkage can move flexibly.

Upper Plate

Mount the M2.5x8 copper standoffs and M2.5 nuts into the upper
plate first. Pay attention that the side the protruding prop should
face up.

[image: _images/image212.png]

Battery Holder

Turn the Upper Plate upside down. Cut the ribbon into two halves.
Thread them through the holes on the plate. Pay attention to the
direction and leave one end longer out of the plate for each to remove
the battery easily later.

[image: _images/image59.png]
Fasten the battery holder with two M3x8 countersunk screws and two
M3 nuts: pay attention to the direction of battery holder’s wire.

[image: _images/image213.png]

Rear Wheels (Screws)

Insert four M3x8 screws with four M3x25 copper standoffs:

[image: _images/image214.png]

PCB Assembly

	Assemble the Raspberry Pi (TF Card inserted) with eight M2.5x8
copper standoffs, then plug the Robot HATS onto it.

	Fix the Robot HATS with four M2.5x6 screws.

	Fix The PCA9685 PWM Driver, the Motor Driver with eight
M2.5x12 screws and M2.5 nuts into the down plate.

[image: _images/image215.png]

Rear Wheels (Driving)

Assemble the two motors to the Back Half Chassis with four M3x25
screws and M3 nuts. Pay attention to place the motors with wires
inward, providing convenience for connecting the circuit.

[image: _images/image216.png]
Assemble the rear wheels with 4 M3 nuts.

[image: _images/image217.png]
Align the rear wheels with the motor shaft, and rotate to insert
them gently.

[image: _images/image218.png]

Circuits Building

Connect the Power

[image: _images/image69.png]

Connect the Modules

[image: _images/image70.png]

Connect the Servo

[image: _images/image71.png]

Connect the Motor

[image: _images/image72.png]
The complete connection is shown as follows.

[image: _images/image73.png]
So now the circuit boards are all installed onto the car and the wiring
is done. But still you’re not ready to adjust the servo yet. First you
need to complete some software installation.

Get Started with Raspberry Pi

In this chapter, we firstly learn to start up Raspberry Pi. The content
includes installing the OS, Raspberry Pi network and how to open
terminal.

Note

You can check the complete tutorial on the official website of the Raspberry Pi:
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up.

Note

If your Raspberry Pi is set up, you can skip the part and go into the next chapter.

Installing the OS

Required Components

	Any Raspberry Pi

	1 * Personal Computer

	1 * Micro SD card

	

Step 1

Raspberry Pi have developed a graphical SD card writing tool that works
on Mac OS, Ubuntu 18.04 and Windows, and is the easiest option for most
users as it will download the image and install it automatically to the
SD card.

Visit the download page: https://www.raspberrypi.org/software/. Click on
the link for the Raspberry Pi Imager that matches your operating system,
when the download finishes, click it to launch the installer.

[image: _images/image219.png]
Step 2

When you launch the installer, your operating system may try to block
you from running it. For example, on Windows I receive the following
message:

If this pops up, click on More info and then Run anyway, then
follow the instructions to install the Raspberry Pi Imager.

[image: _images/image220.png]
Step 3

Insert your SD card into the computer or laptop SD card slot.

Step 4

In the Raspberry Pi Imager, select the OS that you want to install and
the SD card you would like to install it on.

[image: _images/image221.png]

Note

	You will need to be connected to the internet the first time.

	That OS will then be stored for future offline
use(lastdownload.cache, C:/Users/yourname/AppData/Local/Raspberry
Pi/Imager/cache,). So the next time you open the software, it will
have the display “Released: date, cached on your computer”.

Step 5

Select the SD card you are using.

[image: _images/image222.png]
Step 6

Press Ctrl+Shift+X to open the Advanced options page to enable
SSH and configure wifi, these 2 items must be set, the others depend on
your choice . You can choose to always use this image customization
options.

[image: _images/image78.png]
Then scroll down to complete the wifi configuration and click SAVE.

Note

wifi country should be set the two-letter ISO/IEC alpha2
code [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements] for
the country in which you are using your Raspberry Pi, please refer to
the following link:
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements.

[image: _images/image79.png]
Step 7

Click the WRITE button.

[image: _images/image223.png]
Step 8

If your SD card currently has any files on it, you may wish to back up
these files first to prevent you from permanently losing them. If there
is no file to be backed up, click Yes.

[image: _images/image224.png]
Step 9

After waiting for a period of time, the following window will appear to
represent the completion of writing.

[image: _images/image225.png]

Power on the Raspberry Pi

Now, the Raspberry Pi OS is configured. You can plug out the USB card
reader and then plug the Micro SD card into the Raspberry Pi.

Put two 18650 fully charged batteries in the holder, plug the wires from
the battery holder into the development board then toggle the switch
from off to on. You are also recommended to use the power adapter of
Raspberry Pi to power your car for that the first test will take a long
time.

Get the IP Address

After the Raspberry Pi is powered on, we need to get the IP address of
it. There are many ways to know the IP address, and two of them are
listed as follows.

1. Checking via the router

If you have permission to log in the router(such as a home network), you
can check the addresses assigned to Raspberry Pi on the admin interface
of router.

The default hostname of the system, Raspberry Pi OS is raspberrypi,
and you need to find it. (If you are using ArchLinuxARM system, please
find alarmpi.)

2. Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry
Pi. You can apply the software, Advanced IP scanner(download from
Google).

Click Scan and the name of all connected devices will be displayed.
Similarly, the default hostname of the Raspberry Pi OS is
raspberrypi, now you need to find the hostname and its IP.

[image: _images/image83.png]

Use the SSH Remote Control

We can open the Bash Shell of Raspberry Pi by applying SSH. Bash is the
standard default shell of Linux. The Shell itself is a program written
in C that is the bridge linking the customers and Unix/Linux. Moreover,
it can help to complete most of the work needed.

For Linux or/Mac OS X users

Step 1

Go to Applications->Utilities, find the Terminal, and open
it.

Step 2

Type in ssh pi@ip_address . “pi” is your username and “ip_address” is
your IP address.
For example:

ssh pi@192.168.18.197

Step 3

Input “yes”.

[image: _images/image226.png]
Step 4

Input the passcode and the default password is raspberry.

[image: _images/image227.png]
Step 5

We now get the Raspberry Pi connected and are ready to go to the next
step.

[image: IMG_277]

Note

When you input the password, the characters do not display on
window accordingly, which is normal. What you need is to input the
correct passcode.

For Windows Users

If you’re a Windows user, you can use SSH with the application of some
software. Here, we recommend PuTTY (You can download from Google).

Step 1

Download PuTTY. Open PuTTY and click Session on the left tree-alike
structure. Enter the IP address of the RPi in the text box under Host
Name (or IP address) and 22 under Port (by default it is 22).

[image: IMG_278]
Step 2

Click Open. Note that when you first log in to the Raspberry Pi with
the IP address, there prompts a security reminder. Just click Yes.

Step 3

When the PuTTY window prompts “login as:”, type in
“pi” (the user name of the RPi), and password: “raspberry”
(the default one, if you haven’t changed it).

