

PiArm - SunFounder Robotic Arm for Raspberry Pi

Thank you for choosing our PiArm.

PiArm is a three-degree-of-freedom robotic arm for Raspberry Pi. It has 3 interchangeable parts - bucket, hanging clip and solenoid - to help you perform different tasks.

In addition, PiArm offers both remote control and built-in dual joystick module control.

[image: _images/piarm.jpg]
This tutorial includes several parts: device list, assembly guide, programming and appendices. The programming section is divided into two chapters: Playing in Ezblock and Playing in Python, each of which allows you to make PiArm work the way you want it to.

	Play with Ezblock

If you are new to programming, check out this chapter as it introduces Ezblock Studio, a block-based visual programming software that allows you to make PiArm move and implement some interesting projects by simply dragging and dropping blocks.

	Play with Python

If you prefer to program in a more popular programming language - python, you can refer to this section. The chapter covers starting from burning the Raspberry Pi OS, to configuring the Raspberry Pi and finally getting the code running to see the effects, even if you don’t have any Python foundation, you can get PiArm working quickly.

	Component List and Assembly Instructions

	Hardware Introduction
	Arm

	Shovel Bucket

	Hanging Clip

	Electromagnet

	Dual Joystick Module

	About Robot HAT

	Play with Ezblock
	Quick Guide on Ezblock

	Test 3 EoATs

	Sound Effects

	Dual Joystick Module

	Remote Control

	Coordinate Mode

	Memory Function

	GAME - Catching Dolls

	GAME - Iron Collection

	Play with Python
	Quick Guide on Python

	Test 3 EoATs

	Sound Effects

	Dual Joystick Module Control

	Keyboard Control

	Coordinate Mode

	Memory function

	GAME - Catching Dolls

	GAME - Iron Collection

	Appendix
	I2C Configuration

	Remote Desktop

	About the Battery

	Thank You

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes, under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.

Component List and Assembly Instructions

You need to check whether there are missing or damaged components according to the list first. If there are any problems, please contact us and we will solve them as soon as possible.

Please follow the steps on the PDF to assemble.

Note

	Before assembling, you need to buy 2 18650 batteries and fully charge them, refer to About the Battery.

	Robot HAT cannot charge the battery, so you need to buy a battery charger at the same time.

	PiArm Assembly Instructions (.pdf) [https://github.com/sunfounder/sf-pdf/raw/master/assembly_file/a0000765-piarm.pdf]

Warning

If the kit you received includes a clear Robot HAT Case, please do not mount it so as not to affect the PiArm left and right rotation range.

Hardware Introduction

	Arm
	Angle Mode

	Coordinate Mode

	Shovel Bucket

	Hanging Clip

	Electromagnet

	Dual Joystick Module

	About Robot HAT

Arm

PiArm’s arm can be controlled in two ways: Angle Mode and Coordinate Mode.

	Angle Mode: Writes a certain angle to the three servos on the arm, thus rotating the arm to a specific position.

	Coordinate Mode: Create a spatial right-angle coordinate system for the arm and set the control point. Set the coordinates of the control point so that the arm can reach a specific position.

Angle Mode

The arm has three servos to control its up and down, left and right, and front and back. We use α, β and γ to represent their rotation angles, as shown below.

	α(alpha): represents the front-to-back rotation angle of the arm, due to the limitation of the structure, the recommended rotation range is: -30 ~ 60.

	β(beta): represents the up and down rotation angle of the arm, due to the limitation of the structure, the recommended rotation range is: -60 ~ 30.

	γ(gamma): represents the left and right rotation angle of the arm, the range is: -90 ~ 90.

[image: ../_images/pi_angle.jpg]

Coordinate Mode

PiArm has a spatial rectangular coordinate system with its origin located at the center of the output axis of the servos on both sides. The Control Point is located at the top of the arm and is scaled in millimeters. In the initial state, the coordinates of the Control Point are (0, 80, 80).

[image: ../_images/coordinate0.png]
It is important to note that the arm length of PiArm is finite, and if the coordinate values are set beyond the limits of its mechanical motion, PiArm will rotate to an unpredictable position.

In other words, the total arm length of PiArm is 160 mm, which means that the limit value of the control points moving along the Y-axis should be between (0,0,0) and (0,160,0). However, due to the limitations of the structure itself, the range of movement should be much smaller than this.

	The recommended range for the X coordinate is -80 ~ 80.

	The recommended range for Y coordinate is 30 ~ 130.

	The recommended range for Z coordinate is 0 ~ 80.

Shovel Bucket

[image: ../_images/shovel_usage.jpg]
Assembling the Shovel Bucket

Assemble the Shovel Bucket as shown below.

Note

In step 2 you need to insert the servo into P11 for zeroing before inserting the D3 plate into the servo shaft in a vertical orientation.

[image: ../_images/bucket0.png]
Assemble the Shovel Bucket to the end of the PiArm with M2x4 screws.

[image: ../_images/bucket.png]
The Shovel Bucket has a rotation range of -90 ~ 60.

[image: ../_images/bucket2.png]
Use range

Can’t dig water, can be used to dig sand and gravel.

Hanging Clip

[image: ../_images/clip_usage1.jpg]
Assembly

Assemble the Hanging Clip as shown below.

Note

Note that in step 3 you need to insert the servo into the P11 for zeroing before inserting the D1 plate into the servo shaft in a vertical orientation.

[image: ../_images/clip0.png]
Attach the Hanging Clip to the end of the PiArm with the M2x4 screw.

[image: ../_images/clip.png]
The angle range of the Hanging Clip is 0-90°.

[image: ../_images/clip2.png]
Using range

	The weight of the clamped object should be less than 150g.

	The recommended height of the object to be clamped should be less than 4cm, width less than 8.5cm.

	Slender objects need to find the right angle to clip up.

Electromagnet

[image: ../_images/electro_usage.jpg]
Assembly

Assemble the electromagnet module according to the diagram below.

[image: ../_images/electromagnet0.png]
Then secure the electromagnet to the end of the PiArm with the M2x4 screws.

[image: ../_images/electromagnet.png]
Range of use

	Can only be used to suck ferrous products.

	The larger the surface area of the iron product, the stronger the adsorption.

	It is recommended that the weight of iron objects is less than 150g.

Dual Joystick Module

Dual joystick module, as the name implies, consists of two joysticks, each of which can output electrical signals in X, Y and Z directions.

[image: ../_images/joystick1.png]
Before you can use the dual joystick module, you need to connect its 8 wires to the corresponding pins of the Robot HAT as shown in the picture below.

[image: ../_images/dual_joy.png]
The joystick reads in a plane coordinate system from 0 to 4095, with the origin (0,0) in the lower left corner.

As an example, the coordinate value when the joystick is not pushed is (2048,2048). If the joystick is pushed to the left, the coordinates are (0,2048). When the joystick is pushed down, the coordinates are (2048,0), as shown below.

[image: ../_images/joystick3.jpg]
However, electrical signals tend to fluctuate and it is difficult to get an absolutely stable reading, so we usually set a value interval to determine where the joystick is currently located.

The recommended boundary values are set to 3072 and 1024. when the joystick reading is greater than 3072, the joystick is considered to be pushing up (or right); if the reading is less than 1024, the joystick is considered to be pushing down (or left).

Note

In the Python library, these values have been processed into directional indications as follows.

[image: ../_images/joystick2.png]

The Z-axis button outputs a low level (0) when pressed and a high level (1) when released.

[image: ../_images/joystick5.png]

About Robot HAT

[image: ../_images/picar_x_pic7.png]

	RST Button
	
	A short-press of the RST Button will cause any running programs to reset.

	A long-press of the RST Button until the LED lights up, and then releasing will disconnect the Robot HAT’s Bluetooth chip.

	USR Button
	
	The functions of the USR Button can be configured through programming. (Pressing down leads to a input of 0, and releasing produces a input of 1)

	LED
	
	Configured through programming (Outputting 1 turns the LED on, Outputting 0 turns the LED off.)

	Battery Indicator
	
	Battery voltage above 7.8V will light up the two indicator LEDs. Battery voltage ranging from 6.7V to 7.8V will only light up one LED, voltage below 6.7V will turn both LEDs off.

	Bluetooth Indicator
	
	The Bluetooth indicator LED will stay on with a solid Bluetooth connection, and blink rapidly during a signal transmission. The LED will blink at 1-second intervals if the Bluetooth is disconnected.

Note

You can see more details in the Robot HAT Documentation [https://docs.sunfounder.com/projects/robot-hat/en/latest/index.html].

Play with Ezblock

Ezblock is a development platform developed by SunFounder designed for beginners to lower the barriers to getting started with Raspberry Pi. It has two programming languages: Graphical and Python, and available on almost all different types of devices. With Bluetooth and Wi-Fi support, you can download code, remote control a Raspberry Pi, on Ezblock Studio.

	Quick Guide on Ezblock
	Servo Adjust

	Install and Configure EzBlock Studio

Projects

Here, we show you the projects of playing Piarm on Ezblock Studio. If you are new to these, you can refer to the code images inside each project to program, and can learn the use of blocks according to TIPS.

If you don’t want to write these projects one by one, we have uploaded them to Ezblock Studio’s Examples page and you can run them directly or edit them and run them later.

	Test 3 EoATs

	Sound Effects

	Dual Joystick Module

	Remote Control

	Coordinate Mode

	Memory Function

	GAME - Catching Dolls

	GAME - Iron Collection

Quick Guide on Ezblock

There are 2 parts here:

	Servo Adjust allows you to keep all the servos at 0 degrees to complete a proper and safe assembly (otherwise you will probably damage the servos).

	Install and Configure EzBlock Studio will guide you to download Ezblock Studio to play with your robot.

Servo Adjust

When assembling to the part with the servo, you need to keep the servo at 0° and secure it with the servo screw. Please follow the tutorial below to do this.

	Firstly, Install EzBlock OS [https://docs.sunfounder.com/projects/ezblock3/en/latest/quick_guide_3.2/install_ezblock_os.html#install-ezblock-os-latest] onto a Micro SD card, once the installation is complete, insert it into the Raspberry Pi.

	To ensure that the servo has been properly set to 0°, first insert the rocker arm into the servo shaft and then gently rotate the rocker arm to a different angle.

[image: ../_images/servo_arm.png]

	Follow the instructions on the assembly foldout, insert the battery holder cable and turn the power switch to the ON. Wait for 1-2 minutes, there will be a sound to indicate that the Raspberry Pi boots successfully.

[image: ../_images/slide_to_power.png]

	Next, plug the servo cable into the P11 port as follows.

[image: ../_images/pin11_connect.png]

	At this point you will see the servo arm rotate to a specific position (0°). If the servo arm does not return to 0°, press the RST button to restart the Robot HAT.

	Now you can continue the installation as instructed on the assembly foldout.

Note

	Do not unplug this servo cable before fastening this servo with the servo screw, you can unplug it after fastening.

	Do not turn the servo while it is powered on to avoid damage; if the servo shaft is inserted at the wrong angle, pull out the servo and reinsert it.

	Before assembling each servo, you need to plug the servo cable into P11 and turn on the power to set its angle to 0°.

	This zeroing function will be disabled if you download a program to the robot later with the EzBlock APP.

Install and Configure EzBlock Studio

As soon as the robot is assembled, you will need to carry out some basic operations.

	Install EzBlock Studio [https://docs.sunfounder.com/projects/ezblock3/en/latest/quick_guide_3.2/install_ezblock_app.html#install-ezblock-app-latest]: Download and install EzBlock Studio on your device or use the web-based version.

	Connect the Product and EzBlock [https://docs.sunfounder.com/projects/ezblock3/en/latest/quick_guide_3.2/connect_product_ezblock.html#connect-product-ezblock-latest]: Configure Wi-Fi, Bluetooth and calibrate before use.

	Open and Run Examples [https://docs.sunfounder.com/projects/ezblock3/en/latest/quick_guide_3.2/open_run.html#open-run-latest]: View or run the related example directly.

Test 3 EoATs

This is the first program and the one you must see.

In this project, you will learn how to assemble and use PiArm’s 3 End of Arm Tooling (EoAT, replaced by this abbreviation later.).

Before programming, you need to learn the basic usage of Ezblock Studio from here.

	How to Create a New Project? [https://docs.sunfounder.com/projects/ezblock3/en/latest/create_new.html#create-project-latest]

Tips on basic blocks

	This is the basic structure of the program, the [Start] block is used to do some initialization (even if no block is placed, it cannot be deleted) and the [Forever] block is, as the name suggests, a continuous loop that allows your program to change and respond.

[image: ../_images/move8.png]

	This block is used to set an interval time in milliseconds.

[image: ../_images/delay.png]

Tips on PiArm blocks

Here you can find some blocks needed to make PiArm work.

[image: ../_images/piarm_block.png]

Shovel Bucket

Step 1

Assemble the Shovel Bucket to the end of PiArm.

Step 2

Now start writing the code to make Shovel Bucket work.

Put [set bucket pin as ()] in the [Start] block to initialize the bucket pin as P3.

Note

Because in the assembly diagram above, it is connected to the Transfer Module, which is already connected to P3 during the PiArm assembly. Of course you can also connect it to other spare pins.

[image: ../_images/bucket31.png]
Step 3

Toggles the angle of the Shovel Bucket between 0° and 90° with an interval of 1s.

	[set shovel bucket angle to ()]: Used to set the angle of Shovel Bucket, the range is 0-90.

	[delay ()]: From the Basic category, used to set the time interval between 2 block runs, in: ms.

[image: ../_images/bucket32.png]
Step 4

Once the code is written, click the Download button in the bottom right corner to download it to the PiArm.

Now you will see the Shovel Bucket moving back and forth, and you can click the Run button to stop the code from running.

[image: ../_images/bucket3.png]

Hanging Clip

Step 1

Assemble Hanging Clip to the end of PiArm.

Step 2

Now start writing the code to make Shovel Bucket work.

Put [set hanging clip pin as ()] in the [Start] block to initialize the hanging clip pin as P3.

Note

Because in the assembly diagram above, it is connected to the Transfer Module, which is already connected to P3 during the PiArm assembly. Of course you can also connect it to other spare pins.

[image: ../_images/clip31.png]
Step 3

Toggles the angle of the Hanging Clip between 0° and 90° with an interval of 1s.

	[set hanging clip angle to ()]: Used to set the angle of Hanging Clip, the range is 0-90.

	[delay ()]: From the Basic category, used to set the time interval between 2 block runs, in: ms.

[image: ../_images/clip32.png]
Step 4

Once the code is written, click the Download button in the bottom right corner to download it to the PiArm.

Now you will see the Hanging Clip repeatedly open/close, and you can click the Run button to stop the code from running.

[image: ../_images/clip3.png]

Electromagnet

Step 1

Assemble Electromagnet to the end of PiArm.

Step 2

Now start writing the code to make Shovel Bucket work.

Put [set electromagnet pin as ()] in the [Start] block to initialize the electromagnet pin as P3.

Note

Because in the assembly diagram above, it is connected to the Transfer Module, which is already connected to P3 during the PiArm assembly. Of course you can also connect it to other spare pins.

[image: ../_images/electromagnet21.png]
Step 3

Let the electromagnet be repeatedly energized and de-energized at 1 second intervals.

	[turn electromagnet (on/off)]: Used to energize (on) or de-energize (off) the Electromagnet.

	[delay ()]: From the Basic category, used to set the time interval between 2 block runs, in: ms.

[image: ../_images/electromagnet22.png]
Step 4

Once the code is written, click the Download button in the bottom right corner to download it to the PiArm.

