
SunFounder PiCar-S

www.sunfounder.com

Aug 02, 2022

CONTENTS

1 About the PiCar-S 1
1.1 Components List . 2
1.2 Introduction . 10
1.3 Building the Car . 11
1.4 Circuits Building . 23
1.5 Get Started with Raspberry Pi . 27
1.6 Servo Configuration . 37
1.7 Calibration . 43
1.8 Arming the Car! . 46
1.9 Appendix . 71
1.10 Thank You . 80

2 Copyright Notice 81

i

ii

CHAPTER

ONE

ABOUT THE PICAR-S

The PiCar-S is a cool smart car that can work with Raspberry Pi 3 model B, 3 model B+, and 4 model B. Equipped
with three sensor modules including ultrasonic obstacle avoidance, light follower, and line follower, you can better
learn the programming on how to control the car.

In this manual, we will show you how to build the PiCar-S via description, illustrations of physical components, in
both hardware and software respects. You will enjoy learning how all this work. You can view the latest PDF user
manual or clone the code by click the link: https://github.com/sunfounder/SunFounder_PiCar-S/tree/V3.0.

If you want to learn another projects which we don’t have, please feel free to send Email and we will update to our
online tutorials as soon as possible, any suggestions are welcomed.

Here is the Email: cs@sunfounder.com.

1

https://github.com/sunfounder/SunFounder_PiCar-S/tree/V3.0
mailto:cs@sunfounder.com

SunFounder PiCar-S

1.1 Components List

1.1.1 Structure Plates

1. Upper Plate x 1

2. Front Half Chassis x 1

3. Hex Front Wheel Fixing Plate x 8

4. Ultrasonic Support x 1

5. Bearing Shield x 8

6. Steering Linkage x 1

7. Steering Connector x 2

8. Ultrasonic Connector x 1

9. Back Half Chassis x 1

10. Sensor Connector x 1

2 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.1.2 SunFounder SF006C Servo x 1

1. Servo x 1

2. 1-arm Rocker Arm x 1

3. arm Rocker Arm x 1

4. 4-arm Rocker Arm x 1

5. Rocker Arm Fixing Screw x 1

6. Rocker Arm Screw

1.1. Components List 3

SunFounder PiCar-S

4 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.1.3 Mechanical Fasteners

1.1. Components List 5

SunFounder PiCar-S

1.1.4 Wires

6 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.1.5 PCB

1.1. Components List 7

SunFounder PiCar-S

1.1.6 Other Components

8 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.1.7 Tools

1.1.8 Self-provided Components

The following components are not included in this kit.

Note: 1. You are recommend to use 18650 batteries without a protective board. Otherwise, the car may be cut power
and stop running because of the overcurrent protection of the protective board.

2. For unprotected batteries, please purchase those with the anode bulged out (as shown below), so that it can ensure
the well connection with the battery holder.

1.1. Components List 9

SunFounder PiCar-S

3. In order to keep the car working for a long time, use large-capacity batteries as much as possible.

1.2 Introduction

The PiCar-S is a SMART SENSOR car robot based on Raspberry Pi, which comes with three sensor modules,
including the light follower, line follower and ultrasonic obstacle avoidance. With these modules, this smart car is
capable of some simple automatic actions. Thus, you can learn some basics of programming in Python to control the
car with these sensors. Let’s start with building this smart car!

10 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.3 Building the Car

Extremely excited when opening the box and checking so many components? Keep your patience and take it easy.
Please note that some details in the following steps need CAREFUL observation. You should double-check your work
based on the figures in the manual after finishing each step. Don’t worry! Kindly reminders will be given in some
particular steps. Just follow the tutorial step by step. Okay, with no further ado, now let’s start!

1.3.1 Front Half Chassis

Assemble the Front Half Chassis with four M3x25 copper standoffs and four M3 nuts as shown below:

1.3. Building the Car 11

SunFounder PiCar-S

1.3.2 Front Wheels

Note: Please pay attention to the direction of Steering Connector before assembling.

Insert an M4x25 screw through a Steering Connector, 3 Bearing Shields, 3 Hex Front Wheel Fixing Plates, and a
front wheel, into an M4 Self-locking Nut (note the direction) as shown below:

You can use the Cross Socket Wrench to secure the M4 Self-locking Nut, then use the screwdriver to tighten the
M4x25 screw.

Note: The Self-locking Nut should be screwed tight enough. It would be better to tighten the screw until the wheel
and Steering Connector cannot move first, then loosen the screw a little, so that the Steering Plate can just move. Thus,
the wheel can turn flexibly when the connection would not be too loose.

Assemble the other front wheel in the same way, but bear in mind the Steering Connector on the wheel should be
symmetric with the previous one:

12 Chapter 1. About the PiCar-S

SunFounder PiCar-S

Now two front wheels have finished assembly.

1.3.3 Steering Part

Connect the Steering Linkage and the 1-arm Rocker Arm with the M1.5x4 Self-tapping Screw.

Note: Insert it into the FIRST hole of the arm (as indicated by the arrow below) which is the farthest from the gears.

1.3. Building the Car 13

SunFounder PiCar-S

Note: Fasten them as tightly as possible, and then loosen the screw a little so the Steering Linkage can move flexibly.

14 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.3.4 Upper Plate

Mount the M2.5x8 copper standoffs and M2.5 nuts into the upper plate first. Pay attention that the side the protrud-
ing prop should face up.

1.3. Building the Car 15

SunFounder PiCar-S

1.3.5 Battery Holder

Turn the Upper Plate upside down. Cut the ribbon into two halves. Thread them through the holes on the plate. Pay
attention to the direction and leave one end longer out of the plate for each to remove the battery easily later.

Fasten the battery holder with two M3x8 countersunk screws and two M3 nuts: pay attention to the direction of
battery holder’s wire.

16 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.3.6 Rear Wheels (Screws)

Insert four M3x8 screws with four M3x25 copper standoffs:

1.3. Building the Car 17

SunFounder PiCar-S

18 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.3.7 PCB Assembly

1) Assemble the Raspberry Pi (TF Card inserted) with eight M2.5x8 copper standoffs, then plug the Robot
HATS onto it.