[image: _images/image228.png]
Here, we get the Raspberry Pi connected and it is time to conduct the
next steps.

Servo Configuration

Since the servos used in this kit are adjusted by software and there’s
no such physical sticking point as other servos, here we need to
configure the servo via software. First you need to finish some software
installation before the configuration.

Note

Please do forget to put in the battery and slide the power switch to ON in following chapters.

Get Source Code

You can find the source code in our Github repositories. Download the
source code by git clone:

cd /home/pi/
git clone --recursive https://github.com/sunfounder/SunFounder_PiCar-S.git -b V3.0

Note

Please pay attention to your typing – if you get the prompt of
entering your user name and password, you may have typed wrong. If
unluckily you did so, press Ctrl + C to exit and try again.

Go to the Code Directory

cd ~/SunFounder_PiCar-S/
ls

Enter the code directory and you can see the installation script:

[image: _images/image90.png]

Install the Environment via Script

You can get all the required software and configuration done with the
installation script. If you want to do step by step instead, refer to
the operations in Appendix 1: Installing Manually.

sudo ./install_dependencies

Note

	The installation script will install the required components and
configure for the running environment. Make sure your Raspberry Pi is
connected to the Internet during the installation, or it would fail.

	The Raspberry Pi will prompt you to reboot after the installation.
You’re recommended to type in yes to reboot.

Set the Servo to 90 Degrees

After reboot, type in the command:

picar

You can see three commands here.

[image: _images/image91.png]
The first one servo-install is for servo adjustment, which is
used after the front wheels are assembled. The servo will rotate to 90
degrees after this command is run, so we will use this command here.

picar servo-install

[image: _images/image92.png]

Note

If the “OSError: [Errno 121] Remote I/O error” error message appears,
open raspi-config:

sudo raspi-config

Then choose 3 Interfacing Options → P5 I2C → <YES> →OK
to enable I2C service. You can use the up, down, left, and right keys on
the keyboard to select, and then press Enter to confirm.

After the code is running, insert the rocker arm into the servo. You
will see the rocker arm is rotate in clockwise and counterclockwise,
then stop at a specific location. It means the servo is good. If the any
of the conditions below happened to your servo, your servo is bad:

	Noisy, hot.

	If unplug the servo line and rotate the rocker arm, it sounds like
“ka” “ka” “ka” or there has no sounds of gear driving.

	Rotate slowly but continuously.

If you find one of the conditions above, please send e-mail to
service@sunfounder.com . We will
change a new one to you. If it is broken in the process of using or
assembling, you should go to the official website
www.sunfounder.com [http://www.sunfounder.com] to buy.

Build the Rest of the Car

Warning

Please keep the command servo-install running in the whole process of assembly.

Mount the steering servo to the Upper Plate with two M2x8 Screws and
two M2 nuts (pay attention to the direction of the servo wires):

[image: _images/image94.png]
The Rocker Arm is facing straight ahead, and then inserted into the
Servo shaft, and then fixed with Rocker Arm Fixing Screw (the
shortest).

[image: _images/image229.png]
Mount the wheels onto the Upper Plate carefully.

[image: _images/image230.png]
Then put the assembled Front Half Chassis onto the Upper Plate with
standoffs aligned with the holes.

[image: _images/image97.png]
Hold them carefully, turn upside down, and fasten the standoffs and the
Upper Plate with four M3x8 screws:

[image: _images/image231.png]
So now, the whole assembly is DONE! Congratulations!

Calibration

Calibrate the Servo

Remember the commands to adjust the servo to 90 degrees previously? Now,
let’s talk about the other two commands.

The second command front-wheel-test is used to test whether the
front wheels can turn flexibly after assembly. When you run this
command, it will drive them to turn left and right.

picar front-wheel-test

[image: _images/image99.png]
You may find the direction of the front wheels is not facing exactly
front when they are in the straight status. If there is an obvious
deviation from the middle line of the front chassis, reassemble the
servo and run servo-install again; if it is just a little deviation
(like about 0~15 degrees), it can be adjusted by software.

Get into the folder SunFounder_PiCar/picar:

cd /home/pi/SunFounder_PiCar/picar

sudo nano config

[image: _images/image100.png]
Open the config file under the folder with an editor. You can see a
few parameters. The value of turning_offset is used to adjust the
front wheels. Its value is 0 by default. If you want to make the
front wheels turn right a bit, just modify it to a larger
number; to make it more towards the left, you can set it
smaller (it can even be a negative number).

But DO NOT over-configure the wheels (recommended a value between
-30 and 30), or the servo may be stuck and broken.

After changing the value of turning_offset, press Ctrl + O to
save the changes, and press Ctrl + X to exit. Run the command
picar servo-install to check the front wheel’s status.

picar servo-install

If the front wheels is still not facing the exact front, you may need to
edit the file config for a couple of times. The front wheels may
need to be adjusted about 3 to 5 times usually. We can move on to
calibration of the rear wheels when the front wheels are done.

Calibrate the Motors

Since the wiring of the two DC motors is random, the VCC and GND of a
motor may be connected to the wheel reversely, causing the wheel to spin
forward when it should do backward as configured in the code. Thus we
can use the third command which will drive the rear wheels to
simultaneously speed up and slow down alternately.

picar rear-wheel-test

[image: _images/image101.png]
Check whether both the two rear wheels rotate direction is the same as
the screen. Note that the two wheels are driven by the two motors
separately. It may happen that one rotates forward, while the other does
backwards. If so, we need to adjust one or both two wheels which rotate
reversely under that command.

cd /home/pi/SunFounder_PiCar/picar

sudo nano config

[image: _images/image100.png]
forward_A and forward_B are to change the default spinning
direction of the two motors. The value can only be 0 or 1, which
represents clockwise and counterclockwise rotation. By default, it’s
0 for both parameters. Thus if a wheel spins reversely, you only
need to change the corresponding parameter for the wheel to 1.

Press Ctrl + O to save the changes, and press Ctrl + X
to exit.

Run the command picar rear-wheel-test again to check whether the
rear wheels are rotating in accordance with the command.

picar rear-wheel-test

Copy config to the directory example under PiCar-S.

cp config ~/SunFounder_PiCar-S/example

Arming the Car!

A car without sensor modules is unarmed just like a man without sight
and hearing, thus he has no feeling for the surrounding environment. So
what we are going to do is arm the car, allowing it to detect the
surroundings. Now let’s turn the PiCar into the PiCar-S.

What exactly is the PiCar-S? ——- We arm the PiCar with some sensors,
which endow the car with the ability to collect and process the data.
The sensor modules to the PiCar is what the cartridges to
the game console; they are added to the basic design of the game and
thus richening the play. It’s also similar to the code. The processor
will use SunFounder_PiCar to drive the car’s movement, and call the
corresponding code package for different modules
(SunFounder_Light_Follower, SunFounder_Line_Follower,
SunFounder_Ultrasonic_Avoidance).

Assemble the desired sensor module according to the wiring in
corresponding module instructions below. Have fun with The
Transformer!