Now you will find that the Electromagnet is energized every second (the LED (D2) on the electromagnet lights up, indicating that it is energized, at which time it can be used to adsorb some materials with iron.).

[image: ../_images/electromagnet2.png]

Sound Effects

There is a built-in speaker in Robot HAT that can be used to play some music and sound effects, as well as to implement TTS functions.

Tips on Blocks

	This block is a separate thread and can play some built-in background music.

[image: ../_images/sound1.png]

	This block can play some built-in sound effects.

[image: ../_images/sound2.png]

	You can write some text in this block and let PiArm speak them.

[image: ../_images/sound3.png]

Programming

Step 1

You may want to simplify the program with Functions, especially when you perform the same operation multiple times. Putting these operations into a newly declared function can greatly facilitate your use.

Click on the Functions category and select the appropriate function block, the function you created will also appear here.

[image: ../_images/emotional2.png]
The Function block without output is used here.

[image: ../_images/function_name.png]
Step 2

Create a function named [music], after creating it you will see it in the Functions category.

Now let the [music] function implement playing background music at 50% volume.

	[set background music volume to ()]: Used to set the volume of the background music, in the range of 0%-100%.

	[play background music ()]: This block is a separate thread and can play some built-in background music.

[image: ../_images/sound5.png]
Step 3

Create a function named [sound] to make PiArm play a specific sound effect at a certain volume.

	[play sound effects () with volume to () %]: This block can be used to play built-in sound effects with a volume range of 0%-100%.

[image: ../_images/sound6.png]
Step 4

Similarly create a function named [tts] that will be used to make PiArm say something.

	[say ()]: This block converts the text you type into speech for PiArm to speak.

[image: ../_images/sound73.png]
Step 5

From the Functions category, drag out these 3 functions into the [Forever] block to have them executed in order.

[image: ../_images/sound74.png]
Step 6

Once the code is written, click the Download button in the bottom right corner to download it to the PiArm.

Now you will find that piarm first plays the sound effect in the sound function, and then plays the background music in the [music] function. When the background music is played, the [tts] function is run for timing, and the countdown voice broadcast will be performed after 30 seconds.

Note

You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or Edit directly to see the results.

[image: ../_images/sound5.png]
[image: ../_images/sound6.png]
[image: ../_images/sound7v2.png]

Dual Joystick Module

We can control PiArm in 2 parts, Arm and EoAT. In the first project, you have learned how to Test 3 EoATs of PiArm’s separately.

In this project, first the arm is controlled by Angle Mode and dual joystick module. Then the control code for the three EoATs was added to this so that the dual joystick module can control both arm and EoAT.

	Arm - Joystick Control

	Shovel Bucket - Joystick Control

	Hanging Clip - Joystick Control

	Electromagnet - Joystick Control

[image: ../_images/joystick_control.jpg]

Arm - Joystick Control

PiArm’s arm can be controlled in two ways: Angle Mode and Coordinate Mode.

	Angle Mode: Writes a certain angle to the three servos on the arm, thus rotating the arm to a specific position.

	Coordinate Mode: Create a spatial right-angle coordinate system for the arm and set the control point. Set the coordinates of the control point so that the arm can reach a specific position.

Step 1

You may want to simplify your program with variables, now click the Create variable button on the Variables category to create 5 variables (HIGH, LOW, α, β and γ).

Note

The created variables are also stored in the Variables category.

[image: ../_images/sp210512_114916.png]
Step 2

Set the initial values for these variables and set the servo rotation speed to 70%.

Note

For the reason of the values of the HIGH and LOW variables, please refer to Dual Joystick Module.

[image: ../_images/joystick6.png]
Step 3

Use [if else] block to do some conditional judgment cases (drag 5 [else if] blocks from the left to below the [if] block).

	[if else]: Conditional judgment block, you can create multiple conditional judgments by clicking the set icon and dragging [else] or [else if] to the right below the [if].

[image: ../_images/joy1.png]
Step 4

The left and right joystick connections for the dual joystick module are shown below, refer to Dual Joystick Module.

	The X of the left joystick is connected to A0 and the Y is connected to A1.

	The X of the right joystick is connected to A2, and the Y is connected to A3.

Assume that the X and Y of the left joystick and the Y of the right joystick are used to control the 3 servos of PiArm respectively, now first set the judgment condition to determine whether the left and right joysticks are toggled or not.

[image: ../_images/joystick.png]

	If A0 (LX) is greater than HIGH (3072), it means that the left joystick is toggled to the right.

	If A0 (LX) is less than LOW (1024), it means the left joystick is toggled to the left.

	If A1 (LY) is greater than HIGH (3072), it means the left joystick is toggled forward.

	If A1 (LY) is less than LOW (1024), it means the left joystick is toggled backward.

	If A3 (RY) is greater than HIGH (3072), it means the right joystick is toggled forward.

	If A3 (RY) is less than LOW (1024), it means the right joystick is toggled backward.

[image: ../_images/joystick62.png]
Step 4

Now set the rotation effect of PiArm according to the toggle of the left and right joysticks.

	If the left joystick is toggled to the right, the Arm will turn right.

	If the left joystick is toggled to the left, the Arm will turn left.

	If the left joystick is toggled forward, the Arm will extend forward.

	If the left joystick is toggled backward, the Arm will retract backward.

	If the right joystick is toggled forward, the Arm will lower down.

	If the right joystick is toggled backward, the Arm will raise up.

Note

	α, β and γ represent the 3 servo rotation ranges on PiArm, refer to: Angle Mode.

	[constrain () low () high ()]: From Math category for setting the variation of a constant to a certain range.

[image: ../_images/joystick63.png]
Step 5

Store the obtained α, β and γ angle values into the [α () β () γ ()] block, and then use the [set positon] block to make PiArm rotate this position.

[image: ../_images/joystick65.png]
Step 7

Once you click the download button, you can use the Dual Joystick Module to control PiArm.

	Left joystick toggle left or right, the arm will turn to the left or right.

	Left joystick toggle forward or backward, the arm will extend forward or retract backward.

	Right joystick toggle forward or backward, the arm will raise up or lower down.

Note

You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or Edit directly to see the results.

[image: ../_images/joystick6.png]
[image: ../_images/joystick7.png]

Shovel Bucket - Joystick Control

Now add the control code for the Shovel Bucket.

Note

You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or Edit directly to view the code.

[image: ../_images/shovel_joystick.png]
Once the code is run, you can control both the PiArm’s arm and Shovel Bucket with the dual joystick module. But you need to install Shovel Bucket to the PiArm first.

	Push the left joystick to the left or right, the arm will turn to the left or right.

	Push the left joystick forward or backward, the arm will extend or retract.

	Push the right joystick forward or backward, the arm will be raised or lowered.

	Push the left joystick to rewind the Shovel Bucket inward.

	Press the right joystick to extend the Shovel Bucket outward.

Hanging Clip - Joystick Control

Now add the control code for the Hanging Clip to the code for the control arm.

Note

You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or Edit directly to view the block.

[image: ../_images/clip_joystick.png]
After the code is run, you can use the dual joystick module to control PiArm’s arms and vertical clips at the same time. But you need to install Hanging Clip to PiArm first.

	Push the left Joystick to the left or right, the arm will turn to the left or right.

	Push the left Joystick forward or backward, the arm will extend or retract.

	Push the right Joystick forward or backward, the arm will be raised or lowered.

	Press the left Joystick to close the Hanging Clip.

	Press the right Joystick to open the Hanging Clip.

Electromagnet - Joystick Control

Now add the control code for the Electromagnet to the code for the control arm.

Note

You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or Edit directly to view the block.

[image: ../_images/electro_joystick.png]
After the code is run, you can use the dual joystick module to control both PiArm’s arm and the Electromagnet. But you need to install Electromagnet to PiArm first.

	Push the left joystick to the left or right, the arm will turn to the left or right.

	Push the left joystick forward or backward, the arm will extend or retract.

	Push the right joystick forward or backward, the arm will be raised or lowered.

	Press the left joystick to turn on the Electromagnet.

	Press the right joystick to turn the Electromagnet off.

Remote Control

In addition to the dual joystick module, we can also use the widgets on the Remote Control [https://docs.sunfounder.com/projects/ezblock3/en/latest/remote.html] page in EzBlock Studio to control PiArm movement.

	Arm - Remote Control

	Create a Library

	Shovel Bucket - Remote Control

	Hanging Clip - Remote Control

	Electromagnet - Remote Control

[image: ../_images/app_control.jpg]

Arm - Remote Control

PiArm’s arm can be controlled in two ways: Angle Mode and Coordinate Mode.

	Angle Mode: Writes a certain angle to the three servos on the arm, thus rotating the arm to a specific position.

	Coordinate Mode: Create a spatial right-angle coordinate system for the arm and set the control point. Set the coordinates of the control point so that the arm can reach a specific position.

The Angle Mode is used here.

Step 1

To use the remote control function, you need to enter the Remote Control page from the left side of main page, and then drag one D-pad and 3 buttons to the central area.

[image: ../_images/control3.png]
Back in the programming page, you will see an additional Remote category, and the D-pad and Button block appear in it.

	[Button () get value]: This block is used to read the value of the button, press is 1, release is 0.

	[Button () is (press/release)]: This block and Button () get value = (0/1) have the same effect and can be used directly to determine whether a button is pressed or not.

	[D-pad () get () value]: This block is used to read the up/down/left/right (selected through the drop-down menu) pad values, press for 1 and release for 0.

[image: ../_images/control4.png]
Step 2

Create 3 variables (α, β and γ) and set the initial values, and set the rotation speed of PiArm to 70%.

[image: ../_images/remote01.png]
Step 3

Create a function called [arm_control] to set the rotation direction of the PiArm based on the arrow keys and button values.

Note

The function name cannot contain spaces, and two words can be connected by _.

Note

	α, β and γ represent the 3 servo rotation ranges on PiArm, refer to: Angle Mode.

	[constrain () low () high ()]: From Math category for setting the variation of a constant to a certain range.

	[if else]: Conditional judgment block, you can create multiple conditional judgments by clicking the set icon and dragging [else] or [else if] to the right below the [if].

[image: ../_images/remote04.png]

	If the UP button (▲) of D-pad is pressed, the Arm will extend forward.

	If the Down button (▼) of D-pad is pressed, the Arm will retract backward.

	If the LEFT button (◀) of D-pad is pressed, the Arm will turn left.

	If the RIGHT button (▶) of D-pad is pressed, the Arm will turn right.

	If Button A is pressed, the Arm will lower down.

	If Button B is pressed, the Arm will raise up.

Step 4

Put the function [arm_control] into [Forever] for loop execution, and finally click the Download button to run the code.

After that you can use the D-pad and Button A/B on the Remote Control page to control the movement of the Arm.

Note

	The functions must be placed before the [start] and [Forever] blocks.

	You can also find the code with the same name on the EzBlock Studio Examples page and click Run or Edit directly to view the result.

[image: ../_images/remote_control5.png]

Create a Library

To be able to use the function - [arm_control] in other code later, you can create it as a library and import it when you need to use it.

Step 1

Open the menu icon in the upper right corner and select Create Library.

[image: ../_images/create_libr.png]
Step 2

Select the function, there is only one function here, so arm_control is selected by default.

[image: ../_images/arm_control.png]
Step 3

Name the library and fill in the description so that it can be better distinguished later.

[image: ../_images/name_libr.png]
Step 4

Wait for the prompt to save successfully and the library will be saved in My Library on your personal page. You can also see it when you click Import Library.

[image: ../_images/import.png]

Shovel Bucket - Remote Control

Create a new project and write code for it so that we can control the Shovel Bucket while controlling the arm.

Step 1

Import [arm_control] library, if you have not created this library before, please refer to: Create a Library.

[image: ../_images/remote12.png]
In the Mylib page, select the library you created and click Import.

[image: ../_images/remote12ii.png]
After importing, this library is in a collapsed style. You can right-click on it and click Expand Block, so that you can see its internal code.

[image: ../_images/arm_import.png]
Step 2

Go to the remote control page and drag a D-pad and two buttons out again, because the import library will not import the widgets, so you need to drag them in again. Add two more buttons to control the angle of the Shovel Bucket.

[image: ../_images/remote_clip_shovel.png]
Step 3

Create the variables (α, β, γ and angle) and set the initial values to 0, then initialize the PiArm rotation speed and the pin of Shovel Bucket.

[image: ../_images/remote11.png]
Step 4

Create a new function [shovel], and write the code as follows to control Shovel Bucket with two buttons.

	Use [if () else ()] block as a judgment condition. If button C is pressed, the variable angle is added by 1; if button D is pressed, the variable angle is subtracted by 1.

	Constrain the value of variable angle to -90 ~ 60 with [constrain () low() high ()] block.

	Set the angle of Shovel Bucket according to the variable angle.

[image: ../_images/remote13.png]
Step 5

Drag the [arm_control] and [shovel] functions from the Functions category to the [Forever] block respectively.

After clicking the download button, use the D-pad and buttons A/B on the remote control page to control the movement of the arm, and then use buttons C/D to control the addition/decrease of the bucket angle.

Note

	The functions must be placed before the [start] and [Forever] blocks.

	You can also find the code with the same name on the EzBlock Studio Examples page and click Run or Edit directly to view the result.

[image: ../_images/remote_control6.png]

Hanging Clip - Remote Control

Create a new project and write code for it so that we can control the Hanging Clip while controlling the arm.

Step 1

Import [arm_control] library, if you have not created this library before, please refer to: Create a Library.

[image: ../_images/remote12.png]
In the Mylib page, select the library you created and click Import.

[image: ../_images/remote12ii.png]
After importing, this library is in a collapsed style. You can right-click on it and click Expand Block, so that you can see its internal code.

[image: ../_images/arm_import.png]
Step 2

Go to the remote control page and drag a D-pad and two buttons out again, because the import library will not import the widgets, so you need to drag them in again. Add two more buttons to control the angle of the Hanging Clip.

[image: ../_images/remote_clip_shovel.png]
Step 3

Create the variables (α, β, γ and angle) and set the initial values to 0, then initialize the PiArm rotation speed and the pin of Hanging Clip.

[image: ../_images/remote21.png]
Step 4

Create a new function [clip], and write the code as follows to control Hanging Clip with two buttons.

	Use [if () else ()] block as a judgment condition. If button C is pressed, the variable angle is added by 1; if button D is pressed, the variable angle is subtracted by 1.

	Constrain the value of variable angle to 0 ~ 90 with [constrain () low() high ()] block.

	Set the angle of Hanging Clip according to the variable angle.

[image: ../_images/remote22.png]
Step 5

Drag the [arm_control] and [clip] functions from the Functions category to the [Forever] block respectively.

After clicking the download button, use the D-pad and buttons A/B on the remote control page to control the movement of the arm, and then use buttons C/D to control the opening and closing of the Hanging Clip.

Note

	The functions must be placed before the [start] and [Forever] blocks.

	You can also find the code with the same name on the EzBlock Studio Examples page and click Run or Edit directly to view the result.

[image: ../_images/remote_control7.png]

Electromagnet - Remote Control

Create a new project and write code for it so that we can control the Electromagnet while controlling the arm.

Step 1

Import [arm_control] library, if you have not created this library before, please refer to: Create a Library.

[image: ../_images/remote12.png]
In the Mylib page, select the library you created and click Import.

[image: ../_images/remote12ii.png]
After importing, this library is in a collapsed style. You can right-click on it and click Expand Block, so that you can see its internal code.