2) Fix the Robot HATS with four M2.5x6 screws.

3) Fix The PCA9685 PWM Driver, the Motor Driver with eight M2.5x12 screws and M2.5 nuts into the down
plate.

1.3. Building the Car 19

SunFounder PiCar-S

1.3.8 Rear Wheels (Driving)

Assemble the two motors to the Back Half Chassis with four M3x25 screws and M3 nuts. Pay attention to place the
motors with wires inward, providing convenience for connecting the circuit.

Assemble the rear wheels with 4 M3 nuts.

20 Chapter 1. About the PiCar-S

SunFounder PiCar-S

Align the rear wheels with the motor shaft, and rotate to insert them gently.

1.3. Building the Car 21

SunFounder PiCar-S

22 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.4 Circuits Building

1.4.1 Connect the Power

1.4. Circuits Building 23

SunFounder PiCar-S

1.4.2 Connect the Modules

24 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.4.3 Connect the Servo

1.4. Circuits Building 25

SunFounder PiCar-S

1.4.4 Connect the Motor

The complete connection is shown as follows.

26 Chapter 1. About the PiCar-S

SunFounder PiCar-S

So now the circuit boards are all installed onto the car and the wiring is done. But still you’re not ready to adjust the
servo yet. First you need to complete some software installation.

1.5 Get Started with Raspberry Pi

In this chapter, we firstly learn to start up Raspberry Pi. The content includes installing the OS, Raspberry Pi network
and how to open terminal.

Note: You can check the complete tutorial on the official website of the Raspberry Pi: https://projects.raspberrypi.
org/en/projects/raspberry-pi-setting-up.

Note: If your Raspberry Pi is set up, you can skip the part and go into the next chapter.

1.5. Get Started with Raspberry Pi 27

https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up
https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up

SunFounder PiCar-S

1.5.1 Installing the OS

Required Components

Any Raspberry Pi 1 * Personal Computer
1 * Micro SD card

Step 1

Raspberry Pi have developed a graphical SD card writing tool that works on Mac OS, Ubuntu 18.04 and Windows,
and is the easiest option for most users as it will download the image and install it automatically to the SD card.

Visit the download page: https://www.raspberrypi.org/software/. Click on the link for the Raspberry Pi Imager that
matches your operating system, when the download finishes, click it to launch the installer.

Step 2

When you launch the installer, your operating system may try to block you from running it. For example, on Windows
I receive the following message:

If this pops up, click on More info and then Run anyway, then follow the instructions to install the Raspberry Pi
Imager.

Step 3

Insert your SD card into the computer or laptop SD card slot.

Step 4

In the Raspberry Pi Imager, select the OS that you want to install and the SD card you would like to install it on.

28 Chapter 1. About the PiCar-S

https://www.raspberrypi.org/software/

SunFounder PiCar-S

Note:

1) You will need to be connected to the internet the first time.

2) That OS will then be stored for future offline use(lastdownload.cache,
C:/Users/yourname/AppData/Local/Raspberry Pi/Imager/cache,). So the next time you open the software, it
will have the display “Released: date, cached on your computer”.

Step 5

Select the SD card you are using.

Step 6

Press Ctrl+Shift+X to open the Advanced options page to enable SSH and configure wifi, these 2 items must be set,
the others depend on your choice . You can choose to always use this image customization options.

1.5. Get Started with Raspberry Pi 29

SunFounder PiCar-S

Then scroll down to complete the wifi configuration and click SAVE.

Note: wifi country should be set the two-letter ISO/IEC alpha2 code for the country in which you are using
your Raspberry Pi, please refer to the following link: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_
assigned_code_elements.

30 Chapter 1. About the PiCar-S

https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements

SunFounder PiCar-S

Step 7

Click the WRITE button.

Step 8

If your SD card currently has any files on it, you may wish to back up these files first to prevent you from permanently
losing them. If there is no file to be backed up, click Yes.

1.5. Get Started with Raspberry Pi 31

SunFounder PiCar-S

Step 9

After waiting for a period of time, the following window will appear to represent the completion of writing.

32 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.5.2 Power on the Raspberry Pi

Now, the Raspberry Pi OS is configured. You can plug out the USB card reader and then plug the Micro SD card into
the Raspberry Pi.

Put two 18650 fully charged batteries in the holder, plug the wires from the battery holder into the development board
then toggle the switch from off to on. You are also recommended to use the power adapter of Raspberry Pi to power
your car for that the first test will take a long time.

1.5.3 Get the IP Address

After the Raspberry Pi is powered on, we need to get the IP address of it. There are many ways to know the IP address,
and two of them are listed as follows.

1. Checking via the router

If you have permission to log in the router(such as a home network), you can check the addresses assigned to Raspberry
Pi on the admin interface of router.

The default hostname of the system, Raspberry Pi OS is raspberrypi, and you need to find it. (If you are using
ArchLinuxARM system, please find alarmpi.)

2. Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry Pi. You can apply the software, Advanced
IP scanner(download from Google).

Click Scan and the name of all connected devices will be displayed. Similarly, the default hostname of the Raspberry
Pi OS is raspberrypi, now you need to find the hostname and its IP.

1.5.4 Use the SSH Remote Control

We can open the Bash Shell of Raspberry Pi by applying SSH. Bash is the standard default shell of Linux. The Shell
itself is a program written in C that is the bridge linking the customers and Unix/Linux. Moreover, it can help to
complete most of the work needed.

1.5. Get Started with Raspberry Pi 33

SunFounder PiCar-S

For Linux or/Mac OS X users

Step 1

Go to Applications->Utilities, find the Terminal, and open it.

Step 2

Type in ssh pi@ip_address . “pi” is your username and “ip_address” is your IP address. For example:

ssh pi@192.168.18.197

Step 3

Input “yes”.

Step 4

Input the passcode and the default password is raspberry.