[image: _images/image232.png]

	Obstacle Avoidance
	How it Works

	Procedures

	Code Explanation for ultra_sonic_avoid.py

	Functions Explanation

	Light Following
	How It Works

	Procedures

	Code Explanation for light_follower.py

	Functions Explanation

	Line Following
	How it works

	Procedures

	How to make a track for line following

	Code Explanation of line_follower.py

	Functions Explanation

	Combination
	How it works

Obstacle Avoidance

How it Works

The ultrasonic obstacle avoidance module detects and transfers the
collected data to Raspberry Pi that can calculate the distance from the
obstacle. The Pi will send a command to adjust the front wheels and rear
wheels direction and rotation to control the PiCar-S walk away from the
obstacle if there is one.

Procedures

Step 1 Assembly

① Connect the ultrasonic module to the ultrasonic connector with M1.4*8
screws and M1.4 nuts.

② Then connect them to the ultrasonic support with M3*10 screws and M3
nuts.

③ Finally,assemble them to the Upper Plate with M3*10 screws and M3
nuts.

[image: _images/image233.png]
Reminder: It would be easier to place the nuts into the slots with
your fingers to hold underneath.

Step 2 Wiring

Connect the ultrasonic obstacle avoidance to Robot HATS with a 4-pin
anti-reverse cable as shown below.

Ultrasonic module can have a 5V or 3.3V power supply. Here, we give it a
3.3V power supply.

[image: _images/image234.png]
[image: _images/image108.png]
Step 3 Test

First, test the ultrasonic obstacle avoidance module before applying.

cd ~/SunFounder_PiCar-S/example/

python3 test_ultrasonic_module.py

[image: _images/image109.png]
You may find that the distance measurement may be not that accurate. It
doesn’t matter. This 25kHz ultrasonic module is not a commonly used one,
but one has a horizontal detecting range of about 30~40 degrees.
Thus the distance measured may be not so accurate, but that small range
provides convenience for obstacle avoidance. Besides, since the
Raspberry Pi is not a real-time operating system, the inaccurate time
calculation will affect the accuracy of distance measurement too.
However, this ultrasonic module is precise enough for obstacle
avoidance.

Step 4. Get on the road!

Now we have a general idea of the ultrasonic module’s effect after the
test above. Let’s run the code of the ultrasonic obstacle avoidance.

python3 ultra_sonic_avoid.py

The PiCar-S starts running now. Just place the car on the ground. It
will follow the program to turn when it detects an obstacle; if the
obstacle is too close, it will move backwards, and turn left/right. You
can also modify the threshold of obstacle detecting range and that of
moving backwards in the code.

[image: _images/image235.png]

Code Explanation for ultra_sonic_avoid.py

Whole Work Flow

[image: _images/image236.png]
The ultrasonic module returns a digital value, i.e., High or Low level,
and the interval time between two levels returned can be converted to
the distance to the obstacle. Thus, we call the time module in Python
for timing here. The formula to calculate the distance is written in the
ultrasonic module’s driver. The main program just calls the
corresponding program to get the distance value.

Subflow of the Obstacle Avoidance Function

[image: _images/image237.png]
When the car starts, it will detect obstacles and measure the distance
in cycle, make judgement, and take actions. Here are three cases: when
the distance to the obstacle is equals to the threshold, the car will
turn directions; when the distance is less than the threshold, the car
will move backwards before turning direction; when the distance is more
than the threshold, it will keep moving forwards.

[image: _images/image235.png]

Functions Explanation

ua = Ultra_Sonic.UltraSonic_Avoidance(17)

Create an object ua of a UltraSonic_Avoidance class in the
Ultra_Sonic module. The number in the round bracket is the initial
parameter, which represents the pin number the SIG of the module is
connected to. Since the BCM naming method is applied, the corresponding
pin on the Raspberry Pi is #17.

back_distance and turn_distance, two constants are to set the
thresholds of the ranging distance.

while() loop

When the detected distance is less than the back_distance, the car
will move backwards; when it is between back_distance and
turn_distance, the car will turn a direction (you can set the
turning angle in the aforementioned parameter turning_angle and the
angle can be a positive or negative number, for turning left or turning
right respectively; NOTE that the number of the turning angle should
be -90 to 90 considering the servo’s max rotation degrees, or the
servo may be burnt.); when the detected distance is greater than the
turn_distance, the car will keep moving forward.

bw.backward(), making the rear wheels rotate backwards;
bw.forward(), making the rear wheels spin forward. These two
functions in the rear wheel driving module back_wheels are to set the
wheel’s rotating direction.

bw.set_speed(speed), function in the back_wheels, to set the wheel’s
rotating speed. The larger the number (within the range 0-100) is, the
faster the wheel rotates.

fw.turn(angle), function in the back_wheels, to set the turning
angle. The angle is 90 when the car moves straight forwards; reduce the
number to turn left, and increase it to turn right.

fw.turn_straight(), making the front wheels return to the angle of
moving straight forwards.

More:

back_distance and turn_distance

Try to modify the constants to make the car back off and turn away in a
desired distance and angle as you like during the obstacle avoidance.

Light Following

How It Works

The light follower module detects light sources in the surroundings, and
transfers the data to the processor. The processor analyzes the data and
finds the direction of the light resource, so it will send a command to
control the movement of the front and rear wheels to approach the
resource.

Procedures

Step 1 Assembly

Connect the light follower to the Sensor Connector with M3*10 screws
and M3 nuts, and then assemble them to the car with two M3*10
screws and two M3 nuts. You’re suggested to hold the nuts
underneath with your fingers.

[image: _images/image238.png]
Step 2 Wiring

Connect the light follower to the Robot HATS with a 5-pin anti-reverse
cable as shown below.

[image: _images/image239.png]

Note

You may wonder why we connect 5V to 3.3. Well, since the
working voltage of the STM8 chip on the light follower is 2.7-5.5V, we
can connect it to 3.3V here. DO NOT connect 5V to 5V! All the analog
ports on the Robot HATS are led from the PCA8591, which is powerd by
3.3V. Therefore, if the voltage is between 3.3V-5V, the output value
will always be 255, thus the PCA8591 may be damaged if connected to 5V.
Remember to connect to 3.3V.

The wiring is shown as below:

[image: _images/image115.png]
Step 3 Test

Let’s test the light follower first.

cd ~/SunFounder_PiCar-S/example/

python3 test_light_module.py

[image: _images/image116.png]
Expose the phototransistors to the light spot of the flashlight. When
you increase the light intensity, more LEDs light up, and the output
values decrease.

Here we can rotate the blue adjustable resistor to change the values
under the same light luminance. The best status is as follows:

[image: _images/image244.png]

	When there is only one LED lights up, the output value is 255

	When the light is the brightest and all the LED light up, the output
value is about 10-25.

Step 4. Get on the road!

git submodule update --init

python3 light_follower.py

[image: _images/image245.png]
The car will enter the light following configuration mode when we run
the code above. It will keep turning to the right in a circle to gather
the information of light condition in different directions. So just
place the car in an open field and wait.

When the calibration is done, the car will stop temporarily. Shine a
flashlight on the light follower module, and the car will just follow
the light spot as you moves it.