[image: ../_images/arm_import.png]
Step 2

Go to the remote control page and drag a D-pad and two buttons out again, because the import library will not import the widgets, so you need to drag them in again. In addition, add a switch widget to turn the Electromaget on/off.

[image: ../_images/remote_electro.png]
Step 3

Create the variables (α, β, and γ) and set the initial values to 0, then initialize the PiArm rotation speed and the pin of Electromaget.

[image: ../_images/remote31.png]
Step 4

Create a new function [electromagnet], and write code for it as the following steps, so that you can control Electromagnet by the Switch widget.

	Use [if () else ()] block as a judgment condition. If the switch is on, the Electromaget is activated; if the switch is off, the Electromaget is turned off.

[image: ../_images/remote32.png]
Step 5

Drag the [arm_control] and [electromaget] functions from the Functions category to the [Forever] block respectively.

After clicking the download button, when the switch toggles to on, the electromagnet turns on (it is magnetic at this time, you can use iron adsorption material); when the switch toggles to off, the electromagnet turns off. At the same time, you can use the D-pad and buttons A/B on the remote control page to control the movement of the arm.

Note

	The functions must be placed before the [start] and [Forever] blocks.

	You can also find the code with the same name on the EzBlock Studio Examples page and click Run or Edit directly to view the result.

[image: ../_images/remote_control8.png]

Coordinate Mode

PiArm’s arm can be controlled in two ways: Angle Mode and Coordinate Mode.

	Angle Mode: Writes a certain angle to the three servos on the arm, thus rotating the arm to a specific position.

	Coordinate Mode: Create a spatial right-angle coordinate system for the arm and set the control point. Set the coordinates of the control point so that the arm can reach a specific position.

This project sets 2 coordinate points by coordinate mode, and let the PiArm clip the rubber duck on the left to the bowl on the right. But you need to mount Hanging Clip to the PiArm first.

[image: ../_images/coor_usage.jpg]

Programming

Step 1

Initialize the pin of the Hanging Clip and set the speed of the robot arm to 60%.

[image: ../_images/coor1.png]
Step 2

Set the coordinates of the 2 points. Since the rubber duck on the left and the bowl on the right are on the same line, you will find that their Y coordinate values are the same.

	[start_coord]: The coordinates of the left rubber duck.

	[start_coord_up]: The coordinate of straight above the left rubber duck.

	[end_coord]: The coordinates of the bowl.

	[end_coord_up]: The coordinates straight above the bowl.

Note

	All coordinates here refer to the coordinates of the control points, but the actual distance between the X and Y coordinates is a little larger when the end-of-arm tool is mounted.

	The tolerance distance is different for each end of arm tool. For example, 3-4cm for Hanging Clip and Electromagnet, 6-7cm for Shovel Bucket.

	For example, here the X coordinate is written as 100, but the actual distance is 13-14cm.

	It is generally recommended that the X coordinate is -80 ~ 80, but since the Y coordinate value here is small (the recommended range is 30~130), it is possible to reach to 100. However, if you increase the Y coordinate value, the X coordinate value needs to be reduced according to the actual situation due to the linkage action.

[image: ../_images/coor2.png]
Step 3

In the [loop] block, let PiArm do the following.

	PiArm opens the Hanging Clip (20°), then rotates to the left rubber duck position (start_coord), then closes the Hanging Clip (90°).

	PiArm raises his head (start_coord_up) and then turns to the right side above the bowl (end_coord_up).

	PiArm lowers his head (end_coord_up), then opens the Hanging Clip (20°) to let the rubber duck fall into the bowl, and finally raises his head again (end_coord_up).

[image: ../_images/coor3.png]
Step 4

Click on the Download button in the bottom right corner and you will see PiArm repeating the actions described above.

Note

You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or Edit directly to view the code.

[image: ../_images/coordinate1.png]

Memory Function

Piarm provides a function of recording actions, which can be used to record the actions that PiArm has done.

In this project, we will use the Dual Joystick Module to control the movement of the Arm of PiArm in Coordinate Control mode, and record the motion trajectory of the Arm through the joystick buttons so that PiArm can move repeatedly along the recorded trajectory.

[image: ../_images/joystick.png]

Programming

Step 1

Create five variables (HIGH, LOW, xAxis, yAxis and zAxis) and set their initial values.

[image: ../_images/memory1.png]
Step 2

Create a function named [set_position] to make the Dual Joystick Module move the PiArm in Coordinate Mode.

	If the left joystick is toggled to the right, the Arm will turn right.

	If the left joystick is toggled to the left, the Arm will turn left.

	If the left joystick is toggled forward, the Arm will extend forward.

	If the left joystick is toggled backward, the Arm will retract backward.

	If the right joystick is toggled forward, the Arm will raise up.

	If the right joystick is toggled backward, the Arm will lower down.

[image: ../_images/memory_set.png]

Note

	About X, Y, Z coordinate directions, please refer to: Coordinate Mode.

	For the connection and direction of the dual joystick, refer to Dual Joystick Module.

	[constrain () low () high ()]: From Math category for setting the variation of a constant to a certain range.

	[if else]: Conditional judgment block, you can create multiple conditional judgments by clicking the set icon and dragging [else] or [else if] to the right below the [if].

Step 3

A new function, [record], is created to record the current actions and to allow PiArm to reproduce them.

	The left and right buttons of the Dual Joystick Module are connected to D0 (Left Button), D1 (Right Buttbon) respectively.

	The buttons will output low level (0) when pressed and output high level (1) when released.

	When the button of the left joystick is pressed, the action of PiArm will be recorded at this time, and there will be a voice prompt to indicate the completion of recording.

	When the button of the right joystick is pressed, PiArm will reproduce these recorded actions.

[image: ../_images/record123.png]

Note

	The [if else], [and] and [=] blocks are all from the Logic category.

	[run the recorded actions at () internal]: This block is used to set the time interval for each set of recorded actions, if it is 0 it will reproduce each set of actions continuously.

Step 4

Put the [set_position] and [record] functions into the [Forever] block to execute them sequentially, and finally click the Download button to run the code.

Now you can use the joystick to control PiArm, press the button of the left joystick to record the desired actions, and after recording a few groups, press the button of the right joystick to make PiArm reproduce these actions.

Note

You can also find the code with the same name on the Examples page of Ezblock Studio and click Run or Edit directly to see the results.

[image: ../_images/memory_col.png]

What’s More

You can also add separate EoAT control code to this project, so that you can control the Arm and EoAT of the PiArm at the same time.

	If you want to control Shovel Bucket, please refer to Shovel Bucket - Joystick Control to write the code.

	If you want to control Hanging Clip, please refer to Hanging Clip - Joystick Control to write the code.

	If you want to control Electromagnet, please refer to Electromagnet - Joystick Control to write the code.

GAME - Catching Dolls

Now let’s play a game of catching dolls and see who can catch more dolls with PiArm in the given time.
In order to play this game, we need to implement two functions, the first one is to control PiArm with the dual joystick module, and the second one is to timing, when the countdown is over, we can’t control PiArm anymore. These two parts must be executed simultaneously.

[image: ../_images/clip_usage.jpg]

Programming

Step 1

Create five variables (HIGH, LOW, α, β, γ, flag, angle) and and set initial values for them. Then initialize the PiArm rotation speed and Hanging Clip pin.

Note

	For the reason of the values of the HIGH and LOW variables, please refer to Dual Joystick Module.

	α, β and γ represent the 3 servo rotation ranges on PiArm, refer to: Angle Mode.

[image: ../_images/doll1.png]
Step 2

Create another 5 variables (LX, LY, RY, LB, RB) to read the X, Y and pressed values of the Dual Joystick Module respectively.

[image: ../_images/joystick.png]
[image: ../_images/doll2.png]
Step 3

Set pressing the left and right joysticks at the same time as the game start action, so if LB and RB are read as 0 at the same time, it means the left and right joysticks are pressed, then the timing starts and the flag is set to 1.

[image: ../_images/doll3.png]
Step 4

Create a function named [clip] to control the Hanging Clip.

	When the left joystick is pressed and the right joystick is released, the Hanging Clip will slowly closed.

	When the left joystick is released and the right joystick is pressed, the Hanging Clip will slowly opened.

[image: ../_images/doll4.png]
Step 5

Create a function [control] to set the rotation effect of PiArm based on the Dual Joystick Module.

	When flag is 1, it means the game starts. At this time you can start to control PiArm.

	If the left joystick (LX) is toggled to the right, the Arm will turn right.

	If the left joystick (LX) is toggled to the left, the Arm will turn left.

	If the left joystick (LY) is toggled forward, the Arm will extend forward.

	If the left joystick (LY) is toggled backward, the Arm will retract backward.

	If the right joystick (RY) is toggled forward, the Arm will lower down.

	If the right joystick (RY) is toggled backward, the Arm will raise up.

	The Hanging Clip control function is also called here. This allows you to control both the Arm and Hanging Clip of the PiArm.

[image: ../_images/doll5.png]
Step 6

Put the [control] function into the [Forever] block.

[image: ../_images/doll55.png]
Step 7

Create a function named [timing] to use for timing. The game time is set to 60 seconds (60000), and a countdown will chime in the last 3 seconds to let you know that time is almost up.

[image: ../_images/doll6.png]
Step 8

Let the [timing] function run in a separate thread. This allows you to control PiArm while counting down.

[image: ../_images/doll7.png]
The complete code is as follows:

[image: ../_images/doll.png]
[image: ../_images/doll0.png]

GAME - Iron Collection

In this project, prepare 3 shapes of iron pieces: triangle, circle and square, PiArm will randomly say a shape, you need to control PiArm to put the corresponding shape of iron pieces into the corresponding box in the specified time, you will not be able to control PiArm when the time is over.

[image: ../_images/iron1.png]

Programming

Step 1

Create five variables (α, β, γ, flag, shape) and and set initial values for them. Then initialize the PiArm rotation speed and Electromagnet pin.

Note

	α, β and γ represent the 3 servo rotation ranges on PiArm, refer to: Angle Mode.

[image: ../_images/iron2.png]
Step 2

Drag 2 D-pads from the remote control page to control PiArm, a button to start the game, and a Digital Tube to display the time.

[image: ../_images/iron3.png]
Step 3

Create a function named [magnet] to enable the left and right control of the D-pad B to turn the electromagnet on and off.

[image: ../_images/iron4.png]
Step 4

Create a function named [control] to implement the Arm of PiArm to be controlled by the D-pad A and D-pad B.

Note

	α, β and γ represent the 3 servo rotation ranges on PiArm, refer to: Angle Mode.

	[constrain () low () high ()]: From Math category for setting the variation of a constant to a certain range.

	[if else]: Conditional judgment block, you can create multiple conditional judgments by clicking the set icon and dragging [else] or [else if] to the right below the [if].

[image: ../_images/iron5.png]

	If the UP button (▲) of D-pad A is pressed, the Arm will extend forward.

	If the Down button (▼) of D-pad A is pressed, the Arm will retract backward.

	If the LEFT button (◀) of D-pad A is pressed, the Arm will turn left.

	If the RIGHT button (▶) of D-pad A is pressed, the Arm will turn right.

	If the UP button (▲) of D-pad B is pressed, the Arm will raise up.

	If the Down button (▼) of D-pad B is pressed, the Arm will lower down.

Step 5

Create the function [say_shape] to have PiArm speak a random shape.

[image: ../_images/iron6.png]
Step 6

The main flow of the code: when button E is pressed, the timer starts and PiArm will say a random shape. flag is used to represent the start of the countdown and you can control PiArm.

[image: ../_images/iron7.png]
Step 7

Create a function named [timing] to use for timing. The game time is set to 60 seconds, after the time is up, PiArm will say Game over and you will no longer be able to control it.

Here the [time] block is used for timing, in Forever, when button E is pressed, the timing starts and [time - startTime] represents how many seconds have passed since then.

[image: ../_images/iron8.png]
Step 8

Let the [timing] function run in a separate thread. This allows you to control PiArm while counting down.

[image: ../_images/iron9.png]
The complete code is as follows:

[image: ../_images/iron00.png]
[image: ../_images/iron0.png]

Play with Python

If you want to program in python, then you will need to learn some basic Python programming skills and basic knowledge of Raspberry Pi, please configure the Raspberry Pi first according to Quick Guide on Python.

	Quick Guide on Python
	What Do We Need?

	Installing the OS

	Set up Your Raspberry Pi

	Download and Run the Code

	Servo Adjust

After the assembly is complete, you can try to run the projects below.

	Test 3 EoATs

	Sound Effects

	Dual Joystick Module Control

	Keyboard Control

	Coordinate Mode

	Memory function

	GAME - Catching Dolls

	GAME - Iron Collection

Quick Guide on Python

This section is to teach you how to install Raspberry Pi OS, configure wifi to Raspberry Pi, remote access to Raspberry Pi to run the corresponding code.

If you are familiar with Raspberry Pi and can open the command line successfully, then you can skip the first 3 parts and then complete the last part.

	What Do We Need?

	Installing the OS

	Set up Your Raspberry Pi

	Download and Run the Code

	Servo Adjust

What Do We Need?

Required Components

Raspberry Pi

The Raspberry Pi is a low cost, credit-card sized computer that plugs
into a computer monitor or TV, and uses a standard keyboard and mouse.
It is a capable little device that enables people of all ages to explore
computing, and to learn how to program in languages like Scratch and
Python.

[image: RPi2]
Power Adapter

To connect to a power socket, the Raspberry Pi has a micro USB port (the
same found on many mobile phones). You will need a power supply which
provides at least 2.5 amps.

Micro SD Card

Your Raspberry Pi needs an Micro SD card to store all its files and the
Raspberry Pi OS. You will need a micro SD card with a capacity of at
least 8 GB

Optional Components

Screen

To view the desktop environment of Raspberry Pi, you need to use the
screen that can be a TV screen or a computer monitor. If the screen has
built-in speakers, the Pi plays sounds via them.

Mouse & Keyboard

When you use a screen , a USB keyboard and a USB mouse are also needed.

HDMI

The Raspberry Pi has a HDMI output port that is compatible with the HDMI
ports of most modern TV and computer monitors. If your screen has only
DVI or VGA ports, you will need to use the appropriate conversion line.

Case

You can put the Raspberry Pi in a case; by this means, you can protect
your device.

Sound or Earphone

The Raspberry Pi is equipped with an audio port about 3.5 mm that can be
used when your screen has no built-in speakers or when there is no
screen operation.

Installing the OS

Required Components

	Any Raspberry Pi

	1 * Personal Computer

	1 * Micro SD card

	

Step 1

Raspberry Pi have developed a graphical SD card writing tool that works
on Mac OS, Ubuntu 18.04 and Windows, and is the easiest option for most
users as it will download the image and install it automatically to the
SD card.

Visit the download page: https://www.raspberrypi.org/software/. Click on
the link for the Raspberry Pi Imager that matches your operating system,
when the download finishes, click it to launch the installer.

[image: ../../_images/image11.png]
Step 2

When you launch the installer, your operating system may try to block
you from running it. For example, on Windows I receive the following
message:

If this pops up, click on More info and then Run anyway, then
follow the instructions to install the Raspberry Pi Imager.

[image: ../../_images/image12.png]
Step 3

Insert your SD card into the computer or laptop SD card slot.

Step 4

Warning

Upgrading the Raspberry Pi OS to Debian Bullseye will cause some features to not work, so it is recommended to continue using the Debian Buster version.

In the Raspberry Pi Imager, click CHOOSE OS -> Raspberry Pi OS(other).