Step 5

We now get the Raspberry Pi connected and are ready to go to the next step.

34 Chapter 1. About the PiCar-S

SunFounder PiCar-S

Note: When you input the password, the characters do not display on window accordingly, which is normal. What
you need is to input the correct passcode.

For Windows Users

If you’re a Windows user, you can use SSH with the application of some software. Here, we recommend PuTTY (You
can download from Google).

Step 1

Download PuTTY. Open PuTTY and click Session on the left tree-alike structure. Enter the IP address of the RPi in
the text box under Host Name (or IP address) and 22 under Port (by default it is 22).

1.5. Get Started with Raspberry Pi 35

SunFounder PiCar-S

Step 2

Click Open. Note that when you first log in to the Raspberry Pi with the IP address, there prompts a security reminder.
Just click Yes.

Step 3

When the PuTTY window prompts “login as:”, type in “pi” (the user name of the RPi), and password: “raspberry”
(the default one, if you haven’t changed it).

36 Chapter 1. About the PiCar-S

SunFounder PiCar-S

Here, we get the Raspberry Pi connected and it is time to conduct the next steps.

1.6 Servo Configuration

Since the servos used in this kit are adjusted by software and there’s no such physical sticking point as other servos,
here we need to configure the servo via software. First you need to finish some software installation before the
configuration.

Note: Please do forget to put in the battery and slide the power switch to ON in following chapters.

1.6.1 Get Source Code

You can find the source code in our Github repositories. Download the source code by git clone:

cd /home/pi/
git clone --recursive https://github.com/sunfounder/SunFounder_PiCar-S.git -b V3.0

Note: Please pay attention to your typing – if you get the prompt of entering your user name and password, you may
have typed wrong. If unluckily you did so, press Ctrl + C to exit and try again.

1.6.2 Go to the Code Directory

cd ~/SunFounder_PiCar-S/
ls

Enter the code directory and you can see the installation script:

1.6. Servo Configuration 37

SunFounder PiCar-S

1.6.3 Install the Environment via Script

You can get all the required software and configuration done with the installation script. If you want to do step by step
instead, refer to the operations in Appendix 1: Installing Manually.

sudo ./install_dependencies

Note:

1. The installation script will install the required components and configure for the running environment. Make
sure your Raspberry Pi is connected to the Internet during the installation, or it would fail.

2. The Raspberry Pi will prompt you to reboot after the installation. You’re recommended to type in yes to reboot.

1.6.4 Set the Servo to 90 Degrees

After reboot, type in the command:

picar

You can see three commands here.

The first one servo-install is for servo adjustment, which is used after the front wheels are assembled. The servo will
rotate to 90 degrees after this command is run, so we will use this command here.

picar servo-install

Note: If the “OSError: [Errno 121] Remote I/O error” error message appears, open raspi-config:

sudo raspi-config

Then choose 3 Interfacing Options → P5 I2C → <YES> →OK to enable I2C service. You can use the up, down,
left, and right keys on the keyboard to select, and then press Enter to confirm.

After the code is running, insert the rocker arm into the servo. You will see the rocker arm is rotate in clockwise
and counterclockwise, then stop at a specific location. It means the servo is good. If the any of the conditions below
happened to your servo, your servo is bad:

1) Noisy, hot.

2) If unplug the servo line and rotate the rocker arm, it sounds like “ka” “ka” “ka” or there has no sounds of gear
driving.

38 Chapter 1. About the PiCar-S

SunFounder PiCar-S

3) Rotate slowly but continuously.

If you find one of the conditions above, please send e-mail to service@sunfounder.com . We will change a new one to
you. If it is broken in the process of using or assembling, you should go to the official website www.sunfounder.com
to buy.

1.6.5 Build the Rest of the Car

Warning: Please keep the command servo-install running in the whole process of assembly.

Mount the steering servo to the Upper Plate with two M2x8 Screws and two M2 nuts (pay attention to the direction
of the servo wires):

The Rocker Arm is facing straight ahead, and then inserted into the Servo shaft, and then fixed with Rocker Arm
Fixing Screw (the shortest).

1.6. Servo Configuration 39

mailto:support@sunfounder.com
http://www.sunfounder.com

SunFounder PiCar-S

Mount the wheels onto the Upper Plate carefully.

40 Chapter 1. About the PiCar-S

SunFounder PiCar-S

Then put the assembled Front Half Chassis onto the Upper Plate with standoffs aligned with the holes.

1.6. Servo Configuration 41

SunFounder PiCar-S

Hold them carefully, turn upside down, and fasten the standoffs and the Upper Plate with four M3x8 screws:

42 Chapter 1. About the PiCar-S

SunFounder PiCar-S

So now, the whole assembly is DONE! Congratulations!

1.7 Calibration

1.7.1 Calibrate the Servo

Remember the commands to adjust the servo to 90 degrees previously? Now, let’s talk about the other two commands.

The second command front-wheel-test is used to test whether the front wheels can turn flexibly after assembly. When
you run this command, it will drive them to turn left and right.

picar front-wheel-test

1.7. Calibration 43

SunFounder PiCar-S

You may find the direction of the front wheels is not facing exactly front when they are in the straight status. If there
is an obvious deviation from the middle line of the front chassis, reassemble the servo and run servo-install again; if
it is just a little deviation (like about 0~15 degrees), it can be adjusted by software.

Get into the folder SunFounder_PiCar/picar:

cd /home/pi/SunFounder_PiCar/picar

sudo nano config

Open the config file under the folder with an editor. You can see a few parameters. The value of turning_offset is used
to adjust the front wheels. Its value is 0 by default. If you want to make the front wheels turn right a bit, just modify
it to a larger number; to make it more towards the left, you can set it smaller (it can even be a negative number).

But DO NOT over-configure the wheels (recommended a value between -30 and 30), or the servo may be stuck and
broken.