[image: _images/image240.png]

Code Explanation for light_follower.py

Whole Work Flow

Light-sensitive sensors need to be calibrated before actual use
because of complex light conditions in the environment. It gathers
the information of the ambient light luminance. The car can follow
light only when the light source is brighter than the surroundings.

[image: _images/image241.png]
Here write two main functions/modules including light following
calibration and light following in the main program.

Subflow of Light Follower Calibration Function

We need to configure three light-sensitive components separately, so we
set three lists to store the values in A0, A1, and A2 collected for
multiple times. Then pick out the minimum values, which are the output
analog values in the brightest conditions.

Since the light source we use is much brighter than the ambient light,
we should take the output values in the brightest conditions as
reference.

Besides, we should set a threshold value - when the gap between the
collected value of the light source and that of the environment is
beyond the threshold, trigger the value switching to 0 or 1. Here we use
[0,0,0] to represent the three photoresistors’ status when they are not
triggered. “0” will become “1” when the value detected of the
corresponding photoresistor is higher than the threshold. Thus we can
set the related action of the car according to the three-element list.

If there is light detected, the car will move and follow it; if there is
no light detected, the car will stop temporarily and keep turning to
detect in a circle.

Subflow of Light Following Function

[image: _images/image242.png]
The light follower includes three phototransistors, thus its status list
is composed of three elements which represent 8 statuses (based on
permutation and combination). And here we need to set related responses
to these statuses.

The three elements show the status of the three probes: 1 represents
light detected, and 0, for none. For example, [1,0,0] shows that light
is detected only by the left probe, meaning th light source is at the
left of the car, thus setting the car’s response action as turning left;
[1,1,0] means that light is detected on the left and central probes,
thus its response action should be set turning left too; and set it as
turning right the same way according to the corresponding status. When
there is no light detected, the status is [0,0,0], so we set the
response action to stop and return to the standby mode.

[image: _images/image243.png]
Here, we need to set another variable – the steering angle – to
distinguish between the large-angle and small-angle turning. If the
light is at the central left side (status [1,1,0]), we should apply a
small-angle turning; if the light is at the edge of the left side
(status [1,0,0]), we should apply a large-angle turning.

Functions Explanation

To understand the code, take the software subflows above for reference.

Three Python modules are used in the code including the imported
light_follower_module, front_wheels, and back_wheel
previously. They are drivers for this kit, respectively for light
following, front wheels and rear wheels.

The related classes have been defined here. When the modules are applied
to use, objects will be created for related classes, and different parts
of hardware will be driven by calling a function by the class object.

For example, for the light following module, we create an object named
lf:

lf = Light_Follower.Light_Follower()

Then we can call the function by a class object.

A0 = lf.read_analog()[0]

This function read_analog() will return a list with three elements,
which stores the detected analog values of three probes. Here we use
A0 = lf.read_analog()[0], A1 = lf.read_analog()[1], and A2 =
lf.read_analog()[2] to store three elements of returned value
separately into the variables A0-A2.

A for() loop is used here cycling 10 times, that is the car will
acquire the analog values ten times when the car drives in a circle
under the calibration mode. The minimum values will be taken as
reference here. If you need more samples, just increase the times of the
loop.

Store the detected values to a list in each loop by the
env0_list.append(A0) function. When the loop ends, the built-in list
function reference[0] = min(env0_list) in Python will pick out the
minimum in the list.

lt_status_now = lf.read_flashlight()

This is to read the status of the module, which will return a 3-element
list. This function is used to solve the possible problem caused by
brightness-adjustable flashlights. They blink repeatedly due to
brightness change by PWM method, so we add this function to the driver
library to prevent the car from moving and stopping repeatedly when the
light source lights up and goes out quickly or changes luminance by
ON/OFF ratio.

fw.turn(turning_angle)

Function for front wheels steering. The main program will call this
function if the front wheels are applied for steering. The parameter is
the turning angle.

bw.forward()

bw.set_speed(forward_speed)

Here we need two functions for rear wheels. The first function is to
control the rotating direction as forward (the function for backwards is
bw.backward()). The second one is to set the rotating speed of the
wheels; the parameter is the speed value (range: 0-100). The bigger the
parameter is, the faster the wheel rotates.

Line Following

How it works

The line follower detects lines in the surrounding environment, and
transfers the data to the processor. The processor analyzes the data,
and sends a command to control the movement of front wheels and rear
wheels.

Procedures

Step 1 Assembly

Connect the light follower to the Sensor Connector with M3*10 screws
and M3 nuts, and then assemble them to the car with two M3*10
screws and two M3 nuts. You’re suggested to hold the nuts
underneath with your fingers.

[image: _images/image238.png]
Step 2 Wiring

Connect the light follower to the Robot HATS with a 5-pin anti-reverse
cable as shown below.

[image: _images/image125.png]
Step 3 Test

Get into the directory example:

cd ~/SunFounder_PiCar-S/example

Check whether any i2c device is recognized or not via i2c-tools

sudo i2cdetect -y 1

[image: _images/image126.png]
We can see 11 is the line follower’s i2c address. If it is not shown, it
proves your wiring is not correct and the i2c communication with
Raspberry Pi fails too. You need to check the wiring before the next
step.

Run the test code.

python3 test_line_module.py

[image: _images/image127.png]

Note

For the better working of line following module, we should
adjust its sensitivity. The steps are as follows:

Place the module on the white surface, read the value ; place it on
balck surface, and read value.

Calculate the difference, rotate potentiometer on the line following
module toward the clockwise and anticlockwise till the diffence reaches
up to the maximum. Now the debugging is finished.

Step 4 Starts Running!

Run the line follower code

python3 line_follower.py

A prompt of calibration will be printed on the screen when the program
starts to run. We will calibrate the module on a white surface first:
place all the five probes of the line follower above a white board. The
prompt of completed calibration will be printed on the screen a few
seconds later. Then let’s move on to calibration on black line. Also the
prompt of starting is printed on the screen, and then place all the
probes above the black lines. And the prompt of calibration completed
will be printed on the screen a few seconds later.

When the module calibration is all completed, we can run the car then.
Place the PiCar-S with probes above the black line on the white board,
and then it will go forward following the line itself.

How to make a track for line following

To make a track for the car to follow a black line, you need to prepare
the following materials:

A large sheet of paper, a roll of black tape (as black lines), a hard
card board (the size depending on the size of the track) or a flat
surface like the floor or desk.

1. Spread the paper out smoothly on the hard board, and paste on the
board or flat surface.

	Paste the tape on the paper.

Rules for making:

	
	Width of the black line: about 18-30mm, nearly the distance between
	two probes, no more than the minimum distance of two nonadjacent
probes

	
	The gap between two lines: more than 125mm, which is the width of the
	whole module, to prevent the car from getting confused when
detecting two lines at the same time.

	
	The semidiameter of curves: more than 138mm. When the front wheels
	turn left or right 45 degrees, the semidiameter of the path by
which the car turns is equal to the wheelbase (the distance
between the center of the front wheels and rear wheels). The car
won’t be able to turn and pass the curve smoothly if the
semidiameter of the curve is too small.