[image: ../../_images/3d33.png]
Scroll down to the end of the newly opened page and you will see Raspberry Pi OS(Legacy) and Raspberry Pi OS Lite(Legacy), these are security updates for Debian Buster, the difference between them is with or without the desktop.
It is recommended to install Raspberry Pi OS(Legacy), the system with the desktop.

[image: ../../_images/3d34.png]
Step 5

Select the SD card you are using.

[image: ../../_images/image14.png]
Step 6

Press Ctrl+Shift+X or click the setting ** button to open the **Advanced options page to enable
SSH and configure wifi, these 2 items must be set, the others depend on
your choice . You can choose to always use this image customization
options.

[image: ../../_images/image15.png]
Then scroll down to complete the wifi configuration and click SAVE.

Note

wifi country should be set the two-letter ISO/IEC alpha2 code [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements] for
the country in which you are using your Raspberry Pi, please refer to
the following link: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements

[image: ../../_images/image16.png]
Step 7

Click the WRITE button.

[image: ../../_images/image17.png]
Step 8

If your SD card currently has any files on it, you may wish to back up
these files first to prevent you from permanently losing them. If there
is no file to be backed up, click Yes.

[image: ../../_images/image18.png]
Step 9

After waiting for a period of time, the following window will appear to
represent the completion of writing.

[image: ../../_images/image19.png]

Set up Your Raspberry Pi

If You Have a Screen

If you have a screen, it will be easy for you to operate on the
Raspberry Pi.

Required Components

	Any Raspberry Pi

	1 * Power Adapter

	1 * Micro SD card

	1 * Screen Power Adapter

	1 * HDMI cable

	1 * Screen

	1 * Mouse

	1 * Keyboard

	Insert the SD card you’ve set up with Raspberry Pi OS into the micro SD card slot on the underside of your Raspberry Pi.

	Plug in the Mouse and Keyboard.

	Connect the screen to Raspberry Pi’s HDMI port and make sure your screen is plugged into a wall socket and switched on.

Note

If you use a Raspberry Pi 4, you need to connect the screen to the HDMI0 (nearest the power in port).

	Use the power adapter to power the Raspberry Pi. After a few seconds, the Raspberry Pi OS desktop will be displayed.

[image: ../../_images/image201.png]

If You Have No Screen

If you don’t have a display, you can log in to the Raspberry Pi
remotely, but before that, you need to get the IP of the Raspberry Pi.

Get the IP Address

After the Raspberry Pi is connected to WIFI, we need to get the IP
address of it. There are many ways to know the IP address, and two of
them are listed as follows.

1. Checking via the router

If you have permission to log in the router(such as a home network), you
can check the addresses assigned to Raspberry Pi on the admin interface
of router.

The default hostname of the Raspberry Pi OS is raspberrypi, and you
need to find it. (If you are using ArchLinuxARM system, please find
alarmpi.)

2. Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry
Pi. You can apply the software, Advanced IP scanner and so on.

Scan the IP range set, and the name of all connected devices will be
displayed. Similarly, the default hostname of the Raspberry Pi OS is
raspberrypi, if you haven’t modified it.

Use the SSH Remote Control

We can open the Bash Shell of Raspberry Pi by applying SSH. Bash is the
standard default shell of Linux. The Shell itself is a program written
in C that is the bridge linking the customers and Unix/Linux. Moreover,
it can help to complete most of the work needed.

For Linux or/Mac OS X Users

Step 1

Go to Applications->Utilities, find the Terminal, and open
it.

[image: ../../_images/image21.png]
Step 2

Type in ssh pi@ip_address . “pi” is your username and “ip_address” is
your IP address. For example:

ssh pi@192.168.18.197

Step 3

Input “yes”.

[image: ../../_images/image22.png]
Step 4

Input the passcode and the default password is raspberry.

[image: ../../_images/image23.png]
Step 5

We now get the Raspberry Pi connected and are ready to go to the next
step.

[image: ../../_images/image24.png]

Note

When you input the password, the characters do not display on
window accordingly, which is normal. What you need is to input the
correct password.

For Windows Users

If you’re a Windows user, you can use SSH with the application of some
software. Here, we recommend PuTTY.

Step 1

Download PuTTY.

Step 2

Open PuTTY and click Session on the left tree-alike structure. Enter
the IP address of the RPi in the text box under Host Name (or IP
address) and 22 under Port (by default it is 22).

[image: ../../_images/image25.png]
Step 3

Click Open. Note that when you first log in to the Raspberry Pi with
the IP address, there prompts a security reminder. Just click Yes.

Step 4

When the PuTTY window prompts “login as:”, type in
“pi” (the user name of the RPi), and password: “raspberry”
(the default one, if you haven’t changed it).

Note

When you input the password, the characters do not display on window accordingly, which is normal. What you need is to input the correct password.

If inactive appears next to PuTTY, it means that the connection has been broken and needs to be reconnected.

[image: ../../_images/image26.png]
Step 5

Here, we get the Raspberry Pi connected and it is time to conduct the next steps.

Note

If you are not satisfied with using the command window to control the Raspberry Pi, you can also use the remote desktop function, which can help us manage the files in the Raspberry Pi easily.

For details on how to do this, please refer to Remote Desktop.

Download and Run the Code

First download and run the robot-hat module.

cd /home/pi/
git clone https://github.com/sunfounder/robot-hat.git
cd robot-hat
sudo python3 setup.py install

Note

Running setup.py will download some necessary components. Due to network problems, you may not be able to download successfully. You may need to download it again.

In this case, type Y and press Enter.

[image: ../../_images/dowload_code.png]

Then download the code and install the piarm library.

cd /home/pi/
git clone -b 2.0.0 https://github.com/sunfounder/piarm.git
cd piarm
sudo python3 setup.py install

This step will take a little time, so please be patient.

Finally you need to run the script i2samp.sh to install the components needed for the i2s amplifier, otherwise it may not have sound.

cd /home/pi/piarm
sudo bash i2samp.sh

[image: ../../_images/i2s.png]
Type y and press Enter to continue running the script.

[image: ../../_images/i2s2.png]
Type y and press Enter to make /dev/zero run in the background.

[image: ../../_images/i2s3.png]
Enter y and press Enter to restart the robot.

Note

If there is no sound after a restart, you may need to run the i2samp.sh script several times.

Servo Adjust

To ensure that the servo has been properly set to 0°, first insert the rocker arm into the servo shaft and then gently rotate the rocker arm to a different angle.

[image: ../../_images/servo_arm1.png]
Follow the instructions on the assembly foldout, insert the battery holder cable and turn the power switch to the ON. Wait for 1-2 minutes, there will be a sound to indicate that the Raspberry Pi boots successfully.

[image: ../../_images/slide_to_power1.png]
Now, run servo_zeroing.py in the examples/ folder.

cd /home/pi/piarm/examples
sudo python3 servo_zeroing.py

Note

If you get an error, try re-enabling the Raspberry Pi’s I2C port, see: I2C Configuration.

Next, plug the servo cable into the P11 port as follows.

[image: ../../_images/pin11_connect1.png]
At this point you will see the servo arm rotate to a specific position (0°). If the servo arm does not return to 0°, press the RST button to restart the Robot HAT.

Now you can continue the installation as instructed on the assembly foldout.

Note

	Do not unplug this servo cable before fixing it with the servo screw, you can unplug it after fixing it.

	Do not rotate the servo while it is powered on to avoid damage; if the servo shaft is not inserted at the right angle, pull the servo out and reinsert it.

	Before assembling each servo, you need to plug the servo cable into P11 and turn on the power to set its angle to 0°.

Test 3 EoATs

This is the first program, and the one you must see.

In this program, you will learn how to assemble and use PiArm’s 3 end-of-arm tools.

Shovel Bucket

Run the code

cd /home/pi/piarm/examples
sudo python3 shovel.py

After running the code, you will see the Shovel Bucket moving back and forth. But you need to assemble Shovel Bucket first.

Code

from robot_hat import Robot,Servo,PWM
from robot_hat.utils import reset_mcu
from time import sleep
from piarm import PiArm

reset_mcu()
sleep(0.01)
arm = PiArm([1,2,3])
arm.bucket_init(PWM('P3'))
arm.set_offset([0,0,0])

if __name__ == "__main__":
 while True:
 arm.set_bucket(-50)
 sleep(1)
 arm.set_bucket(90)
 sleep(1)

How it work？

from robot_hat import Robot,Servo,PWM
from robot_hat.utils import reset_mcu
from time import sleep
from piarm import PiArm

	First, import the Robot, servo, and PWM classes from robot_hat [https://docs.sunfounder.com/projects/robot-hat/en/latest/index.html].

	Import the reset_mcu class from the robot_hat.utils module, which is used to reset the MCU, to avoid conflicts between programs that can cause communication errors.

	Import the sleep class from the time module, which is used to implement the time delay function in seconds.

	Import the PiArm class from the piarm module, which is used to control PiArm.

reset_mcu()
sleep(0.01)
arm = PiArm([1,2,3])
arm.bucket_init(PWM('P3'))
arm.set_offset([0,0,0])

Initialize the MCU first, then initialize the individual servo connection pins of PiArm and the connection pin of the bucket.

	PiArm(): Initialize the 3 servo pins on the Arm.

	bucket_init(): Set the pin of the bucket.

	set_offset(): Set the offset value of the 3 servos on the Arm.

while True:
 arm.set_bucket(-50)
 sleep(1)
 arm.set_bucket(90)
 sleep(1)

This code is used to move the bucket back and forth between -50 and 90 degrees with a time interval of 1 second.

	set_bucket(): Used to control the rotation angle of the bucket.

Hanging Clip

Run the code

cd /home/pi/piarm/examples
sudo python3 clip.py

After running the code, you will see the Hanging Clip repeatedly opening and closing. But you need to assemble Hanging Clip first.

Code

from robot_hat import Robot,Servo,PWM
from robot_hat.utils import reset_mcu
from time import sleep
from piarm import PiArm

reset_mcu()
sleep(0.01)
arm = PiArm([1,2,3])
arm.hanging_clip_init(PWM('P3'))
arm.set_offset([0,0,0])

if __name__ == "__main__":
 while True:
 arm.set_hanging_clip(-50)
 sleep(1)
 arm.set_hanging_clip(90)
 sleep(1)

	hanging_clip_init(): Used to initialize the pin of the Hanging Clip.

	set_hanging_clip(): used to set the rotation angle of the Hanging Clip.

Electromagnet

Run the code

cd /home/pi/piarm/examples
sudo python3 electromagnet.py

After running the code, you will see that Electromagnet is energized every second, the LED (D2) on the electromagnet lights up to indicate that it is energized, at which point it can attach some material with the iron.

But you need to assemble Electromagnet first.

Code

from robot_hat import Robot,Servo,PWM
from robot_hat.utils import reset_mcu
from time import sleep
from piarm import PiArm

reset_mcu()
sleep(0.01)
arm = PiArm([1,2,3])
arm.electromagnet_init(PWM('P3'))
arm.set_offset([0,0,0])

if __name__ == "__main__":
 while True:
 arm.set_electromagnet('on')
 sleep(1)
 arm.set_electromagnet('off')
 sleep(1)

	electromagnet_init(): Used to initialize the connection of the Electromagnet.

	set_electromagnet(): Used to control the Electromagnet on/off.

Sound Effects

In this example, we use the sound effects of PiArm (Robot HAT to be exact). It consists of three parts: Muisc, Sound, and Text to Speech.

Install i2samp

Before using this function, please activate the speaker so that it can produce sound.

Run i2samp.sh, this script will install everything you need to use the i2s amplifier.

cd /home/pi/piarm/
sudo bash i2samp.sh

There will be several prompts to confirm the request. Respond to all prompts with Y. After making changes to the Raspberry Pi system, you will need to reboot the computer for these changes to take effect.

After restarting, i2samp.sh runs the script again to test the amplifier. If the speaker successfully plays sound, the configuration is complete.

Run the code

cd /home/pi/piarm/examples
sudo python3 sound_effect.py

After the code is run, you will find that PiArm first plays the sound effect in the sound function, and then plays the background music. When the background music is played, the [tts] function is run for timing, and the countdown voice broadcast will be performed after 30 seconds.

Code

from robot_hat import Music,TTS
from time import sleep

m = Music()
t = TTS()

def sound():
 song = './sounds/sign.wav'
 m.music_set_volume(40)
 m.sound_play(song)

def background_music():
 music = './musics/sports-Ahjay_Stelino.mp3'
 m.music_set_volume(50)
 m.background_music(music)

def tts():
 t.say("timing begins")
 sleep(1)
 t.say("three")
 sleep(1)
 t.say("two")
 sleep(1)
 t.say("one")
 sleep(1)
 t.say("Stop music")
 sleep(1)

if __name__ == "__main__":
 background_music()
 sleep(10)
 #sound()
 #tts()
 while True:
 #background_music()
 sound()
 tts()

How it works?

The code is simple, it creates 3 functions sound(), background() and tts(), and then calls them separately to make PiArm play music and speak.

def sound():
 song = './sounds/sign.wav'
 m.music_set_volume(40)
 m.sound_play(song)

Play the sound effect . /sounds/sign.wav at 40% volume.

	music_set_volume(): Set volume, range is 0%-100%.

	sound_play(): Play a sound in a specific path.

def background_music():
 music = './musics/sports-Ahjay_Stelino.mp3'
 m.music_set_volume(50)
 m.background_music(music)

Play background music . /musics/sports-Ahjay_Stelino.mp3 at 50% volume.

	background_music(): Play the background music in a specific path.

def tts():
 t.say("timing begins")
 sleep(1)
 t.say("three")
 sleep(1)
 t.say("two")
 sleep(1)
 t.say("one")
 sleep(1)
 t.say("Stop music")
 sleep(1)

Write text to PiArm to make it speak.

	say(): Writing characters or strings in parentheses will make PiArm speak them out.

Dual Joystick Module Control

In this project, we will use the Dual Joystick Module that comes with the kit to control the PiArm.

	Shovel Bucket - Joystick Control

	Hanging Clip - Joystick Control

	Electromagnet - Joystick Control

[image: ../_images/joystick_control1.jpg]

Shovel Bucket - Joystick Control

cd /home/pi/piarm/examples
sudo python3 joystick_module1.py

Once the code is run, you will be able to control the rotation of PiArm’s arm by toggling the left and right joysticks, and controlling the angle of the Shovel Bucket by pressing the left and right joysticks respectively.

But you need to assemble Shovel Bucket to PiArm first.

Code

from robot_hat import Servo,PWM,Joystick,ADC,Pin
from robot_hat.utils import reset_mcu
from time import sleep

from piarm import PiArm

reset_mcu()
sleep(0.01)

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

arm = PiArm([1,2,3])
arm.bucket_init(PWM('P3'))
arm.set_offset([0,0,0])

def _angles_control():
 arm.speed = 100
 flag = False
 alpha,beta,gamma = arm.servo_positions
 bucket = arm.component_staus

 if leftJoystick.read_status() == "up":
 alpha += 1
 flag = True
 elif leftJoystick.read_status() == "down":
 alpha -= 1
 flag = True
 if leftJoystick.read_status() == "left":
 gamma += 1
 flag = True
 elif leftJoystick.read_status() == "right":
 gamma -= 1
 flag = True
 if rightJoystick.read_status() == "up":
 beta += 1
 flag = True
 elif rightJoystick.read_status() == "down":
 beta -= 1
 flag = True
 if leftJoystick.read_status() == "pressed":
 bucket += 2
 flag = True
 elif rightJoystick.read_status() == "pressed":
 bucket -= 2
 flag = True

 if flag == True:
 arm.set_angle([alpha,beta,gamma])
 arm.set_bucket(bucket)
 print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.component_staus))

if __name__ == "__main__":
 while True:
 _angles_control()
 sleep(0.01)

How it works?