After changing the value of turning_offset, press Ctrl + O to save the changes, and press Ctrl + X to exit. Run the
command picar servo-install to check the front wheel’s status.

picar servo-install

If the front wheels is still not facing the exact front, you may need to edit the file config for a couple of times. The
front wheels may need to be adjusted about 3 to 5 times usually. We can move on to calibration of the rear wheels
when the front wheels are done.

44 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.7.2 Calibrate the Motors

Since the wiring of the two DC motors is random, the VCC and GND of a motor may be connected to the wheel
reversely, causing the wheel to spin forward when it should do backward as configured in the code. Thus we can use
the third command which will drive the rear wheels to simultaneously speed up and slow down alternately.

picar rear-wheel-test

Check whether both the two rear wheels rotate direction is the same as the screen. Note that the two wheels are driven
by the two motors separately. It may happen that one rotates forward, while the other does backwards. If so, we need
to adjust one or both two wheels which rotate reversely under that command.

cd /home/pi/SunFounder_PiCar/picar

sudo nano config

forward_A and forward_B are to change the default spinning direction of the two motors. The value can only be 0 or
1, which represents clockwise and counterclockwise rotation. By default, it’s 0 for both parameters. Thus if a wheel
spins reversely, you only need to change the corresponding parameter for the wheel to 1.

Press Ctrl + O to save the changes, and press Ctrl + X to exit.

Run the command picar rear-wheel-test again to check whether the rear wheels are rotating in accordance with the
command.

picar rear-wheel-test

Copy config to the directory example under PiCar-S.

cp config ~/SunFounder_PiCar-S/example

1.7. Calibration 45

SunFounder PiCar-S

1.8 Arming the Car!

A car without sensor modules is unarmed just like a man without sight and hearing, thus he has no feeling for the
surrounding environment. So what we are going to do is arm the car, allowing it to detect the surroundings. Now let’s
turn the PiCar into the PiCar-S.

What exactly is the PiCar-S? ——- We arm the PiCar with some sensors, which endow the car with the ability to
collect and process the data. The sensor modules to the PiCar is what the cartridges to the game console; they are
added to the basic design of the game and thus richening the play. It’s also similar to the code. The processor will
use SunFounder_PiCar to drive the car’s movement, and call the corresponding code package for different modules
(SunFounder_Light_Follower, SunFounder_Line_Follower, SunFounder_Ultrasonic_Avoidance).

Assemble the desired sensor module according to the wiring in corresponding module instructions below. Have fun
with The Transformer!

46 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.8.1 Obstacle Avoidance

How it Works

The ultrasonic obstacle avoidance module detects and transfers the collected data to Raspberry Pi that can calculate
the distance from the obstacle. The Pi will send a command to adjust the front wheels and rear wheels direction and
rotation to control the PiCar-S walk away from the obstacle if there is one.

Procedures

Step 1 Assembly

Connect the ultrasonic module to the ultrasonic connector with M1.4*8 screws and M1.4 nuts.

Then connect them to the ultrasonic support with M3*10 screws and M3 nuts.

Finally,assemble them to the Upper Plate with M3*10 screws and M3 nuts.

Reminder: It would be easier to place the nuts into the slots with your fingers to hold underneath.

Step 2 Wiring

Connect the ultrasonic obstacle avoidance to Robot HATS with a 4-pin anti-reverse cable as shown below.

Ultrasonic module can have a 5V or 3.3V power supply. Here, we give it a 3.3V power supply.

1.8. Arming the Car! 47

SunFounder PiCar-S

Step 3 Test

First, test the ultrasonic obstacle avoidance module before applying.

cd ~/SunFounder_PiCar-S/example/

python3 test_ultrasonic_module.py

You may find that the distance measurement may be not that accurate. It doesn’t matter. This 25kHz ultrasonic module
is not a commonly used one, but one has a horizontal detecting range of about 30~40 degrees. Thus the distance
measured may be not so accurate, but that small range provides convenience for obstacle avoidance. Besides, since the
Raspberry Pi is not a real-time operating system, the inaccurate time calculation will affect the accuracy of distance
measurement too. However, this ultrasonic module is precise enough for obstacle avoidance.

Step 4. Get on the road!

Now we have a general idea of the ultrasonic module’s effect after the test above. Let’s run the code of the ultrasonic

48 Chapter 1. About the PiCar-S

SunFounder PiCar-S

obstacle avoidance.

python3 ultra_sonic_avoid.py

The PiCar-S starts running now. Just place the car on the ground. It will follow the program to turn when it detects an
obstacle; if the obstacle is too close, it will move backwards, and turn left/right. You can also modify the threshold of
obstacle detecting range and that of moving backwards in the code.

Code Explanation for ultra_sonic_avoid.py

Whole Work Flow

1.8. Arming the Car! 49

SunFounder PiCar-S

The ultrasonic module returns a digital value, i.e., High or Low level, and the interval time between two levels returned
can be converted to the distance to the obstacle. Thus, we call the time module in Python for timing here. The formula
to calculate the distance is written in the ultrasonic module’s driver. The main program just calls the corresponding
program to get the distance value.

Subflow of the Obstacle Avoidance Function

50 Chapter 1. About the PiCar-S

SunFounder PiCar-S

When the car starts, it will detect obstacles and measure the distance in cycle, make judgement, and take actions. Here
are three cases: when the distance to the obstacle is equals to the threshold, the car will turn directions; when the
distance is less than the threshold, the car will move backwards before turning direction; when the distance is more
than the threshold, it will keep moving forwards.