A track sample is shown as below (the original map file can be found
under folder map in github):

[image: _images/image128.png]

Code Explanation of line_follower.py

Whole Work Flow

Considering the interference of negative environment factors, we need to
calibrate the line follower sensor before actual use.

[image: _images/image246.png]
Here two main functions including the line follower calibration and line
following are included in the main program.

Subflow of Line Follower Calibration Function

When we run the line follower configuration, we will start from white
color, then black color, which is more like the upper limit and lower
limit of the sensor. Then we take the average value of black and white
as reference value: if the detected value is higher than the reference,
it should be white; if the detected is lower than the reference, it
should be black. We will show the five detectors’ status by 5 elements
[0,0,0,0,0].

[image: _images/image247.png]
Subflow of Line Following Function

[image: _images/image248.png]
In the line following function, we set the turning angle of the servo in
different levels according to the detection results of the probes. If
the line in front of the car is detected as a small curve, then the car
will turn a small angle; if it is a big one, the car will turn a large
angle. Thus, here we set four angle-turning constants: a_step, b_step,
c_step, and d_step.

[image: _images/image249.png]
When the car moves forward originally, the servo is in 90 degrees. To
drive the car to turn left, the servo should be in 90+step degrees; to
turn right, the servo should be in 90-step degrees.

There is a special case: if the car runs off the track, and all the
probes cannot detect the black lines any more, then it will continue the
program below.

[image: _images/image250.png]
In some case, especially when the car turns in a direction when the semi
diameter of the curve is very small (1), the car may run out of the
track and cannot detect any black line (2). If there is no response
program in such case, the car will be unable to follow the line again.
Thus we set the response program to let the car move backwards in the
opposite direction (3), and then turn back to the original direction
until a black line is detected again and move forward (4).

Functions Explanation

The logic of the code is just as shown in the flow chart above.

Three Python modules are used in the code, including the imported
SunFounder_Line_Follower, front_wheels, and back_wheels.
They are the drivers for this kit, respectively for line following ,
front wheels, and rear wheels

The related classes have been defined here. When the modules are applied
to use, objects will be created for related classes, and different parts
of hardware will be driven by calling a function by the class object.

Similar to the line following module, we create an object named lf:

lf = Line_Follower_module.Line_Follower(references=REFERENCES)

The parameter is initial, and then we can apply the function by calling
a class object.

lf.read_digital()

This function is used to read the analog signal of all probes, and
convert it into digital signal. If the signal is larger than the
reference, the corresponding parameter will be 0; if it is lower than
the reference, the parameter will be 1. There are five probes, thus we
will get a 5-parameter list.

fw.turn(turning_angle)

The function for front wheels’ turning. The main program will call this
function if applying the front wheels for turning. The parameter is the
turning angle.

bw.forward()

bw.set_speed(forward_speed)

Here we need two functions for rear wheels. One is to control the
rotating direction as forward (for rotating backwards,
bw.backward()). The second one is to set the rotating speed; the
parameter is the speed value (range 0~100). The bigger the parameter is,
the faster the wheel rotates.

Combination

So, this smart car now is smart in three separate features. But, you
think only one sensor module is not enough? Try to combine those sensor
modules in one! Here we can show you an experiment - light following
with obstacle avoidance for reference.

When the car runs with the light follower, sometimes it may crash into
obstacles when following the light, and it’s not quite convenient to let
the car move back (though we’ve set the car to move backward if the
array is [1,0,1], it’s hard to acquire these values since the the car is
moving and the light cannot be exactly as required sometimes). So we
consider Also, you can let the car move backwards by a paper board or
your foot, which is quite easy.

Check below the program of this example.

Assemble the light follower module and ultrasonic obstacle avoidance
module on the car first.

Log into the Raspberry Pi on your computer via ssh, and get into the
directory

cd ~/SunFounder_PiCar-S/example

Run the code.

python3 light_with_obsavoidance.py

How it works

Set the obstacle avoidance as a superior priority than light following:
if there is an obstacle in front of the car, it walk away from the
obstacle and back to the track; if not, then the car will keep follow
light.

Since the light following and obstacle avoidance of the car depend on
the sensor modules, we set two functions to read the status of two
sensors separately, and assign values to flags to be returned from the
functions: state_light(), and state_sonic().

In the function state_sonic(), the return value is avoid_flag.

If the car is close to an obstacle, it will return avoid_flag =2;

if it is too close to the obstacle, it will return avoid_flag =1;

if ahead no obstacle is detected near, it will return avoid_flag =0.

In the function state_light(), the return value is light_flag.

If the light spot is in front of the car, it will return light_flag = 0;

if the spot is at the right side, it will return light_flag = 1;

if the spot is at the left side, it will return light_flag = 2;

if the spot is at the back, it will return light_flag = 3;

if no light spot is detected, it will return light_flag = 4.

The main program main() will run the corresponding program according
to avoid_flag and light_flag, and the avoid_flag is superior
in priority.

[image: _images/image251.png]

Appendix

	Installing Manually

	Modules
	Robot HATS

	PCA9865

	Motor Driver Module

	Line Follower Module

	Light Follower Module

	Ultrasonic Obstacle Avoidance Module

	SunFounder SF006C Servo

	DC Gear Motor

	Copyright Notice

Installing Manually

	Update the apt list.

sudo apt-get update

	Install python-smbus.

sudo pip3 install smbus2

	Install the PiCar module.

cd~
git clone --recursive https://github.com/sunfounder/SunFounder_PiCar.git
cd SunFounder_PiCar
python3 setup.py install

	Enable I2C.

Edit the file /boot/config.txt

sudo nano /boot/config.txt

The “#” in front of each line is to comment the following contents
which does not take effect in a sketch. The I2C configuration part is
commented by default too. Add the following code at the end of the file,
or delete the pound mark “#” at the beginning of related line; either
way will do.

dtparam=i2c_arm=on

	Reboot.

sudo reboot

Modules

Robot HATS

[image: _images/image135.jpeg]
Robot HATS is a specially-designed HAT for a 40-pin Raspberry Pi and
can work with Raspberry Pi 3 model B, 3 model B +, and 4 model B. It
supplies power to the Raspberry Pi from the GPIO ports. Thanks to the
design of the ideal diode based on the rules of HATS, it can supply the
Raspberry Pi via both the USB cable and the DC port thus protecting it
from damaging the TF card caused by batteries running out of power. The
PCF8591 is used as the ADC chip, with I2C communication, and the address
0x48.

[image: _images/image136.jpeg]
1. Digital ports: 3-wire digital sensor ports, signal voltage:
3.3V, VCC voltage: 3.3V.

2. Analog ports: 3-wire 4-channel 8-bit ADC sensor port,
reference voltage: 3.3V, VCC voltage: 3.3V.

3. I2C ports: 3.3V I2C bus ports

4. 5V power output: 5V power output to PWM driver.

5. UART port: 4-wire UART port, 5V VCC, perfectly working with
SunFounder FTDI Serial to USB.

6. Motor control ports: 5V for motors, direction control of
motors MA and MB and a floating pin NC; working with motor driver
module.