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

Define the X,Y and Z pin connections for the left and right joysticks.

def _angles_control():
 arm.speed = 100
 flag = False
 alpha,beta,gamma = arm.servo_positions
 bucket = arm.component_staus

 if leftJoystick.read_status() == "up":
 alpha += 1
 flag = True
 elif leftJoystick.read_status() == "down":
 alpha -= 1
 flag = True
 if leftJoystick.read_status() == "left":
 gamma += 1
 flag = True
 elif leftJoystick.read_status() == "right":
 gamma -= 1
 flag = True
 if rightJoystick.read_status() == "up":
 beta += 1
 flag = True
 elif rightJoystick.read_status() == "down":
 beta -= 1
 flag = True
 if leftJoystick.read_status() == "pressed":
 bucket += 2
 flag = True
 elif rightJoystick.read_status() == "pressed":
 bucket -= 2
 flag = True

 if flag == True:
 arm.set_angle([alpha,beta,gamma])
 arm.set_bucket(bucket)
 print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.component_staus))

In this code, the _angles_control() function is created to control the PiArm.

	alpha, beta and gamma refer to the angles of the 3 servos on the Arm respectively, refer to: Angle Mode.

	If the left joystick is toggled up, alpha increases and the Arm will extend forward.

	If the left joystick is toggled down, alpha decreases and the Arm will retract backward.

	If the left joystick is toggled to the left, gamma increases and the Arm will turn left.

	If the left joystick is toggled to the right, gamma decreases and the Arm will turn right.

	If the right joystick is toggled up, beta increases and the Arm will raise up.

	If the right joystick is toggled down, beta decreases and the Arm will lower down.

	Finally, use the left and right joystick buttons to control the angle of the Shovel Bucket respectively.

Hanging Clip - Joystick Control

Run the code

cd /home/pi/piarm/examples
sudo python3 joystick_module2.py

Once the code is running, you will be able to control the rotation of PiArm’s arm by toggling the left and right joysticks, and control the opening/closing of the Hanging Clip by pressing the left and right joysticks respectively.

But you need to assemble Hanging Clip to PiArm first.

Code

from robot_hat import Servo,PWM,Joystick,ADC,Pin
from robot_hat.utils import reset_mcu
from time import sleep

from piarm import PiArm

reset_mcu()
sleep(0.01)

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

arm = PiArm([1,2,3])
arm.hanging_clip_init(PWM('P3'))
arm.set_offset([0,0,0])

def _angles_control():
 arm.speed = 100
 flag = False
 alpha,beta,gamma = arm.servo_positions
 clip = arm.component_staus

 if leftJoystick.read_status() == "up":
 alpha += 1
 flag = True
 elif leftJoystick.read_status() == "down":
 alpha -= 1
 flag = True
 if leftJoystick.read_status() == "left":
 gamma += 1
 flag = True
 elif leftJoystick.read_status() == "right":
 gamma -= 1
 flag = True
 if rightJoystick.read_status() == "up":
 beta += 1
 flag = True
 elif rightJoystick.read_status() == "down":
 beta -= 1
 flag = True

 if leftJoystick.read_status() == "pressed":
 clip += 2
 flag = True
 elif rightJoystick.read_status() == "pressed":
 clip -= 2
 flag = True

 if flag == True:
 arm.set_angle([alpha,beta,gamma])
 arm.set_hanging_clip(clip)
 print('servo angles: %s , clip angle: %s '%(arm.servo_positions,arm.component_staus))

if __name__ == "__main__":
 while True:
 _angles_control()
 sleep(0.01)

In this code, the _angles_control() function is created to control the PiArm.

	alpha, beta and gamma refer to the angles of the 3 servos on the Arm respectively, refer to: Angle Mode.

	If the left joystick is toggled up, alpha increases and the Arm will extend forward.

	If the left joystick is toggled down, alpha decreases and the Arm will retract backward.

	If the left joystick is toggled to the left, gamma increases and the Arm will turn left.

	If the left joystick is toggled to the right, gamma decreases and the Arm will turn right.

	If the right joystick is toggled up, beta increases and the Arm will raise up.

	If the right joystick is toggled down, beta decreases and the Arm will lower down.

	Finally, use the left and right joystick buttons to control the angles of the Hanging Clip respectively.

Electromagnet - Joystick Control

Run the code

cd /home/pi/piarm/examples
sudo python3 joystick_module3.py

Once the code is run, you will be able to control the rotation of PiArm’s arm by toggling the left and right joysticks, and controlling the on/off of the Electromagnet by pressing the left and right joysticks respectively.

But you need to assemble Electromagnet to PiArm first.

Code

from robot_hat import Servo,PWM,Joystick,ADC,Pin
from robot_hat.utils import reset_mcu
from time import sleep

from piarm import PiArm

reset_mcu()
sleep(0.01)

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

arm = PiArm([1,2,3])
arm.electromagnet_init(PWM('P3'))
arm.set_offset([0,0,0])

def _angles_control():
 arm.speed = 100
 flag = False
 alpha,beta,gamma = arm.servo_positions
 status = ""

 if leftJoystick.read_status() == "up":
 alpha += 1
 flag = True
 elif leftJoystick.read_status() == "down":
 alpha -= 1
 flag = True
 if leftJoystick.read_status() == "left":
 gamma += 1
 flag = True
 elif leftJoystick.read_status() == "right":
 gamma -= 1
 flag = True
 if rightJoystick.read_status() == "up":
 beta += 1
 flag = True
 elif rightJoystick.read_status() == "down":
 beta -= 1
 flag = True
 if leftJoystick.read_status() == "pressed":
 arm.set_electromagnet('on')
 status = "electromagnet is on"
 elif rightJoystick.read_status() == "pressed":
 arm.set_electromagnet('off')
 status = "electromagnet is off"

 if flag == True:
 arm.set_angle([alpha,beta,gamma])
 print('servo angles: %s , electromagnet status: %s '%(arm.servo_positions,status))

if __name__ == "__main__":
 while True:
 _angles_control()
 sleep(0.01)

In this code, the _angles_control() function is created to control the PiArm.

	alpha, beta and gamma refer to the angles of the 3 servos on the Arm respectively, refer to: Angle Mode.

	If the left joystick is toggled up, alpha increases and the Arm will extend forward.

	If the left joystick is toggled down, alpha decreases and the Arm will retract backward.

	If the left joystick is toggled to the left, gamma increases and the Arm will turn left.

	If the left joystick is toggled to the right, gamma decreases and the Arm will turn right.

	If the right joystick is toggled up, beta increases and the Arm will raise up.

	If the right joystick is toggled down, beta decreases and the Arm will lower down.

	Finally, use the left and right joystick buttons to control the on/off of the Electromagnet respectively.

Keyboard Control

In this project, we will use w, s, a, d, i, k, j and l on the keyboard to control the PiArm.

	Shovel Bucket - Keyboard Coboardntrol

	Hanging Clip - Keyboard Control

	Electromagnet - Keyboard Control

[image: ../_images/keyboard_control.jpg]

Shovel Bucket - Keyboard Coboardntrol

Run the code

cd /home/pi/piarm/examples
sudo python3 keyboard_control1.py

After running the code, follow the prompts and press the keys on the keyboard to control the PiArm’s arm and Shovel Bucket.

But you need to assemble Shovel Bucket on the PiArm first.

Note

	To switch the keyboard to lowercase English input.

	w, s, a, d, i and k are used to control the rotation of the arm.

	j and l are used to control the angle of the Shovel Bucket.

Code

from piarm import PiArm
from robot_hat import Pin,PWM,Servo,ADC
from time import time,sleep
from robot_hat.utils import reset_mcu

import sys
import tty
import termios

reset_mcu()
sleep(0.01)

arm = PiArm([1,2,3])
arm.bucket_init(PWM('P3'))
arm.set_offset([0,0,0])
controllable = 0

manual = '''
Press keys on keyboard
 w: extend
 s: retract
 a: turn left
 d: turn right
 i: go up
 k: go down
 j: open
 l: close
 ESC: Quit
'''

def readchar():
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

def control(key):

 arm.speed = 100
 flag = False
 alpha,beta,gamma = arm.servo_positions
 bucket = arm.component_staus

 if key == 'w':
 alpha += 3
 flag = True
 elif key == 's':
 alpha -= 3
 flag = True
 if key == 'a':
 gamma += 3
 flag = True
 elif key == 'd':
 gamma -= 3
 flag = True
 if key == 'i':
 beta += 3
 flag = True
 elif key == 'k':
 beta -= 3
 flag = True
 if key == 'j':
 bucket -= 1
 flag = True
 elif key == 'l':
 bucket += 1
 flag = True

 if flag == True:
 arm.set_angle([alpha,beta,gamma])
 arm.set_bucket(bucket)
 print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.component_staus))

if __name__ == "__main__":

 print(manual)

 while True:
 key = readchar().lower()
 control(key)
 if key == chr(27):
 break

How it works?

def readchar():
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

This function references the standard input stream and returns the first character of the read data stream.

	tty.setraw(sys.stdin.fileno) is to change the standard input stream to raw mode, i.e. all characters will not be escaped during transmission, including special characters.

	old_settings = termios.tcgetattr(fd) and termios.tcsetattr(fd, termios.TCSADRAIN, old_settings) and acts as a backup and restore.

def control(key):

 arm.speed = 100
 flag = False
 alpha,beta,gamma = arm.servo_positions
 bucket = arm.component_staus

 if key == 'w':
 alpha += 3
 flag = True
 elif key == 's':
 alpha -= 3
 flag = True
 if key == 'a':
 gamma += 3
 flag = True
 elif key == 'd':
 gamma -= 3
 flag = True
 if key == 'i':
 beta += 3
 flag = True
 elif key == 'k':
 beta -= 3
 flag = True
 if key == 'j':
 bucket -= 1
 flag = True
 elif key == 'l':
 bucket += 1
 flag = True

 if flag == True:
 arm.set_angle([alpha,beta,gamma])
 arm.set_bucket(bucket)
 print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.component_staus))

In this code, the control() function is created to control the PiArm by reading the key values on the keyboard.

	alpha, beta and gamma refer to the angles of the 3 servos on the arm respectively, refer to: Angle Mode.

	Press the w key on the keyboard, the alpha increases and the Arm will extend forward.

	Press the s key on the keyboard, the alpha decreases and the Arm will retract backward.

	Press the a key on the keyboard, the gamma increases and the Arm will turn left.

	Press the d key on the keyboard, the gamma decreases and the Arm will turn right.

	Press the i key on the keyboard, the beta increases and the Arm will raise up.

	Press the k key on the keyboard, the beta decreases and the Arm will lower down.

	Finally, use the k and l keys to control the angle of the Shovel Bucket respectively.

while True:
 key = readchar().lower()
 control(key)
 if key == chr(27):
 break

Call readchar() in the main program to read the key value, then pass the read key value into the control() function so that PiArm will move according to the different keys.
key == chr(27) represents the key Esc key press.

Hanging Clip - Keyboard Control

Run the code

cd /home/pi/piarm/examples
sudo python3 keyboard_control2.py

After running the code, follow the prompts and press the keys on the keyboard to control the Arm and Hanging Clip of PiArm.

But you need to assemble Hanging Clip to PiArm first.

Note

	To switch the keyboard to lowercase English input.

	w, s, a, d, i and k are used to control the rotation of the arm.

	j and l are used to control the opening and closing of the Hanging Clip.

Code

from piarm import PiArm
from robot_hat import Pin,PWM,Servo,ADC
from time import time,sleep
from robot_hat.utils import reset_mcu

import sys
import tty
import termios

reset_mcu()
sleep(0.01)

arm = PiArm([1,2,3])
arm.hanging_clip_init(PWM('P3'))
arm.set_offset([0,0,0])
controllable = 0

manual = '''
Press keys on keyboard
 w: extend
 s: retract
 a: turn left
 d: turn right
 i: go up
 k: go down
 j: open
 l: close
 ESC: Quit
'''

def readchar():
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

def control(key):

 arm.speed = 100
 flag = False
 alpha,beta,gamma = arm.servo_positions
 clip = arm.component_staus

 if key == 'w':
 alpha += 3
 flag = True
 elif key == 's':
 alpha -= 3
 flag = True
 if key == 'a':
 gamma += 3
 flag = True
 elif key == 'd':
 gamma -= 3
 flag = True
 if key == 'i':
 beta += 3
 flag = True
 elif key == 'k':
 beta -= 3
 flag = True

 if key == 'j':
 clip -= 1
 flag = True
 elif key == 'l':
 clip += 1
 flag = True

 if flag == True:
 arm.set_angle([alpha,beta,gamma])
 arm.set_hanging_clip(clip)
 print('servo angles: %s , clip angle: %s '%(arm.servo_positions,arm.component_staus))

if __name__ == "__main__":

 print(manual)

 while True:
 key = readchar().lower()
 control(key)
 if key == chr(27):
 break

In this code, the control() function is created to control the PiArm by reading the key values on the keyboard.

	alpha, beta and gamma refer to the angles of the 3 servos on the arm respectively, refer to: Angle Mode.

	Press the w key on the keyboard, the alpha increases and the Arm will extend forward.

	Press the s key on the keyboard, the alpha decreases and the Arm will retract backward.

	Press the a key on the keyboard, the gamma increases and the Arm will turn left.

	Press the d key on the keyboard, the gamma decreases and the Arm will turn right.

	Press the i key on the keyboard, the beta increases and the Arm will raise up.

	Press the k key on the keyboard, the beta decreases and the Arm will lower down.

	Finally, use the k and l keys to control the opening and closing of the Hanging Clip respectively.

Electromagnet - Keyboard Control

Run the code

cd /home/pi/piarm/examples
sudo python3 keyboard_control1.py

After running the code, follow the prompts and press the keys on the keyboard to control the PiArm’s arms and Electromagnet.

But you need to assemble Electromagnet to PiArm first.

Note

	To switch the keyboard to lowercase English input.

	w, s, a, d, i and k are used to control the rotation of the arm.

	j and l are used to control the ON and OFF of the Electromagnet.

Code

from piarm import PiArm
from robot_hat import Pin,PWM,Servo,ADC
from time import time,sleep
from robot_hat.utils import reset_mcu

import sys
import tty
import termios

reset_mcu()
sleep(0.01)

arm = PiArm([1,2,3])
arm.electromagnet_init(PWM('P3'))
arm.set_offset([0,0,0])
controllable = 0

manual = '''
Press keys on keyboard
 w: extend
 s: retract
 a: turn left
 d: turn right
 i: go up
 k: go down
 j: on
 l: off
 ESC: Quit
'''

def readchar():
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

def control(key):

 arm.speed = 100
 flag = False
 alpha,beta,gamma = arm.servo_positions
 status = ""

 if key == 'w':
 alpha += 3
 flag = True
 elif key == 's':
 alpha -= 3
 flag = True
 if key == 'a':
 gamma += 3
 flag = True
 elif key == 'd':
 gamma -= 3
 flag = True
 if key == 'i':
 beta += 3
 flag = True
 elif key == 'k':
 beta -= 3
 flag = True

 if key == 'j':
 arm.set_electromagnet('on')
 elif key == 'l':
 arm.set_electromagnet('off')

 if flag == True:
 arm.set_angle([alpha,beta,gamma])
 print('servo angles: %s , electromagnet status: %s '%(arm.servo_positions,status))

if __name__ == "__main__":

 print(manual)

 while True:
 key = readchar().lower()
 control(key)
 if key == chr(27):
 break

In this code, the control() function is created to control the PiArm by reading the key values on the keyboard.

	alpha, beta and gamma refer to the angles of the 3 servos on the arm respectively, refer to: Angle Mode.