1.8. Arming the Car! 51

SunFounder PiCar-S

Functions Explanation

ua = Ultra_Sonic.UltraSonic_Avoidance(17)

Create an object ua of a UltraSonic_Avoidance class in the Ultra_Sonic module. The number in the round bracket is
the initial parameter, which represents the pin number the SIG of the module is connected to. Since the BCM naming
method is applied, the corresponding pin on the Raspberry Pi is #17.

back_distance and turn_distance, two constants are to set the thresholds of the ranging distance.

while() loop

When the detected distance is less than the back_distance, the car will move backwards; when it is between
back_distance and turn_distance, the car will turn a direction (you can set the turning angle in the aforementioned
parameter turning_angle and the angle can be a positive or negative number, for turning left or turning right respec-
tively; NOTE that the number of the turning angle should be -90 to 90 considering the servo’s max rotation degrees,
or the servo may be burnt.); when the detected distance is greater than the turn_distance, the car will keep moving
forward.

bw.backward(), making the rear wheels rotate backwards; bw.forward(), making the rear wheels spin forward. These
two functions in the rear wheel driving module back_wheels are to set the wheel’s rotating direction.

bw.set_speed(speed), function in the back_wheels, to set the wheel’s rotating speed. The larger the number (within
the range 0-100) is, the faster the wheel rotates.

fw.turn(angle), function in the back_wheels, to set the turning angle. The angle is 90 when the car moves straight
forwards; reduce the number to turn left, and increase it to turn right.

52 Chapter 1. About the PiCar-S

SunFounder PiCar-S

fw.turn_straight(), making the front wheels return to the angle of moving straight forwards.

More:

back_distance and turn_distance

Try to modify the constants to make the car back off and turn away in a desired distance and angle as you like during
the obstacle avoidance.

1.8.2 Light Following

How It Works

The light follower module detects light sources in the surroundings, and transfers the data to the processor. The
processor analyzes the data and finds the direction of the light resource, so it will send a command to control the
movement of the front and rear wheels to approach the resource.

Procedures

Step 1 Assembly

Connect the light follower to the Sensor Connector with M3*10 screws and M3 nuts, and then assemble them to the
car with two M3*10 screws and two M3 nuts. You’re suggested to hold the nuts underneath with your fingers.

Step 2 Wiring

Connect the light follower to the Robot HATS with a 5-pin anti-reverse cable as shown below.

1.8. Arming the Car! 53

SunFounder PiCar-S

Note: You may wonder why we connect 5V to 3.3. Well, since the working voltage of the STM8 chip on the light
follower is 2.7-5.5V, we can connect it to 3.3V here. DO NOT connect 5V to 5V! All the analog ports on the Robot
HATS are led from the PCA8591, which is powerd by 3.3V. Therefore, if the voltage is between 3.3V-5V, the output
value will always be 255, thus the PCA8591 may be damaged if connected to 5V. Remember to connect to 3.3V.

The wiring is shown as below:

Step 3 Test

Let’s test the light follower first.

cd ~/SunFounder_PiCar-S/example/

python3 test_light_module.py

Expose the phototransistors to the light spot of the flashlight. When you increase the light intensity, more LEDs light
up, and the output values decrease.

54 Chapter 1. About the PiCar-S

SunFounder PiCar-S

Here we can rotate the blue adjustable resistor to change the values under the same light luminance. The best status is
as follows:

1) When there is only one LED lights up, the output value is 255

2) When the light is the brightest and all the LED light up, the output value is about 10-25.

Step 4. Get on the road!

git submodule update --init

python3 light_follower.py

The car will enter the light following configuration mode when we run the code above. It will keep turning to the right
in a circle to gather the information of light condition in different directions. So just place the car in an open field and
wait.

When the calibration is done, the car will stop temporarily. Shine a flashlight on the light follower module, and the car
will just follow the light spot as you moves it.

1.8. Arming the Car! 55

SunFounder PiCar-S

Code Explanation for light_follower.py

Whole Work Flow

Light-sensitive sensors need to be calibrated before actual use because of complex light conditions in the environment.
It gathers the information of the ambient light luminance. The car can follow light only when the light source is
brighter than the surroundings.

56 Chapter 1. About the PiCar-S

SunFounder PiCar-S

Here write two main functions/modules including light following calibration and light following in the main program.

Subflow of Light Follower Calibration Function

We need to configure three light-sensitive components separately, so we set three lists to store the values in A0, A1,
and A2 collected for multiple times. Then pick out the minimum values, which are the output analog values in the
brightest conditions.

Since the light source we use is much brighter than the ambient light, we should take the output values in the brightest
conditions as reference.

Besides, we should set a threshold value - when the gap between the collected value of the light source and that of the
environment is beyond the threshold, trigger the value switching to 0 or 1. Here we use [0,0,0] to represent the three
photoresistors’ status when they are not triggered. “0” will become “1” when the value detected of the corresponding
photoresistor is higher than the threshold. Thus we can set the related action of the car according to the three-element
list.

If there is light detected, the car will move and follow it; if there is no light detected, the car will stop temporarily and
keep turning to detect in a circle.

Subflow of Light Following Function

1.8. Arming the Car! 57

SunFounder PiCar-S

The light follower includes three phototransistors, thus its status list is composed of three elements which represent 8
statuses (based on permutation and combination). And here we need to set related responses to these statuses.

The three elements show the status of the three probes: 1 represents light detected, and 0, for none. For example,
[1,0,0] shows that light is detected only by the left probe, meaning th light source is at the left of the car, thus setting
the car’s response action as turning left; [1,1,0] means that light is detected on the left and central probes, thus its
response action should be set turning left too; and set it as turning right the same way according to the corresponding
status. When there is no light detected, the status is [0,0,0], so we set the response action to stop and return to the
standby mode.

58 Chapter 1. About the PiCar-S

SunFounder PiCar-S

Here, we need to set another variable – the steering angle – to distinguish between the large-angle and small-angle
turning. If the light is at the central left side (status [1,1,0]), we should apply a small-angle turning; if the light is at
the edge of the left side (status [1,0,0]), we should apply a large-angle turning.

Functions Explanation

To understand the code, take the software subflows above for reference.

Three Python modules are used in the code including the imported light_follower_module, front_wheels, and
back_wheel previously. They are drivers for this kit, respectively for light following, front wheels and rear wheels.

The related classes have been defined here. When the modules are applied to use, objects will be created for related
classes, and different parts of hardware will be driven by calling a function by the class object.

For example, for the light following module, we create an object named lf:

lf = Light_Follower.Light_Follower()

Then we can call the function by a class object.