7. Switch: power switch

8. Power indicators: indicating the voltage – 2 indicators on:
>7.9V; 1 indicator on: 7.9V~7.4V; no indicator on: <7.4V. To protect the
batteries, you’re recommended to take them out for charge when there is
no indicator on. The power indicators depend on the voltage
measured by the simple comparator circuit; the detected voltage may be
lower than normal depending on loads, so it is just for reference.

9. Power port: 5.5/2.1mm standard DC port, input voltage:
8.4~7.4V (limited operating voltage: 12V~6V).

PCA9865

[image: _images/image137.jpeg]
PCA9685 16-channel 12-bit I2C Bus PWM driver. It supports independent
PWM output power and is easy to use 4-wire I2C port for connection in
parallel, distinguished 3-color ports for PWM output.

[image: _images/image138.jpeg]
1. PWM output ports: 3-color ports, independent power PWM output
port, connect to the servo directly.

2&3. I2C port: 4-wire I2C port, can be used in parallel.
Compatible with 3.3V/5.5V

3. PWM power input: 12V max.

4. LED: power indicator for the chip and for the PWM power input.

Motor Driver Module

The Motor Driver module is a low heat generation one and small packaged
motor drive.

[image: _images/image139.jpeg]
1. Power and motor control port: includes pins for supplying the
chip and the motors and controlling the motors’ direction

2. PWM input for the motors: PWM signal input for adjusting the
speed of the two motors

3. Motor output port: output port for two motors

Line Follower Module

[image: _images/image140.jpeg]
[image: _images/image141.jpeg]
The TCRT5000 infrared photoelectric switch adopts a high transmit power
infrared photodiode and a highly sensitive phototransistor. It works by
applying the principle of objects’ reflecting IR light – the light is
emitted, then reflected, and sensed by the synchronous circuit. Then it
determines whether there exists an object or not by the light intensity.
It can easily identify black and white lines.

In other words, the different conduction levels of the phototransistor
when it passes over black and white lines can generate different output
voltages. Therefore, all we need to do is to collect data by the AD
converter on the Atmega328 and then send the data to the master control
board via I2C communication.

This module is an infrared tracking sensor one that uses 5 TRT5000
sensors. The blue LED of TRT5000 is the emission tube and after
electrified it emits infrared light invisible to human eye. The black
part of the sensor is for receiving; the resistance of the resistor
inside changes with the infrared light received.

Light Follower Module

[image: _images/image142.jpeg]
[image: _images/image143.jpeg]
Phototransistor, also known as photodiode, is a device that converts
light to current. Currents are generated when photons are absorbed in
the P-N junction. When a reverse voltage is applied, the reverse current
in the device will change with the light luminance. The stronger the
light is, the larger the reverse current will be. Most phototransistors
work this way.

The ADC chip on the HATS can receive 8-bit analog signals and convert
them into integers, and transfer the signals to the Raspberry Pi. The
Raspberry Pi will analyze the data to determine the direction of the
brightest area (the light source), and further control the steering and
movement of the four wheels to approach the light source.

You may need a light focused flashlight in this experiment. At least,
the spot size of the torch should not be too big to reach all the 3
phototransistors on the module at the same time. Well, you can also
shine the flashlight closer to the car to get a small spot size.

Ultrasonic Obstacle Avoidance Module

[image: _images/image252.png]

The module contains an HC-SR04 ultrasonic distance sensor to detect
the distance to an obstacle ahead. It is commonly used for robots to
avoid obstacles. With the two holes, it can be easily mounted to the
robot. A four foot anti-backwards cable is included to make the wiring
tighter and easier.

The HC-SR04 ultrasonic distance sensor provides non-contact
measurement from 2cm to 400cm with a range accuracy of 3mm. each
HC-SR04 module includes an ultrasonic transmitter, a receiver and a
control circuit, so we have to be careful with the Trig and Echo pin
connections when using the HC-SR04 module. When we attach it to the
picar-s, it measures the distance and detects if there is an obstacle
ahead.

Principle

Supply a short 10μS pulse to the Trig to start the ranging, and then the
module will send out an 8 cycle burst of ultrasound at 40 kHz and raise
its echo back. The echo is a distance object that is pulse width and the
range in proportion. You can calculate the \(\text{Range}\) through
the \(\text{Time Interval}\) between sending trigger signal and
receiving echo signal.

Formula:

\[Range(m) = \frac{Time Interval \times 340_{m/s}}{2}\]

Or:

\[\text{Range}\left(\text{cm} \right) = \frac{\text{Time Interval}}{58}\]

Or:

\[\text{Range}(inchs) = \frac{\text{Time Interval}}{148}\]

We suggest to use over 60ms measurement cycle, so as to prevent trigger
signal to the echo.

SunFounder SF006C Servo

[image: _images/image145.png]
The SunFounder SF0180 Servo is a 180-degree three-wire digital servo. It
utilizes PWM signal of 60Hz and has no physical limit – only control by
internal software to 180 degrees at most.

Electrical Specifications:

[image: _images/image253.png]

DC Gear Motor

[image: _images/image146.jpeg]
It’s a DC motor with a speed reducing gear train. See the parameters
below:

[image: _images/image254.png]

Copyright Notice

All contents including but not limited to texts, images, and code in
this manual are owned by the SunFounder Company. You should only use it
for personal study, investigation, enjoyment, or other non-commercial or
nonprofit purposes, under the related regulations and copyrights laws,
without infringing the legal rights of the author and relevant right
holders. For any individual or organization that uses these for
commercial profit without permission, the Company reserves the right to
take legal action.

Thank You

Thanks to the evaluators who evaluated our products, the veterans who provided suggestions for the tutorial, and the users who have been following and supporting us.
Your valuable suggestions to us are our motivation to provide better products!

Particular Thanks

	Len Davisson

	Kalen Daniel

	Juan Delacosta

Now, could you spare a little time to fill out this questionnaire?

正在加载…
Note

After submitting the questionnaire, please go back to the top to view the results.

Index

 _images/image47.png

_images/image52.jpeg

_images/image3.jpeg

_images/image4.jpeg

_images/image59.png

_images/image69.png

_images/image100.png
 rile based dacapase

turning offset = 0
forward a = 0

forvard B = 0

_images/image101.png
pi@raspberrypi:~/SunFounder PiCar/picar $ picar rear-wheel-test
("DEBUG "back_wheels.py":*, 'Set debug off')

('DEBUG "TB6612.py":', 'Set debug off')

('DEBUG "TB6612.py"™ 'Set debug off')

('DEBUG "PCAS685.py":', 'Set debug off')

("Forward, speed 0
("Forward, speed 1)
('Forward, speed =', 2)
("Forward, speed 3)

(*Forward, speed =', 4)

_images/image253.png
Item

V =48V V = 6.0V
Consumption Current* (No

<50mA <60mA
Load)
Stall Current <550mA <650mA
Rated Torque >0.6 kgf-cm >0.7 kgf-cm
Max. Torque >1.4 kgf.cm >1.6 kgf.cm
No Load Speed <0.14sec/60° <0.12sec/60°

_images/image254.png
Model F130SA-11200-38V
Rated Voltage 4.5V-6V
Motor
No-load Current | <80mA
No-load Speed 10000+10%
Gear Ratio 1:48