	Press the w key on the keyboard, the alpha increases and the Arm will extend forward.

	Press the s key on the keyboard, the alpha decreases and the Arm will retract backward.

	Press the a key on the keyboard, the gamma increases and the Arm will turn left.

	Press the d key on the keyboard, the gamma decreases and the Arm will turn right.

	Press the i key on the keyboard, the beta increases and the Arm will raise up.

	Press the k key on the keyboard, the beta decreases and the Arm will lower down.

	Finally, use the k and l keys to control the ON and OFF of the Electromagnet respectively.

Coordinate Mode

PiArm’s arm has 2 control modes: Angle Mode and Coordinate Mode.

	Angle Mode: Write a certain angle to the 3 servos of the arm to make the arm reach a specific position.

	Coordinate Mode: Create a spatial coordinate system for the arm, set a control point, and write 3D coordinates to this control point to make the arm reach a specific position.

The Coordinate Mode is used in this project.

This project sets 2 coordinate points by coordinate mode, and let the PiArm clip the rubber duck on the left to the bowl on the right. But you need to mount Hanging Clip to the PiArm first.

[image: ../_images/coor_usage1.jpg]

Programming

Run the code

cd /home/pi/piarm/examples
sudo python3 coordinate_mode.py

After the code is run, after the code is run, you will be able to control the rotation of PiArm’s Arm by toggling the left and right joystick, and control the angle of the Shovel Bucket by pressing the left and right joystick respectively.

But you need to assemble Hanging Clip to PiArm first.

Code

from re import M
from robot_hat import PWM
from robot_hat.utils import reset_mcu
from time import sleep
from piarm import PiArm

reset_mcu()
sleep(0.01)

" Grab an object from one coordinate to another coordinate"

arm = PiArm([1,2,3])
arm.set_offset([0,0,0])
arm.hanging_clip_init(PWM('P3'))

if __name__ == "__main__":

 start_coord = [-100, 40, 20] # x,y,z
 end_coord = [100, 40, 30] # x,y,z

 arm.set_speed(60)
 arm.set_hanging_clip(20)
 arm.do_by_coord(start_coord)
 arm.set_hanging_clip(90)

 start_coord_up = [start_coord[0], start_coord[1], 80]
 arm.do_by_coord(start_coord_up)

 end_coord_up = [end_coord[0], end_coord[1], 80]
 arm.do_by_coord(end_coord_up)

 arm.do_by_coord(end_coord)
 arm.set_hanging_clip(20)
 arm.do_by_coord(end_coord_up)

How it works?

start_coord = [-100, 40, 20] # x,y,z
end_coord = [100, 40, 30] # x,y,z

	start_coord：The coordinates of the left rubber duck.

	end_coord: The coordinates of the bowl.

Note

	All coordinates here refer to the coordinates of the control points, but the actual distance between the X and Y coordinates is a little larger when the end-of-arm tool is mounted.

	The tolerance distance is different for each end of arm tool. For example, 3-4cm for Hanging Clip and Electromagnet, 6-7cm for Shovel Bucket.

	For example, here the X coordinate is written as 100, but the actual distance is 13-14cm.

	It is generally recommended that the X coordinate is -80 ~ 80, but since the Y coordinate value here is small (the recommended range is 30~130), it is possible to reach to 100. However, if you increase the Y coordinate value, the X coordinate value needs to be reduced according to the actual situation due to the linkage action.

arm.set_speed(60)
arm.set_hanging_clip(20)
arm.do_by_coord(start_coord)
arm.set_hanging_clip(90)

start_coord_up = [start_coord[0], start_coord[1], 80]
arm.do_by_coord(start_coord_up)

end_coord_up = [end_coord[0], end_coord[1], 80]
arm.do_by_coord(end_coord_up)

arm.do_by_coord(end_coord)
arm.set_hanging_clip(20)
arm.do_by_coord(end_coord_up)

	PiArm opens the Hanging Clip (20°), then rotates to the left rubber duck position (start_coord), then closes the Hanging Clip (90°).

	PiArm raises his head (start_coord_up) and then turns to the right side above the bowl (end_coord_up).

	PiArm lowers his head (end_coord_up), then opens the Hanging Clip (20°) to let the rubber duck fall into the bowl, and finally raises his head again (end_coord_up).

Memory function

PiArm provides a function to record actions, which allows PiArm to do some repetitive actions automatically.

In this project, let’s see how to implement this function.

Run the code

cd /home/pi/piarm/examples
sudo python3 memory_function.py

After the code is run, you can use the left and right joystick to control the rotation of PiArm and the Shovel Bucket (But you need to assemble Shovel Bucket to PiArm first), press the left joystick to record one movement of PiArm, after recording several sets of movements, you can press the right joystick to make PiArm to reproduce these movements.

Only record the changes between points, if the starting point and the end point are the same, and you do many moves in between, but only press once to record, it will go directly from the starting point to the end point, and will not record the middle process.

Code

from robot_hat import Servo,PWM,Joystick,ADC,Pin
from robot_hat.utils import reset_mcu
from robot_hat import TTS
from time import sleep
from piarm import PiArm

t = TTS()
reset_mcu()
sleep(0.01)

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

arm = PiArm([1,2,3])
arm.bucket_init(PWM('P3'))
arm.set_offset([0,0,0])

def _angles_control():
 arm.speed = 100
 flag = False
 alpha,beta,gamma = arm.servo_positions
 bucket = arm.component_staus
 global i

 if leftJoystick.read_status() == "up":
 alpha += 1
 flag = True
 elif leftJoystick.read_status() == "down":
 alpha -= 1
 flag = True
 if leftJoystick.read_status() == "left":
 gamma += 1
 flag = True
 elif leftJoystick.read_status() == "right":
 gamma -= 1
 flag = True
 if rightJoystick.read_status() == "up":
 beta += 1
 flag = True
 elif rightJoystick.read_status() == "down":
 beta -= 1
 flag = True

 if rightJoystick.read_status() == "left":
 bucket += 2
 flag = True
 elif rightJoystick.read_status() == "right":
 bucket -= 2
 flag = True

 if leftJoystick.read_status() == "pressed":
 arm.record()
 t.say("record")
 print('step %s : %s'%(i,arm.steps_buff[i*2]))
 i += 1
 sleep(0.05)
 elif rightJoystick.read_status() == "pressed":

 t.say("action")
 arm.set_speed(80)
 arm.record_reproduce(0.05)
 arm.set_speed(100)

 if flag == True:
 arm.set_angle([alpha,beta,gamma])
 arm.set_bucket(bucket)
 print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.component_staus))

if __name__ == "__main__":
 print(arm.servo_positions)
 i = 0
 while True:
 _angles_control()
 sleep(0.01)

How it works?

In this code, let’s focus on the _angles_control() function, which is used to read the value of the dual joystick and then perform different operations.

	control the movement of the Arm

if leftJoystick.read_status() == "up":
 alpha += 1
 flag = True
elif leftJoystick.read_status() == "down":
 alpha -= 1
 flag = True
if leftJoystick.read_status() == "left":
 gamma += 1
 flag = True
elif leftJoystick.read_status() == "right":
 gamma -= 1
 flag = True
if rightJoystick.read_status() == "up":
 beta += 1
 flag = True
elif rightJoystick.read_status() == "down":
 beta -= 1
 flag = True

	alpha, beta and gamma refer to the angles of the 3 servos on the Arm respectively, refer to: Angle Mode.

	If the left joystick is toggled up, alpha increases and the Arm will extend forward.

	If the left joystick is toggled down, alpha decreases and the Arm will retract backward.

	If the left joystick is toggled to the left, gamma increases and the Arm will turn left.

	If the left joystick is toggled to the right, gamma decreases and the Arm will turn right.

	If the right joystick is toggled up, beta increases and the Arm will raise up.

	If the right joystick is toggled down, beta decreases and the Arm will lower down.

	Control the angle of the Shovel Bucket

if rightJoystick.read_status() == "left":
 bucket += 2
 flag = True
elif rightJoystick.read_status() == "right":
 bucket -= 2
 flag = True

	Right joystick toggles to the left to allow the Shovel Bucket to rewind.

	Right joystick toggles to the right to extend the bucket outward.

	Recording and reproducing actions

if leftJoystick.read_status() == "pressed":
 arm.record()
 t.say("record")
 print('step %s : %s'%(i,arm.steps_buff[i*2]))
 i += 1
 sleep(0.05)
elif rightJoystick.read_status() == "pressed":

 t.say("action")
 arm.set_speed(80)
 arm.record_reproduce(0.05)
 arm.set_speed(100)

	If the left joystick is pressed and the record() function is called to record the action, PiArm will say that it has recorded. The terminal will show the angle and the number of recorded moves at this point.

	If the right joystick is pressed, the record_reproduce() function is called to reproduce the recorded action, and PiArm will prompt to start doing the action.

	Write the angles to PiArm

if flag == True:
 arm.set_angle([alpha,beta,gamma])
 arm.set_bucket(bucket)
 print('servo angles: %s , bucket angle: %s '%(arm.servo_positions,arm.component_staus))

Write the angle of the Arm and the Shovel Bucket to PiArm and have it rotate to those angles.

If you have the Hanging Clip or Electromagnet connected to your PiArm, you can modify the above code by referring to the following parts.

	Hanging Clip - Joystick Control

	Electromagnet - Joystick Control

GAME - Catching Dolls

Now let’s play a game of catching dolls and see who can catch more dolls with PiArm in the given time.
In order to play this game, we need to implement two functions, the first one is to control PiArm with the dual joystick module, and the second one is to timing, when the countdown is over, we can’t control PiArm anymore. These two parts must be executed simultaneously.

[image: ../_images/clip_usage2.jpg]
Run the code

cd /home/pi/piarm/examples
sudo python3 game_catching_dolls.py

After the code runs, press the left and right joystick at the same time to start the game. Then you can use the dual joystick module to control PiArm to catch the doll, please pay attention to the time, after 60 seconds, PiArm will tell the game is over and you will not be able to continue to control PiArm.

Code

from robot_hat import Servo,PWM,Joystick,ADC,Pin
from robot_hat.utils import reset_mcu
from time import sleep
from robot_hat import TTS
import threading

from piarm import PiArm

reset_mcu()
sleep(0.01)
t = TTS()

leftJoystick = Joystick(ADC('A0'),ADC('A1'),Pin('D0'))
rightJoystick = Joystick(ADC('A2'),ADC('A3'),Pin('D1'))

arm = PiArm([1,2,3])
arm.hanging_clip_init(PWM('P3'))
arm.set_offset([0,0,0])
arm.speed = 100
game_flag = 0

def control():

 alpha,beta,gamma = arm.servo_positions
 clip = arm.component_staus

 if leftJoystick.read_status() == "up":
 alpha += 1
 elif leftJoystick.read_status() == "down":
 alpha -= 1
 if leftJoystick.read_status() == "left":
 gamma += 1
 elif leftJoystick.read_status() == "right":
 gamma -= 1
 if rightJoystick.read_status() == "up":
 beta += 1
 elif rightJoystick.read_status() == "down":
 beta -= 1
 if leftJoystick.read_status() == "pressed":
 clip += 1
 elif rightJoystick.read_status() == "pressed":
 clip -= 1

 # if key_flag == True:
 arm.set_angle([alpha,beta,gamma])
 arm.set_hanging_clip(clip)
 # print('coord: %s , servo angles: %s , clip angle: %s '%(arm.current_coord,arm.servo_positions,arm.component_staus))

def timing():
 sleep(60)
 t.say("three")
 sleep(1)
 t.say("two")
 sleep(1)
 t.say("one")
 sleep(1)
 t.say("game over")
 global game_flag
 game_flag = 0

if __name__ == "__main__":

 thread1 = threading.Thread(target = timing)
 thread1.start()
 print("Press two joysticks at the same time to start the game")

 while True:
 if leftJoystick.read_status() == "pressed" and rightJoystick.read_status() == "pressed":
 t.say("timing begins")
 game_flag = 1
 if game_flag == 1:
 control()

How it works?

This code adds timing to the Hanging Clip - Joystick Control project.

def timing():
 sleep(60)
 t.say("three")
 sleep(1)
 t.say("two")
 sleep(1)
 t.say("one")
 sleep(1)
 t.say("game over")
 global game_flag
 game_flag = 0

Use the sleep() function to count down in 60 seconds, then let PiArm count down to 3, 2, 1, and when the time is over, let game_flag be 0, then PiArm will no longer be controlled.

if __name__ == "__main__":

 thread1 = threading.Thread(target = timing)
 thread1.start()
 print("Press two joysticks at the same time to start the game")

Let the timing() function run in a separate thread so that it can be timed while controlling PiArm.

while True:
 if leftJoystick.read_status() == "pressed" and rightJoystick.read_status() == "pressed":
 t.say("timing begins")
 game_flag = 1
 if game_flag == 1:
 control()

This is the main flow of the code, when the left and right joysticks are pressed at the same time, PiArm says the timer starts, let game_flag be 1, then you can call control() function to control PiArm.

GAME - Iron Collection

In this project, prepare 3 shapes of iron pieces: triangle, circle and square. PiArm will randomly say a shape, and you need to control PiArm to put the corresponding shape of iron pieces into the corresponding box.

Run the code

cd /home/pi/piarm/examples
sudo python3 game_iron_collection.py

After the code is run, first press p on the keyboard to start the game, PiArm will prompt the game to start, then randomly say a shape (Round, Triangle and Square).
You need to use w, s, a, d, i and k on the keyboard to control Arm, j and l to pick up the corresponding shape (you need to install Electromagnet to PiArm first.).

60 seconds later, the game will be prompted to end and you will no longer be able to control the PiArm. If you want to stop the code from running, you need to press the Esc key first, then press Ctrl+C.

Note

	w, s, a, d, i and k are used to control the rotation of the Arm.

	j and l are used to control the ON and OFF of the Electromagnet.

Code

from piarm import PiArm
from robot_hat import Pin,PWM,Servo,ADC
from time import time,sleep
from robot_hat.utils import reset_mcu
from robot_hat import TTS

import threading
import sys
import tty
import termios
import random

reset_mcu()
sleep(0.01)
t = TTS()

arm = PiArm([1,2,3])
arm.electromagnet_init(PWM('P3'))
arm.set_offset([0,0,0])
arm.speed = 100
flag = False

def readchar():
 fd = sys.stdin.fileno()
 old_settings = termios.tcgetattr(fd)
 try:
 tty.setraw(sys.stdin.fileno())
 ch = sys.stdin.read(1)
 finally:
 termios.tcsetattr(fd, termios.TCSADRAIN, old_settings)
 return ch

manual1 = '''
Press keys on keyboard
 p: Game Start
 ESC: Stop
'''

manual2 = '''
Press keys on keyboard
 w: extend
 s: retract
 a: turn left
 d: turn right
 i: go up
 k: go down
 j: on
 l: off
'''

def control():

while flag == True:
arm.speed = 100
flag = False
alpha,beta,gamma = arm.servo_positions

def control(key):
 alpha,beta,gamma = arm.servo_positions

 if key == 'a':
 gamma += 3
 elif key == 'd':
 gamma -= 3
 if key == 's':
 alpha -= 3
 elif key == 'w':
 alpha += 3
 if key == 'i':
 beta += 3
 elif key == 'k':
 beta -= 3
 if key == 'j':
 arm.set_electromagnet('on')
 elif key == 'l':
 arm.set_electromagnet('off')
 arm.set_angle([alpha,beta,gamma])

def timing():
 global flag
 while True:
 if flag == True:
 t.say("game start")
 sleep(60)
 t.say("three")
 sleep(1)
 t.say("two")
 sleep(1)
 t.say("one")
 sleep(1)
 t.say("game over")
 flag = False

def say_shape():
 k = random.randint(1,3)
 if k == 1:
 t.say("Round")
 if k == 2:
 t.say("Triangle")
 if k == 3:
 t.say("Square")

if __name__ == "__main__":

 print(manual1)

 thread1 = threading.Thread(target = timing)
 thread1.start()

 while True:
 key = readchar().lower()
 if key == 'p':
 print(manual2)
 flag = True
 sleep(3)
 say_shape()
 if flag == True:
 control(key)
 if key == chr(27):
 print("press ctrl+c to quit")
 break

How it works?