A0 = lf.read_analog()[0]

This function read_analog() will return a list with three elements, which stores the detected analog values of three
probes. Here we use A0 = lf.read_analog()[0], A1 = lf.read_analog()[1], and A2 = lf.read_analog()[2] to store three
elements of returned value separately into the variables A0-A2.

1.8. Arming the Car! 59

SunFounder PiCar-S

A for() loop is used here cycling 10 times, that is the car will acquire the analog values ten times when the car drives in
a circle under the calibration mode. The minimum values will be taken as reference here. If you need more samples,
just increase the times of the loop.

Store the detected values to a list in each loop by the env0_list.append(A0) function. When the loop ends, the built-in
list function reference[0] = min(env0_list) in Python will pick out the minimum in the list.

lt_status_now = lf.read_flashlight()

This is to read the status of the module, which will return a 3-element list. This function is used to solve the possible
problem caused by brightness-adjustable flashlights. They blink repeatedly due to brightness change by PWM method,
so we add this function to the driver library to prevent the car from moving and stopping repeatedly when the light
source lights up and goes out quickly or changes luminance by ON/OFF ratio.

fw.turn(turning_angle)

Function for front wheels steering. The main program will call this function if the front wheels are applied for steering.
The parameter is the turning angle.

bw.forward()

bw.set_speed(forward_speed)

Here we need two functions for rear wheels. The first function is to control the rotating direction as forward (the
function for backwards is bw.backward()). The second one is to set the rotating speed of the wheels; the parameter is
the speed value (range: 0-100). The bigger the parameter is, the faster the wheel rotates.

1.8.3 Line Following

How it works

The line follower detects lines in the surrounding environment, and transfers the data to the processor. The processor
analyzes the data, and sends a command to control the movement of front wheels and rear wheels.

Procedures

Step 1 Assembly

Connect the light follower to the Sensor Connector with M3*10 screws and M3 nuts, and then assemble them to the
car with two M3*10 screws and two M3 nuts. You’re suggested to hold the nuts underneath with your fingers.

60 Chapter 1. About the PiCar-S

SunFounder PiCar-S

Step 2 Wiring

Connect the light follower to the Robot HATS with a 5-pin anti-reverse cable as shown below.

Step 3 Test

Get into the directory example:

cd ~/SunFounder_PiCar-S/example

Check whether any i2c device is recognized or not via i2c-tools

sudo i2cdetect -y 1

We can see 11 is the line follower’s i2c address. If it is not shown, it proves your wiring is not correct and the i2c
communication with Raspberry Pi fails too. You need to check the wiring before the next step.

Run the test code.

python3 test_line_module.py

1.8. Arming the Car! 61

SunFounder PiCar-S

Note: For the better working of line following module, we should adjust its sensitivity. The steps are as follows:

Place the module on the white surface, read the value ; place it on balck surface, and read value.

Calculate the difference, rotate potentiometer on the line following module toward the clockwise and anticlockwise
till the diffence reaches up to the maximum. Now the debugging is finished.

Step 4 Starts Running!

Run the line follower code

python3 line_follower.py

A prompt of calibration will be printed on the screen when the program starts to run. We will calibrate the module
on a white surface first: place all the five probes of the line follower above a white board. The prompt of completed
calibration will be printed on the screen a few seconds later. Then let’s move on to calibration on black line. Also
the prompt of starting is printed on the screen, and then place all the probes above the black lines. And the prompt of
calibration completed will be printed on the screen a few seconds later.

When the module calibration is all completed, we can run the car then. Place the PiCar-S with probes above the black
line on the white board, and then it will go forward following the line itself.

How to make a track for line following

To make a track for the car to follow a black line, you need to prepare the following materials:

A large sheet of paper, a roll of black tape (as black lines), a hard card board (the size depending on the size of the
track) or a flat surface like the floor or desk.

1. Spread the paper out smoothly on the hard board, and paste on the board or flat surface.

2. Paste the tape on the paper.

Rules for making:

1. Width of the black line: about 18-30mm, nearly the distance between two probes, no more than the mini-
mum distance of two nonadjacent probes

2. The gap between two lines: more than 125mm, which is the width of the whole module, to prevent the car
from getting confused when detecting two lines at the same time.

62 Chapter 1. About the PiCar-S

SunFounder PiCar-S

3. The semidiameter of curves: more than 138mm. When the front wheels turn left or right 45 degrees, the
semidiameter of the path by which the car turns is equal to the wheelbase (the distance between the center
of the front wheels and rear wheels). The car won’t be able to turn and pass the curve smoothly if the
semidiameter of the curve is too small.

A track sample is shown as below (the original map file can be found under folder map in github):

Code Explanation of line_follower.py

Whole Work Flow

Considering the interference of negative environment factors, we need to calibrate the line follower sensor before
actual use.

1.8. Arming the Car! 63

SunFounder PiCar-S

Here two main functions including the line follower calibration and line following are included in the main program.

Subflow of Line Follower Calibration Function

When we run the line follower configuration, we will start from white color, then black color, which is more like the
upper limit and lower limit of the sensor. Then we take the average value of black and white as reference value: if the
detected value is higher than the reference, it should be white; if the detected is lower than the reference, it should be
black. We will show the five detectors’ status by 5 elements [0,0,0,0,0].

64 Chapter 1. About the PiCar-S

SunFounder PiCar-S

Subflow of Line Following Function

1.8. Arming the Car! 65

SunFounder PiCar-S

In the line following function, we set the turning angle of the servo in different levels according to the detection results
of the probes. If the line in front of the car is detected as a small curve, then the car will turn a small angle; if it is a big
one, the car will turn a large angle. Thus, here we set four angle-turning constants: a_step, b_step, c_step, and d_step.

When the car moves forward originally, the servo is in 90 degrees. To drive the car to turn left, the servo should be in
90+step degrees; to turn right, the servo should be in 90-step degrees.

There is a special case: if the car runs off the track, and all the probes cannot detect the black lines any more, then it
will continue the program below.