Gear Reducer

Speed (no-load)

~200rpm (=180rmp in test)

Current

<120mA

_images/image251.png
Run light follower
caibratfion function

Light following
subfunction

_images/image252.png

_images/image108.png

nav.xhtml

 Table of Contents

 		
 SunFounder PiCar-S Smart Car Kit for Raspberry Pi

 		
 Components List

 		
 Structure Plates

 		
 SunFounder SF006C Servo x 1

 		
 Mechanical Fasteners

 		
 Wires

 		
 PCB

 		
 Other Components

 		
 Tools

 		
 Self-provided Components

 		
 Introduction

 		
 Building the Car

 		
 Front Half Chassis

 		
 Front Wheels

 		
 Steering Part

 		
 Upper Plate

 		
 Battery Holder

 		
 Rear Wheels (Screws)

 		
 PCB Assembly

 		
 Rear Wheels (Driving)

 		
 Circuits Building

 		
 Connect the Power

 		
 Connect the Modules

 		
 Connect the Servo

 		
 Connect the Motor

 		
 Get Started with Raspberry Pi

 		
 Installing the OS

 		
 Power on the Raspberry Pi

 		
 Get the IP Address

 		
 Use the SSH Remote Control

 		
 For Linux or/Mac OS X users

 		
 For Windows Users

 		
 Servo Configuration

 		
 Get Source Code

 		
 Go to the Code Directory

 		
 Install the Environment via Script

 		
 Set the Servo to 90 Degrees

 		
 Build the Rest of the Car

 		
 Calibration

 		
 Calibrate the Servo

 		
 Calibrate the Motors

 		
 Arming the Car!

 		
 Obstacle Avoidance

 		
 How it Works

 		
 Procedures

 		
 Code Explanation for ultra_sonic_avoid.py

 		
 Functions Explanation

 		
 Light Following

 		
 How It Works

 		
 Procedures

 		
 Code Explanation for light_follower.py

 		
 Functions Explanation

 		
 Line Following

 		
 How it works

 		
 Procedures

 		
 How to make a track for line following

 		
 Code Explanation of line_follower.py

 		
 Functions Explanation

 		
 Combination

 		
 How it works

 		
 Appendix

 		
 Installing Manually

 		
 Modules

 		
 Robot HATS

 		
 PCA9865

 		
 Motor Driver Module

 		
 Line Follower Module

 		
 Light Follower Module

 		
 Ultrasonic Obstacle Avoidance Module

 		
 SunFounder SF006C Servo

 		
 DC Gear Motor

 		
 Copyright Notice

 		
 Thank You

_images/image116.png
pi@raspberrypi:~/SunFounder PiCar-S/example $ python3 test_light module.py

a0 = 200 a1 = 220 a2 = 208
a0 = 201 a1 =221 a2 = 208
a0 = 200 a1 = 220 a2 = 208
a0 = 200 a1 = 220 a2 = 208
a0 = 201 a1 = 220 a2 = 200
a0 = 201 a1 =221 a2 = 205
a0 = 201 a1 =221 a2 = 205
a0 = 201 a1 = 220 a2 = 208
a0 = 201 a1 = 220 a2 = 208
a0 = 201 a1 =221 a2 = 200
a0 = 201 a1 =221 a2 = 205
a0 = 201 a1 = 221 a2 = 204

_images/image125.png
fritzing

_images/image109.png
pifraspberrypi:
distance 4 om
Less than 10
aistance 4 om
Less than 10
aistance 4 om
Less than 10
aistance 4 om
Less than 10
aistance 4 om
Less than 10
aistance 5 om
Less than 10
discance € cm

/SunFounder PiCar-5/example S python3 test ultrasonic module.py

_images/image115.png

_images/image128.png
1052mm

200mm

_images/image135.jpeg

_images/image126.png
pifraspberrypi:~/SunFounder PiCar-5/example
pieraspberrypi:~/sunFounder_PiCar-s/example
0123456 7% 9 abcdecs

00
10
20
S0 -
20: 0
s0: —
co: —
70: 70
e —

_images/image127.png
pi@raspberrypi:~/SunFounder PiCar-S/example $ python3 test_line module.py
(25, 297, 300, 297, 298]
o1, -1, 1, 1

1296, 297, 300, 297, 298]
i, 1, -1, 1, 1]

1296, 297, 300, 297, 298]
i, 1, -1, 1, 1]

1295, 297, 300, 297, 298]
i, 1, -1, 1, 11

1296, 296, 300, 297, 298]
m, 1, -1, 1, 1]

_images/image136.jpeg

_images/image137.jpeg

_images/image138.jpeg

_images/image141.jpeg

_images/image142.jpeg

_images/image139.jpeg

_images/image140.jpeg
-

_images/image146.jpeg

_images/image200.png
Name Component aty.
M14x6 Screw [T 6
M1.5x4 Self-tapping Screw | & 3
M2x8 Screw H— 2
M2.5x6 Screw A 4
M2:5x12 Screw — 8
M3x8 Screw ‘,}- 8
M3x8 Countersunk Screw “ 2
M3x10 Screw % 9
M3x25 Screw h 4
M4x25 Screw @— 2
M14 Nut - 6
M2 Nut [& 2

M25 Nut [.4 12

M3 Nut L2 2
M4 Self-locking Nut = 2
M2.5x8 Copper Standoff ’ 8
M3x25 Copper Standoff | EG_—————— 8

_images/image143.jpeg

_images/image145.png

_images/image202.png
Robot HATS

PCA9685 PWM 3
Driver !

....
|
1
- |
I
|
bl
® 1©

Motor Driver
Module

Tes T

e e e)

5-CH Line
Follower
Module

Ultrasonic
Obstacle
Avoidance
Module

_images/image203.png
Light Follower
Module

_images/image201.png
100mm 5-Pin
Jumper Wire

|

1
A

50mm 4-Pin
Jumper Wire

|

‘
"

50mm 2-Pin
Jumper Wire

|

100mm 2-Pin
Jumper Wire

|I

200mm 5-Pin
Jumper Wire

200mm 4-Pin
Jumper Wire

200mm 4-Pin
Jumper Wire

I

l.

_images/image206.png
Component

Name

Qty.

18650 3.7V Rechargeable

Li-ion Battery

_images/image207.png

_images/image204.png
2x18650 Battery
Holder

DC Gear Motor

Rear Wheel

Front Wheel

Ribbon (30cm)

_images/image205.png
Cross
Screwdriver

Cross Socket

Wrench
M2.5/M4 Small < &>
Wrench - \
M2/M3 Small o _______™
Wrench < < \—'

_images/image210.png

_images/image208.png

_images/image209.png

_images/image213.png

_images/image214.png

_images/image211.png

_images/image212.png

_images/image217.png

_images/image218.png

_images/image215.png

_images/image216.png

_images/image219.png
Download for Windows

Download for mac0S

Download for Ubuntu for x86

_images/image91.png
pifraspberrypi:~ picar
Usage: picar [Command] [value]
Commana:

Set 16 channel servos to 90 degree for installation
Front-wheel-test [chn] Test the steering servo connect to chn, chn default
o

rear-wheel-test Test the rear wheel

_images/image220.png
Windows protected your PC

Microsoft Defender SmartScreen prevented an unrecognized app from

starting. Running this app might put your PC at risk.
More info

_images/image94.png

_images/image92.png
pi@raspberrypi:~ $ picar servo-install
Servo now is set to 90 degree.