This code is based on the project Electromagnet - Keyboard Control with the addition of timing and speaking random shapes.

def timing():
 global flag
 while True:
 if flag == True:
 t.say("game start")
 sleep(60)
 t.say("three")
 sleep(1)
 t.say("two")
 sleep(1)
 t.say("one")
 sleep(1)
 t.say("game over")
 flag = False

This timing() function is used for timing. After prompting the game to start, the game is timed for 60 seconds, then a countdown of 3, 2, 1 is performed before the game is prompted to end and the flag is set to False.

def say_shape():
 k = random.randint(1,3)
 if k == 1:
 t.say("Round")
 if k == 2:
 t.say("Triangle")
 if k == 3:
 t.say("Square")

This say_shape() function is to make PiArm say a random shape.

if __name__ == "__main__":

 print(manual1)

 thread1 = threading.Thread(target = timing)
 thread1.start()

 while True:
 key = readchar().lower()
 if key == 'p':
 print(manual2)
 flag = True
 sleep(3)
 say_shape()
 if flag == True:
 control(key)
 if key == chr(27):
 break
 print("press ctrl+c to quit")

This is the main flow of the code.

	Print out the key prompt in the terminal and let timing() run in a separate thread.

	Call the readchar() function to read the key value.

	If key p is read as being pressed, print out the key prompt and let flag be True, at which point the timing() function starts timing, and after 3 seconds, call the say_shape() function to make PiArm say a random shape.

	If flag is True, call the control() function to make the PiArm rotate according to the key value.

	chr(27) represents the Esc key, and if the Esc key is pressed, exit the main loop. This step is because the readchar() function is used to read the keyboard all the time, so you can’t stop the code directly with Ctrl+C.

	At this point, you can stop the code with Ctrl+C.

Appendix

	I2C Configuration

	Remote Desktop
	VNC

	XRDP

	About the Battery

I2C Configuration

Enable the I2C port of your Raspberry Pi (If you have
enabled it, skip this; if you do not know whether you have done that or
not, please continue).

sudo raspi-config

3 Interfacing options

[image: ../_images/image282.png]
P5 I2C

[image: ../_images/image283.png]
<Yes>, then <Ok> -> <Finish>.

[image: ../_images/image284.png]

Remote Desktop

There are two ways to control the desktop of the Raspberry Pi remotely:

VNC and XRDP, you can use any of them.

VNC

You can use the function of remote desktop through VNC.

Enable VNC service

The VNC service has been installed in the system. By default, VNC is
disabled. You need to enable it in config.

Step 1

Input the following command:

sudo raspi-config

[image: ../_images/image287.png]
Step 2

Choose 3 Interfacing Options by press the down arrow key on your
keyboard, then press the Enter key.

[image: ../_images/image282.png]
Step 3

P3 VNC

[image: ../_images/image288.png]
Step 4

Select Yes -> OK -> Finish to exit the configuration.

[image: ../_images/image289.png]
Login to VNC

Step 1

You need to download and install the VNC Viewer [https://www.realvnc.com/en/connect/download/viewer/] on personal computer. After the installation is done, open it.

Step 2

Then select “New connection”.

[image: ../_images/image290.png]
Step 3

Input IP address of Raspberry Pi and any Name.

[image: ../_images/image291.png]
Step 4

Double click the connection just created:

[image: ../_images/image292.png]
Step 5

Enter Username (pi) and Password (raspberry by default).

[image: ../_images/image293.png]
Step 6

Now you can see the desktop of the Raspberry Pi:

[image: ../_images/image294.png]
That’s the end of the VNC part.

XRDP

Another method of remote desktop is XRDP, it provides a graphical login to remote machines using RDP (Microsoft
Remote Desktop Protocol).

Install XRDP

Step 1

Login to Raspberry Pi by using SSH.

Step 2

Input the following instructions to install XRDP.

sudo apt-get update
sudo apt-get install xrdp

Step 3

Later, the installation starts.

Enter “Y”, press key “Enter” to confirm.

[image: ../_images/image295.png]
Step 4

Finished the installation, you should login to your Raspberry Pi by
using Windows remote desktop applications.

Login to XRDP

Step 1

If you are a Windows user, you can use the Remote Desktop feature that
comes with Windows. If you are a Mac user, you can download and use
Microsoft Remote Desktop from the APP Store, and there is not much
difference between the two. The next example is Windows remote desktop.

Step 2

Type in “mstsc” in Run (WIN+R) to open the Remote Desktop
Connection, and input the IP address of Raspberry Pi, then click on
“Connect”.

[image: ../_images/image296.png]
Step 3

Then the xrdp login page pops out. Please type in your username and
password. After that, please click “OK”. At the first time you log in,
your username is “pi” and the password is “raspberry”.

[image: ../_images/image297.png]
Step 4

Here, you successfully login to RPi by using the remote desktop.

[image: ../_images/image20.png]

About the Battery

Applicable Parameters

	3.7V

	18650

	Rechargeable

	Li-ion Battery

	Button Top

	No Protective Board

Note

	Robot HAT cannot charge the battery, so you need to buy a battery charger.

	When the two power indicators on the Robot HAT are off, it means the power is too low and the batteries need to be charged.

Button Top vs Flat Top?

Please choose battery with button top to ensure a good connection between the battery and the battery holder.

	Button Top

	Flat Top

	[image: ../_images/battery.png]

	[image: ../_images/18650.PNG]

No protective board?

You are recommend to use 18650 batteries without a protective board. Otherwise, the robot may be cut power and stop running because of the overcurrent protection of the protective board.

Battery capacity?

In order to keep the robot working for a long time, use large-capacity batteries as much as possible. It is recommended to purchase batteries with a capacity of 3000mAh and above.

Thank You

Thanks to the evaluators who evaluated our products, the veterans who provided suggestions for the tutorial, and the users who have been following and supporting us.
Your valuable suggestions to us are our motivation to provide better products!

Particular Thanks

	Len Davisson

	Kalen Daniel

	Juan Delacosta

Now, could you spare a little time to fill out this questionnaire?

正在加载…
Note

After submitting the questionnaire, please go back to the top to view the results.

Index

 _images/iron2.png
setCR o (@
st

set@ o (@
set @R to |
set EETED o (I

_images/iron3.png
</>]

Remote Control|

_images/iron00.png
D-pad (XD get (D valve €831 @)

60

30

30

_images/iron1.png

_images/iron4.png
magnet

0-ped GID oo (50 vavo €20 @ |

D-pad (KD get GIEEIED valve €3 @ ‘

tum electromagnet

_images/slide_to_power.png
Turn ON +the Power

Plug in the Battery
Holder Cable

_images/iron5.png
BIe) contol]
(&1 D pad 030 oot (U valve €23/ @)

60

60

90

90

30

_images/sound1.png
peace.mp3

_images/slide_to_power1.png
Turn ON +the Power

Plug in the Battery
Holder Cable

_images/sound3.png
m timing begins

_images/sound2.png
Emergency Alarm.wav

50

_images/sound6.png
B @ . sound

Emergency_Alarm.wav

50

_images/sound5.png
() () to (GIE

50

peace.mp3

_images/sound74.png

_images/sound73.png
timing begins
30000

1000

three

1000

two

1000

one

1000

game over
1000

_images/shovel_usage.jpg

_images/shovel_joystick.png

_images/import.png
Mylib

cQ 20211117
Control the arm by a D-pad and 2 Button.

_images/iron0.png
set (EKD
£ shape - NORGI 0

setspeed to
set electromagnet pin as

Initialize the thread (SRLIEECOVREN Thread method timing (] parameter list &

S CURUIEELN ThreadingB
-

Forever

E T S E I oress M TR =TT o)

do | set to [time

_images/image296.png
&} Remote Desktop Connection - %
5 Typethename of 2 program, folder, document, o Intemet
Bl Lource and Windowes will open foryou.

| Remote Desktop
) Connection

Open: [EEER

Computer: | [ENIRENER v
] [

Username: h2s

You will e asked for credentials when you connec.

) Show Optons Comnect

_images/image297.png
Cog to raspberrypt

connecting

Session

username

password

_images/remote_control5.png
{60

- 60

90

90

[30

_images/remote_clip_shovel.png
</>]

Button A Button C
. u u

Button B Button D

_images/remote_control7.png
@I am_conirol
© 1 Dpad (5D get (D value €33 @]

L2 clip
(%) if (, Button " press -

| <30 60
.
elseif [Button [DED is
angle oEl
-30 60
0 | 90
(| 90 " 90
20 [90
7
[-60 30
C -60 30

_images/remote_control6.png
Button " press -
]

angle [1

Bution DRSS 1SR
]

angle | -1

60

a g
Y \4‘ 0
| — 89— "l
B [0
t angle 0
70
[P3
arm_control

shovel

else if

else if

90

Button [press - |
ol o

_images/remote_electro.png
</>]

2N

D-pad A

Button A

Button B

Switch A

_images/remote_control8.png
to
Switch i

arm_control
electromagnet

P3

60

60

90

90

30

30

_images/servo_arm1.png

_images/servo_arm.png

_images/remote31.png
setCRAto ()
st@b @

set (B to [)

set speed to

sé(electromagnet pin as P3 -~

_images/remote22.png
3] (2) to EE1Y

(®) if (| Button [press - |
]

angle L 1

elseif [Button [BED is R
]

angle { -1

angle

90

_images/remote32.png
electromagnet

_images/sp210512_114916.png
Create variable...

£ HIGH ~ R
[ENTTEY HIGH ~ B9%

HIGH ~

C e
=
‘

{x} Variables

_static/file.png

_static/plus.png

_static/minus.png

_images/sound7v2.png
timing begins
30000

1000

three

1000

two

1000

one

1000

game over
1000

Forever

sound

music

_images/electromagnet0.png

_images/electromagnet2.png
set electromagnet pin as (ZEIM

turn electromagnet

1000

turn electromagnet

1000

_images/electro_usage.jpg
o

_images/electromagnet.png

_images/emotional2.png
I i= Lists
Music
Colour

I

{x} Variables

I threading

do something

do something

_images/function_name.png
Function Name

do something

_images/electromagnet21.png
set electromagnet pin as (ZEIM

_images/electromagnet22.png
turn electromagnet m

1000

turn electromagnet

1000

_images/i2s.png
File "/usr/local/lib/python3.7/dist-packages/rabot_hat-1.0.0-py3.7.eqg/rabot_bl
ac/zobot.py", line 91, in serve move

Time.sleep (step_delay)
xeyboardnterrups

[pieraspberrypi:~/pisioth § sudo bash i2samp.sh
suppore for your cperating system is experimental. Please visit
[rorums.adafruic.com if you experience issues with this product.

This script will install everything needed to use
125 amplifier

Warning —-—-

a1ways be careful when running scripts and commands
copied from the internet. Ensure they are from a
crusted source.

1 you want to see what this script does before
running it, you should run:
\curl -sS github.com/adafruit/Raspberry-Pi-Installer-Scripts/i2samp

Do you wish to continue? [y/N] I

_images/joystick6.png

_images/i2s2.png
running it, you should run:
\curl -sS github.com/adafruit/Raspberry-Pi-Installer-Scripts/i2samp

Do you wish to continue? [y/N] ¥

[checking nardware requirements

[2ading Device Tree Entry to /boot/config.txt
[acoveriay=niriverry-dac

atoverlay=i2s-mmap

commenting out Blacklist entry in
/etc/moaprobe. d/raspi-blacklist.cont

Disabling default sound driver
R

1nstalling aplay systemd unic
[vou can optionally activate '/dev/zero’ playback in

che background at boot. This will remove all
popping/clicking but does use some processor time.

[accivate '/dev/zero' playback in background? [RECOMMENDED] [v/N] [l

_images/joystick63.png

_images/joystick62.png
%

analog pin (MR value

|

i
analog pin WEVRD value © ‘

5
H

|
analog pin NF:YIRg B HIGH - ‘

g
5

analog pin .\l

|

|
analog pin BIXRAR value 2 HIGH - ‘

n

analog pin BIXRAR value

|

_images/joystick7.png
_ 90

| 60

_ 30

_images/joystick65.png

_images/joystick.png
Button (LB)

_images/joy1.png

_images/joystick2.png
o'l @ 1.0

Dual Joystick Module

SunFounder

_images/joystick1.png
Button (LB)

_images/joystick5.png

_images/joystick3.jpg
MY Coordinate] " x

_images/arm_control.png
arm_control

_images/arm_import.png
Duplicate
Expand Block
Disable Block
Delete 63 Blocks

Create ‘arm control’

_images/3d34.png
& Raspberry Pi Imager v1.6 - X

Raspberry Pi OS Full (32-bit)

A port of Debian Bullseye with desktop and recommended applications
Released: 2021-10:30

Oniine -3.0 GB download

Raspberry Pi OS (Legacy)

A portof Debian Buster with desktop with security updates
Released: 2021-12.02

Online - 1.1 GB download

Raspberry Pi OS Lite (Legacy)
A port of Debian Buster with no desktop with security updates.
Released: 202112-02

Oniine - 0.4 GB download

_images/app_control.jpg

_images/battery.png

_images/image12.png
Windows protected your PC

Microsoft Defender SmartScreen prevented an unrecognized app from
starting. Running this app might put your PC at risk.
More info

_images/image14.png
& Raspbery Pilmager 15

S0 Card

i

Mass Storage Device USB Device - 7.9 GB
Mounted as G:\ H:\

_images/image10.jpeg
Choice of RAM

More powerful
processor

Power
sueply GIGABIT
ETHERNET
MICRO HDMI PORTS ‘\ usB3

Supporting 2 x 4K displays usB 2

_images/image11.png
Download for Windows

Download for macOS

Download for Ubuntu for x86

_images/image17.png
&

Raspberry Pi

_images/3d33.png
& Raspberry Pi Imager v1.6

Operating System

Raspberry Pi 0S (32-bit)
A port of Debian Bullseye with the Raspberry Pi Desktop (Recommended)
Released: 2021-10:30

Oniine 1.1 G download

Raspberry Pi OS (other)
Other Raspberry Pi OS based images.

L
B
=
®

Other general purpose 0S.
Other general purpose Operating Systems

Media player - Kodi 05
Kodi based Media player operating systems

Emulation and game 0S

_images/image18.png
& Raspberry Pi Imager v1.5 - X

Al existing data on 'Mass Storage Device USB Device' will be
erased
Are you sure you want to continue?