66 Chapter 1. About the PiCar-S

SunFounder PiCar-S

In some case, especially when the car turns in a direction when the semi diameter of the curve is very small (1), the car
may run out of the track and cannot detect any black line (2). If there is no response program in such case, the car will
be unable to follow the line again. Thus we set the response program to let the car move backwards in the opposite
direction (3), and then turn back to the original direction until a black line is detected again and move forward (4).

Functions Explanation

The logic of the code is just as shown in the flow chart above.

Three Python modules are used in the code, including the imported SunFounder_Line_Follower, front_wheels, and
back_wheels. They are the drivers for this kit, respectively for line following , front wheels, and rear wheels

The related classes have been defined here. When the modules are applied to use, objects will be created for related
classes, and different parts of hardware will be driven by calling a function by the class object.

Similar to the line following module, we create an object named lf:

lf = Line_Follower_module.Line_Follower(references=REFERENCES)

The parameter is initial, and then we can apply the function by calling a class object.

lf.read_digital()

This function is used to read the analog signal of all probes, and convert it into digital signal. If the signal is larger
than the reference, the corresponding parameter will be 0; if it is lower than the reference, the parameter will be 1.
There are five probes, thus we will get a 5-parameter list.

fw.turn(turning_angle)

1.8. Arming the Car! 67

SunFounder PiCar-S

The function for front wheels’ turning. The main program will call this function if applying the front wheels for
turning. The parameter is the turning angle.

bw.forward()

bw.set_speed(forward_speed)

Here we need two functions for rear wheels. One is to control the rotating direction as forward (for rotating backwards,
bw.backward()). The second one is to set the rotating speed; the parameter is the speed value (range 0~100). The
bigger the parameter is, the faster the wheel rotates.

1.8.4 Combination

So, this smart car now is smart in three separate features. But, you think only one sensor module is not enough? Try to
combine those sensor modules in one! Here we can show you an experiment - light following with obstacle avoidance
for reference.

When the car runs with the light follower, sometimes it may crash into obstacles when following the light, and it’s
not quite convenient to let the car move back (though we’ve set the car to move backward if the array is [1,0,1], it’s
hard to acquire these values since the the car is moving and the light cannot be exactly as required sometimes). So we
consider Also, you can let the car move backwards by a paper board or your foot, which is quite easy.

Check below the program of this example.

Assemble the light follower module and ultrasonic obstacle avoidance module on the car first.

Log into the Raspberry Pi on your computer via ssh, and get into the directory

cd ~/SunFounder_PiCar-S/example

Run the code.

python3 light_with_obsavoidance.py

How it works

Set the obstacle avoidance as a superior priority than light following: if there is an obstacle in front of the car, it walk
away from the obstacle and back to the track; if not, then the car will keep follow light.

Since the light following and obstacle avoidance of the car depend on the sensor modules, we set two functions to read
the status of two sensors separately, and assign values to flags to be returned from the functions: state_light(), and
state_sonic().

In the function state_sonic(), the return value is avoid_flag.

If the car is close to an obstacle, it will return avoid_flag =2;

if it is too close to the obstacle, it will return avoid_flag =1;

if ahead no obstacle is detected near, it will return avoid_flag =0.

In the function state_light(), the return value is light_flag.

If the light spot is in front of the car, it will return light_flag = 0;

if the spot is at the right side, it will return light_flag = 1;

if the spot is at the left side, it will return light_flag = 2;

if the spot is at the back, it will return light_flag = 3;

if no light spot is detected, it will return light_flag = 4.

68 Chapter 1. About the PiCar-S

SunFounder PiCar-S

The main program main() will run the corresponding program according to avoid_flag and light_flag, and the
avoid_flag is superior in priority.

1.8. Arming the Car! 69

SunFounder PiCar-S

70 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1.9 Appendix

1.9.1 Installing Manually

1. Update the apt list.

sudo apt-get update

2. Install python-smbus.

sudo pip3 install smbus2

3. Install the PiCar module.

cd~
git clone --recursive https://github.com/sunfounder/SunFounder_PiCar.git
cd SunFounder_PiCar
python3 setup.py install

4. Enable I2C.

Edit the file /boot/config.txt

sudo nano /boot/config.txt

The “#” in front of each line is to comment the following contents which does not take effect in a sketch. The I2C
configuration part is commented by default too. Add the following code at the end of the file, or delete the pound mark
“#” at the beginning of related line; either way will do.

dtparam=i2c_arm=on

5. Reboot.

sudo reboot

1.9. Appendix 71

SunFounder PiCar-S

1.9.2 Modules

Robot HATS

Robot HATS is a specially-designed HAT for a 40-pin Raspberry Pi and can work with Raspberry Pi 3 model B, 3
model B +, and 4 model B. It supplies power to the Raspberry Pi from the GPIO ports. Thanks to the design of the
ideal diode based on the rules of HATS, it can supply the Raspberry Pi via both the USB cable and the DC port thus
protecting it from damaging the TF card caused by batteries running out of power. The PCF8591 is used as the ADC
chip, with I2C communication, and the address 0x48.

1. Digital ports: 3-wire digital sensor ports, signal voltage: 3.3V, VCC voltage: 3.3V.

72 Chapter 1. About the PiCar-S

SunFounder PiCar-S

2. Analog ports: 3-wire 4-channel 8-bit ADC sensor port, reference voltage: 3.3V, VCC voltage: 3.3V.

3. I2C ports: 3.3V I2C bus ports

4. 5V power output: 5V power output to PWM driver.

5. UART port: 4-wire UART port, 5V VCC, perfectly working with SunFounder FTDI Serial to USB.

6. Motor control ports: 5V for motors, direction control of motors MA and MB and a floating pin NC; working with
motor driver module.

7. Switch: power switch

8. Power indicators: indicating the voltage – 2 indicators on: >7.9V; 1 indicator on: 7.9V~7.4V; no indicator on:
<7.4V. To protect the batteries, you’re recommended to take them out for charge when there is no indicator on. The
power indicators depend on the voltage measured by the simple comparator circuit; the detected voltage may be lower
than normal depending on loads, so it is just for reference.