_images/image99.png
pifraspberrypi:~ 3 picar front-wheel-test
('DEBUG "front_wheels.py":', 'Set debug off')
('DEBUG "front wheels.py":', 'Set wheel debug off')
('DEBUG "Servo.py":', 'Set debug off')

curn_1e£t

curn_straignt

turn_rignt

curn_straignt

_images/image97.png

_images/image79.png
® Raspberry Pilmagerv15

Configure wifi

ssiD:
Password:

Show password

"4

[J setlocale settings

Tine one: Asia/Shanghai

_images/image78.png
i r v - _ o x
8 rapsenpinasens Ctrl+Shift+X
/ “Advanced options =

Image customization options | for this session only

(] pisable overscan to always use

[sethostname: raspberrypi

Enable SSH

(@® Use password authentication /

Set. password for 'pi’ user:

_images/image86.png
1. pi@raspberrypi: ~ (ssh)
Last login: Fri Apr 12 16:56:20 on ttys@00

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197

The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.
ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.18.197' (ECDSA) to the list of known hosts.
pi@192.168.18.197"'s password:

Linux raspberrypi 4.9.80-v7+ #1098 SMP Fri Mar 9 19:11:42 GMT 2018 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Tue May 21 07:29:46 2019 from 192.168.18.126

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk - please login as the 'pi' user and type 'passwd' to set

a new password.

pi@raspberrypi:~ $ I

_images/image83.png
P Advanced IP Scanner - o X
File View Settings Help

P |1 ke e

[192.168.18.1-254 Exompl: 1921680.1-100, 192.1680200 | [search 2]

Results Favorites

Status Name [Manufacturer A

el MO, S rintains | e
® suncouneR s 19216618144 SHENZHEN MERCURY .
(oo

TmzhildeiPhone 19216818154 Apple Inc.

_images/image90.png
pi@raspberrypi:~ § cd ~/SunFounder PiCar-S/
pi6raspberrypi:-/SunFounder_Picar-5 ¢ 1s
cxample install dependencies LICENSE maps README.nmd show
pieraspberryps:-7sunFounder picar—s ¢ |

_images/image87.png
#R PuTTY Configuration

Category:

- Session Basic options for your PuTTY session
Logging

L oot ‘Specify the destination you wantto connectto

I Keyboard HostName (or IP address) Port

Bell 192.168.0.101 2

i Features. e)

= Windoy ©Raw () Telnet ()Riogin © SSH

Appearance
Behaviour Load, save or delete a stored session
Translation
Seoction Saved Sessions
Colours

- Connection Defaul Setings
Data 02
Proxy
Telnet
Riogin
ssH
Serial

Close window on exit
JAways (O)Never) Only on clean exit

_images/image224.png
& Raspberry Pilmagerv1s e

All existing data on 'Mass Storage Device USB Device' will be
erased.
Are you sure you want to continue?

) =3

_images/image225.png
& Raspberry PiImager v1.6. - X

Write Successful X

Raspberry Pi S (32-bit) has been written to Mass Storage Device
USB Device

You can now remove the SD card from the reader

_images/image222.png
8 Respbery Pilmager 1.5

D Card

i

Mass Storage Device USB Device - 7.9 GB

Mounted as G:\, H

_images/image223.png
&

Raspberry Pi

_images/image228.png
5415 passwora: FASPDErTY

[The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY,

o the extent
[permitted by applicable law.

_images/image229.png

_images/image226.png
1. ssh pi@192.168.18.197 (ssh)
Last login: Fri Apr 12 16:56:20 on ttys000

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197

The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.
ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.
Are you sure you want to continue connecting (yes/no)? I

_images/image227.png
97 (ssh)

1. ssh pi@192.168.
Last login: Fri Apr 12 16:56:20 on ttys000

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197
The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.

ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.18.197' (ECDSA) to the list of known hosts.

pi@192.168.18.197"'s password: t

_images/image230.png

_images/image71.png

_images/image70.png
©)

© XX @

@,
° i °
b
o I I
o ' 'm' o

fritzing

_images/image73.png
fritzing

_images/image72.png

_images/image221.png
8 Respbery Pilmager 1.5

Operating System

Raspberry Pi 0S (32-bi)
Aport of Debian with the Raspberry P Desktop (Recommended)

&8

Raspberry Pi 05 (other)
Other Raspberry Pi OS based images

_images/image235.png
Backward

_images/image236.png
Avoid
obstacle
function

_images/image233.png

_images/image234.png
Ultrasonic module Robot HATS
Tri B5

_images/image239.png
Light Follower Robot HATS
AD2 ‘

_images/image240.png

_images/image237.png
Avoid obstacle function

Loop
More than

Near by i Touch ’

_images/image238.png

_images/image231.png

_images/image232.png

_images/image246.png
Runline follower
calibration function

Runline following
funcfion

_images/image247.png
Line follower calibration function

Black color
calibration

White color
calibration

_images/image244.png
<

®

L

IR

Ee

—

= a[u[ala’s]a[s]

_images/image245.png
“Cpi@raspberrypi:~/SunFounder PiCar-S/example $ python3 light_follower.py
DEBUG "front_wheels.py": Set debug off

DEBUG "front_wheels.py": Set wheel aebug off

DEBUG "Servo.py": Set debug off

DEBUG "back_wheels.py": Set debug off

DEBUG "TB6612.py": Set debug off

DEBUG "TB6612.py": Set debug off

DEBUG "ECAS68S.py": Set debug off

calibrating.

calibrace 1
calibrace 2
calibrace 3
calibrate 4

_images/image250.png

_images/image248.png
Runiine

folowing | e
functon

Probe’s status
Probe’s status.

~[00;51,0F 2 -10,0.00,0
10,0,0,1,0]
10,00,1,1]
10,0,0,0,1)

Irrobe's statu
| 10,0,1,0,00

000,01 (00, X 0,0,1,1,0

turning_angle = int(90 + step) turning_angle = int(90 - step)

Turn left Turn right

fw.turn(turning_angle)

Black ine defected

_images/image249.png
1111

_static/minus.png

_static/file.png

_static/plus.png

_images/image242.png
Run light following
subfunction

[1,0,0]0r[1,1,0] [0,0,1]0r[0,1,1]
[0,1,019r(1,1,1]

[1,0,1} [0,0,0}

move
move

Nigelle/als

backwards forwards

_images/image243.png

_images/image241.png
Checl

v

K ight
following
function

Calibration
function

Calibratio
n function

Light

following

subfuncti
on

y

Create lists for
collected values

Carrunsin a circle
to collect light
values in different
directions

Store groups of
collected value in
the lists

Take the min
values of each
sensor as
reference

Upload trigger
threshold values fo
parameters of
class library

Four wheek back
to standby