9. Power port: 5.5/2.1mm standard DC port, input voltage: 8.4~7.4V (limited operating voltage: 12V~6V).

PCA9865

PCA9685 16-channel 12-bit I2C Bus PWM driver. It supports independent PWM output power and is easy to use
4-wire I2C port for connection in parallel, distinguished 3-color ports for PWM output.

1.9. Appendix 73

SunFounder PiCar-S

1. PWM output ports: 3-color ports, independent power PWM output port, connect to the servo directly.

2&3. I2C port: 4-wire I2C port, can be used in parallel. Compatible with 3.3V/5.5V

3. PWM power input: 12V max.

4. LED: power indicator for the chip and for the PWM power input.

Motor Driver Module

The Motor Driver module is a low heat generation one and small packaged motor drive.

74 Chapter 1. About the PiCar-S

SunFounder PiCar-S

1. Power and motor control port: includes pins for supplying the chip and the motors and controlling the motors’
direction

2. PWM input for the motors: PWM signal input for adjusting the speed of the two motors

3. Motor output port: output port for two motors

1.9. Appendix 75

SunFounder PiCar-S

Line Follower Module

The TCRT5000 infrared photoelectric switch adopts a high transmit power infrared photodiode and a highly sensitive
phototransistor. It works by applying the principle of objects’ reflecting IR light – the light is emitted, then reflected,
and sensed by the synchronous circuit. Then it determines whether there exists an object or not by the light intensity.
It can easily identify black and white lines.

In other words, the different conduction levels of the phototransistor when it passes over black and white lines can
generate different output voltages. Therefore, all we need to do is to collect data by the AD converter on the Atmega328
and then send the data to the master control board via I2C communication.

This module is an infrared tracking sensor one that uses 5 TRT5000 sensors. The blue LED of TRT5000 is the emission

76 Chapter 1. About the PiCar-S

SunFounder PiCar-S

tube and after electrified it emits infrared light invisible to human eye. The black part of the sensor is for receiving;
the resistance of the resistor inside changes with the infrared light received.

Light Follower Module

Phototransistor, also known as photodiode, is a device that converts light to current. Currents are generated when
photons are absorbed in the P-N junction. When a reverse voltage is applied, the reverse current in the device will

1.9. Appendix 77

SunFounder PiCar-S

change with the light luminance. The stronger the light is, the larger the reverse current will be. Most phototransistors
work this way.

The ADC chip on the HATS can receive 8-bit analog signals and convert them into integers, and transfer the signals
to the Raspberry Pi. The Raspberry Pi will analyze the data to determine the direction of the brightest area (the light
source), and further control the steering and movement of the four wheels to approach the light source.

You may need a light focused flashlight in this experiment. At least, the spot size of the torch should not be too big
to reach all the 3 phototransistors on the module at the same time. Well, you can also shine the flashlight closer to the
car to get a small spot size.

Ultrasonic Obstacle Avoidance Module

The module contains an HC-SR04 ultrasonic distance sensor to detect the distance to an obstacle ahead. It is
commonly used for robots to avoid obstacles. With the two holes, it can be easily mounted to the robot. A four foot
anti-backwards cable is included to make the wiring tighter and easier.
The HC-SR04 ultrasonic distance sensor provides non-contact measurement from 2cm to 400cm with a range
accuracy of 3mm. each HC-SR04 module includes an ultrasonic transmitter, a receiver and a control circuit, so we
have to be careful with the Trig and Echo pin connections when using the HC-SR04 module. When we attach it to the
picar-s, it measures the distance and detects if there is an obstacle ahead.

Principle

Supply a short 10S pulse to the Trig to start the ranging, and then the module will send out an 8 cycle burst of ultrasound
at 40 kHz and raise its echo back. The echo is a distance object that is pulse width and the range in proportion. You
can calculate the Range through the Time Interval between sending trigger signal and receiving echo signal.

Formula:

𝑅𝑎𝑛𝑔𝑒(𝑚) =
𝑇𝑖𝑚𝑒𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 × 340𝑚/𝑠

2

Or:

Range (cm) =
Time Interval

58

Or:

Range(𝑖𝑛𝑐ℎ𝑠) =
Time Interval

148

We suggest to use over 60ms measurement cycle, so as to prevent trigger signal to the echo.

78 Chapter 1. About the PiCar-S

SunFounder PiCar-S

SunFounder SF006C Servo

The SunFounder SF0180 Servo is a 180-degree three-wire digital servo. It utilizes PWM signal of 60Hz and has no
physical limit – only control by internal software to 180 degrees at most.

Electrical Specifications:

DC Gear Motor

It’s a DC motor with a speed reducing gear train. See the parameters below:

1.9. Appendix 79

SunFounder PiCar-S

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company.
You should only use it for personal study, investigation, enjoyment, or other non-commercial or nonprofit purposes,
under the related regulations and copyrights laws, without infringing the legal rights of the author and relevant right
holders. For any individual or organization that uses these for commercial profit without permission, the Company
reserves the right to take legal action.

1.10 Thank You

Thanks to the evaluators who evaluated our products, the veterans who provided suggestions for the tutorial, and the
users who have been following and supporting us. Your valuable suggestions to us are our motivation to provide better
products!

Particular Thanks

• Len Davisson

• Kalen Daniel

• Juan Delacosta

Now, could you spare a little time to fill out this questionnaire?

Note: After submitting the questionnaire, please go back to the top to view the results.

80 Chapter 1. About the PiCar-S

CHAPTER

TWO

COPYRIGHT NOTICE

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company.
You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes,
under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right
holders. For any individual or organization that uses these for commercial profit without permission, the Company
reserves the right to take legal action.

81

	About the PiCar-S
	Components List
	Introduction
	Building the Car
	Circuits Building
	Get Started with Raspberry Pi
	Servo Configuration
	Calibration
	Arming the Car!
	Appendix
	Thank You

	Copyright Notice