_images/image15.png
i r v - _ o x
8 rapsenpinasens Ctrl+Shift+X
/ “Advanced options =

Image customization options | for this session only

(] pisable overscan to always use

[sethostname: raspberrypi

Enable SSH

(@® Use password authentication /

Set. password for 'pi’ user:

_images/image16.png
® Raspberry Pilmagerv15

Configure wifi

ssiD:
Password:

Show password

"4

[J setlocale settings

Tine one: Asia/Shanghai

_images/image19.png
& Raspberry Pi Imager v1.6 - X

‘Write Successful x

Raspberry Pi OS (32-bit) has been written to Mass Storage Device
USB Device

YYou can now remove the SD card from the reader

CONTINUE

_images/iron7.png
Button (55 is and
set to

set (EEd to (@)

_images/iron6.png
Say_shape

set EEZRD to [random integer from

| m @

ﬁ: Triangle
CL s

_images/iron9.png
st CR o (@
set(Bto IO
i@ o (@0
st (@Rt (0
set EETED o (0

set speed to
set electromagnet pin as. WfGEREI

Initialize the thread IRITCELINLAAN Thread method (ESIETHTVRS parameter list &

S CURUIEELN ThreadingA ~

_images/iron8.png
oD @

game over

30

_images/i2s3.png
/etc/modprobe. d/raspi-blacklist.cont

[D152b11ng defaulc souna ariver
contiguring sound cutput

1nstalling aplay systemd unic
[vou can optionally activate '/dev/zero’ playback in
[che background at boot. This will remove all
popping/clicking but does use some processor time.

activate '/dev/zero’ playback in background? [RECOMMENDED] [v/N] ¥

created symlink /etc/systemd/system/multi-user.target.wants/aplay.service - /etd]
/systena/systen/aplay. service.

211 done:!
50y your new 12s amplifier!

some changes made to your system require
[vour computer to reboot to take effect.

[ou1d you like to reboot now? [y/N) I

_images/image23.png
1. ssh pi@192.168.18.197 (ssh)
Last login: Fri Apr 12 16:56:20 on ttys000

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197
The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.

ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.18.197' (ECDSA) to the list of known hosts.

pi@192.168.18.197"'s password: t

_images/image24.png
1. pi@raspberrypi: ~ (ssh)
Last login: Fri Apr 12 16:56:20 on ttys@00

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197

The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.
ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added '192.168.18.197' (ECDSA) to the list of known hosts.
pi@192.168.18.197"'s password:

Linux raspberrypi 4.9.80-v7+ #1098 SMP Fri Mar 9 19:11:42 GMT 2018 armv7l

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Last login: Tue May 21 07:29:46 2019 from 192.168.18.126

SSH is enabled and the default password for the 'pi' user has not been changed.
This is a security risk - please login as the 'pi' user and type 'passwd' to set

a new password.

pi@raspberrypi:~ $ I

_images/image21.png
ece
<

[Desktop
[Documents
© Downloads

Movies
1 Music

Pictures

12} solomen
Devices

2} Yosemite
E] windows
) pAtA

(© Remote Disc
Tags

® Red
Orange
Yellow

Green

[Utilities

Audio MIDI Setup

ColorSync Utility Console
f \/l
Grab Grapher

Script Editor

D%

System Information

Q search
D' ==
Bluetooth File Boot Camp
Exchange Assistant
Digital Color Meter Disk Utility

Keychain Access. Migration Assistant

)

Termi VoiceOver Uity

_images/image22.png
1. ssh pi@192.168.18.197 (ssh)

Last login: Fri Apr 12 16:56:20 on ttys000

hang_chen @ hang-chendeMacBook-Pro in ~ [17:09:55]

$ ssh pi@192.168.18.197

The authenticity of host '192.168.18.197 (192.168.18.197)' can't be established.
ECDSA key fingerprint is SHA256:60tKKQtCCRvUCohWmvVcbp7tBHtQLOT8/@kusPjVsEU.
Are you sure you want to continue connecting (yes/no)? I

_images/image282.png
[Raspberry Pi Software Configuration Tool (raspi-config) ————

1 system Options Configure system settings
2 Display Options Configure display sectings
In o

4 Performance Options Configure performance settings
5 Localisation Options Configure language and regional settings
& Advanced Options Configure advanced settings

2 Update Update this tool to the latest version

9 About raspi-config Information about this configuration ool

<Select> <Finisn>

_images/image283.png
File Edit Tak

——— Raspberry Pi Software Configuration Tool (raspi-config) h———

P1 Camera Enable/Disable connection to the
P2 SSH Enable/Disable remote command lin
P3 VNC Enable/Disable graphical remote a

Enable/Disable
Enabl
Serial Enable/Disable

|

|

|

|

| pa
|

|

| 7 1-wire Enable/Disable one-wire interface
|

|

|

|

|

|

|

Sp1

P8 Remote GPIO Enable/Disable remote access to 6

<select> <Back>

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

_images/image25.png
#R PuTTY Configuration

Category:

- Session Basic options for your PuTTY session
Logging

L oot ‘Specify the destination you wantto connectto

I Keyboard HostName (or IP address) Port

Bell 192.168.0.101 2

i Features. e)

= Windoy ©Raw () Telnet ()Riogin © SSH

Appearance
Behaviour Load, save or delete a stored session
Translation
Seoction Saved Sessions
Colours

- Connection Defaul Setings
Data 02
Proxy
Telnet
Riogin
ssH
Serial

Close window on exit
JAways (O)Never) Only on clean exit

_images/image26.png
pieio2. 16w T2ses pmuom:raspberry

[The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

[permitted by applicable law.
Last 1ogin: Tue Feb 21 02:54:55 2017

ieraspbersypi:- s I

_images/remote01.png
set E@@to |
set (B to [@
set@@to [

set speed to

_images/remote11.png
set B to ([
set to (@
set (B3 to ' (0]
=4 angle - RN O |

set speed to

set bucket pin as =X}

_images/remote04.png
o
D-pad (80 oot (8 valve €33 @)

(&) if

60

60

90

90

30

30

_images/remote12ii.png
Mylib

cQ 20211117
Control the arm by a D-pad and 2 Button.

_images/remote12.png
New Project
My Projects
Save

Save As
Create Library
Import Library

_images/remote21.png
sél hanging clip pin as §iizX%4

_images/remote13.png
() if

else if

Button [press - |
]

angle L 1

.
Bution (253 is I8
;

angle L -1

angle

60

_images/pin11_connect.png

_images/picar_x_pic7.png
Left Motor Right Motor
Port Port

|/ PWMPin

* |,— ADCPin

Bluetooth
Indicator — |

Bluetooth
Module |

Battery |
Indicator

LED —
I\— Power
Switch
RST
Button
USR Power Port

Button (7~12V)

_images/record123.png
record
m
| ') digital pin value

Record completed

record current action

a
| ' digital pin value

say Action

run the recorded actions at n interval

_images/pin11_connect1.png

_images/image20.png
Wastebasket -

L
Mouse and
Keyboard Set

_images/image201.png
Wastebasket -

L
Mouse and
Keyboard Set

_images/image291.png
2 Daisy - Properties

Genersl | Options | Expert]

VNC Server: 192168.0.234

Use single sign-on if VNC Server supports

Privacy

Update desktop preview automatically

_images/image292.png
[T VNC Viewer
File View Help

Enter a VNC Server address or search & sionin.. ~

_images/image289.png
2B piGraspberypi: ~

<No>

_images/image290.png
173 VN Viewer

_images/image295.png
[pi@raspberrypi:~ § sudo apt-get install xrdp

|[reading package lists... Done

[Building dependency tree

Reading state information... Done

[The following extra packages will be installe
vnc4server x1l-apps xl1l-session-utils xbase-clients xbitmaps xfonts-base

Suggested package
vnc-java mesa-utils x1l-xfs-utils

The following NEW packages will be installed:
vnc4server x1l-apps x1l-session-utils xbase-clients xbitmaps xfonts-base

xrdp
0 upgraded, 7 newly installed, 0 to remove and 0 not upgraded.

s.

Need to get 8,468 kB of arch
After this operation, 17.1 MB of additional disk space will be used.

Do you want to continue? [¥/n] vjj

_images/image293.png
Daisy - VNC Viewer = @] %

VNC Server: 192.168.0.234:5900

(5= I
puimorssossssnns [ASPDETTY

Remember password

Catchphrase: Evita Osaka gopher. Concert robot capsule.
Signature: €3-73-¢8-d8-43-92-97-84

_images/image294.png

_images/move8.png

_images/memory_set.png
(o)

O] st posiion]
(o) if

-80 L 80 ‘
-80 {80 ‘
30 130
30 130

0 _ 80

0 _ 80

_images/pi_angle.jpg

_images/name_libr.png
Please add a name and description X

arm control

i Control the arm by a D-pad and 2
Description: | Button|

_images/piarm_block.png
set position
ol v ol 7 ol
ool ¢ ol v il

record current action
run the recorded actions at W] interval

current coordinates
current angle of all servos

current status of End-of-Arm Tooling

set bucket pin as Wi
set hanging clip pin as
set electromagnet pin as WiERE]

_images/piarm.jpg

_images/joystick_control1.jpg

_images/joystick_control.jpg

_images/memory1.png
HIGH 3072

LOW 1024
XAXxis 0
yAxis 80
zAXxis 80

70

_images/keyboard_control.jpg
»

_images/memory_col.png
|° Record completed
Y 9

-80 [%0

30 130
L 30 {130

0 80

_images/image287.png
login as: pi
p10192.165.0.234's password:

[The programs included with the Debian GNU/Linux system are free software
che exact aistribution terms for each program are described in the
inaividual files in /usr/share/doc/*/copyright.

[Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent

permitted by applicable law.
Last login: Mon Feb 20 09:18:17 2017 from daisy-pc.lan

prasaspbessps: - < [T zaspresorra

_images/image288.png
[Raspberry Pi Software Configuration Tool (raspi-config) ————

P1 Camera Enable/disable connection to the Raspberry Pi Camera
P2 SsH Enable/disable remote command line access using SSH
P4 ST Enable/disable automatic loading of SPI kernel module
5 12C Enable/disable automatic loading of I2C kernel module
P6 Serial Port Enable/disable shell messages on the serial comnection
B7 1-Wire Enable/disable one-wire interface

P8 Remote GPIO Enable/disable remote access to GPIO pins

<Select> <Back>

_images/image284.png
Would you like the ARM I2C interface to be enabled?

<No>

_images/bucket2.png

_images/bucket3.png
set bucket pin as P3 v

set shovel bucket angle to

1000

set shovel bucket angle to

1000

set shovel bucket angle to

1000

_images/bucket.png

_images/bucket0.png
ServoArm | :===M,l§ a4
Self-tapping Screw

|

Metal Gear /

_images/clip.png

_images/clip0.png

_images/bucket31.png
set bucket pin as JlZEI

_images/bucket32.png
set shovel bucket angle to

1000

set shovel bucket angle to

1000

set shovel bucket angle to

1000

_images/clip2.png
o
Angle|

0°

_images/clip3.png
set hanging clip pin as =M

set hanging clip angle to n
1000

set hanging clip angle to

1000

_images/clip31.png
set hanging clip pin as =M

nav.xhtml

 Table of Contents

 		
 PiArm - SunFounder Robotic Arm for Raspberry Pi

 		
 Component List and Assembly Instructions

 		
 Hardware Introduction

 		
 Arm

 		
 Angle Mode

 		
 Coordinate Mode

 		
 Shovel Bucket

 		
 Hanging Clip

 		
 Electromagnet

 		
 Dual Joystick Module

 		
 About Robot HAT

 		
 Play with Ezblock

 		
 Quick Guide on Ezblock

 		
 Servo Adjust

 		
 Install and Configure EzBlock Studio

 		
 Test 3 EoATs

 		
 Tips on basic blocks

 		
 Tips on PiArm blocks

 		
 Shovel Bucket

 		
 Hanging Clip

 		
 Electromagnet

 		
 Sound Effects

 		
 Tips on Blocks

 		
 Programming

 		
 Dual Joystick Module

 		
 Arm - Joystick Control

 		
 Shovel Bucket - Joystick Control

 		
 Hanging Clip - Joystick Control

 		
 Electromagnet - Joystick Control

 		
 Remote Control

 		
 Arm - Remote Control

 		
 Create a Library

 		
 Shovel Bucket - Remote Control

 		
 Hanging Clip - Remote Control

 		
 Electromagnet - Remote Control

 		
 Coordinate Mode

 		
 Programming

 		
 Memory Function

 		
 Programming

 		
 What’s More

 		
 GAME - Catching Dolls

 		
 Programming

 		
 GAME - Iron Collection

 		
 Programming

 		
 Play with Python

 		
 Quick Guide on Python

 		
 What Do We Need?

 		
 Installing the OS

 		
 Set up Your Raspberry Pi

 		
 Download and Run the Code

 		
 Servo Adjust

 		
 Test 3 EoATs

 		
 Shovel Bucket

 		
 Hanging Clip

 		
 Electromagnet

 		
 Sound Effects

 		
 Dual Joystick Module Control

 		
 Shovel Bucket - Joystick Control

 		
 Hanging Clip - Joystick Control

 		
 Electromagnet - Joystick Control

 		
 Keyboard Control

 		
 Shovel Bucket - Keyboard Coboardntrol

 		
 Hanging Clip - Keyboard Control

 		
 Electromagnet - Keyboard Control

 		
 Coordinate Mode

 		
 Programming

 		
 Memory function

 		
 GAME - Catching Dolls

 		
 GAME - Iron Collection

 		
 Appendix

 		
 I2C Configuration

 		
 Remote Desktop

 		
 VNC

 		
 XRDP

 		
 About the Battery

 		
 Thank You

_images/clip_usage.jpg

_images/clip_usage1.jpg

_images/clip32.png
set hanging clip angle to n

1000

set hanging clip angle to m

1000

_images/clip_joystick.png

_images/control4.png
Button get value
threading

% Eiockpi RIS - press -

B Pisloth D-pad get value

Op
oo Modules

_images/coor1.png
set XTI o (D
set (IXER o [EY

set EXER o | ED)

_images/clip_usage2.jpg

_images/control3.png
[<r3]

D-pad A

Button A

Button B

_images/coor2.png
set (7ZVTRS to
set (ZNTRS to
set to
set to
set to
set to

set position

constrain

constrain

constrain

constrain

constrain

constrain

Y

Lac 0T G o REL =0 |
oo (e ofgl] o MR o oEEN
LT 1 Gl -0 Kl @0 |

e ez ofgl] | o R o oEEN
e |exa o] | o il o
exoo il | > il For e

[yAxis - JZAlR] zAxis - |

_images/coor3.png
D-pad (3B get valve €53/ @

30 130
30 130
-80 80
-80 80
Button [press - |
2Axis r
Wzaxs -) + 1 © D
Button X8 is N8
2Axis r
W zAxis -) - 1 g &0

o yAxis W zAxis

_images/coor_usage.jpg
v
i

T
Z €2 2 lz 0 6k Ql Ly 9l Et 1
il

A

! 0 6

)
'muumuuulnwuuu@mdmdmﬂuu i

|

_images/coordinate1.png
30 130
{ e " 130
D-pad get value EE3
! o . -80 [%0
D-pad get value
{ 5 -80 20
‘Button X3 s (55
5 [20
‘Bution G s (53
L Yo " 50

W yAxis

_images/create_libr.png
2

New Project
My Projects
Save

Save As

Import Library

_images/coor_usage1.jpg
v
i

T
Z €2 2 lz 0 6k Ql Ly 9l Et 1
il

A

! 0 6

)
'muumuuulnwuuu@mdmdmﬂuu i

|

_images/coordinate0.png

_images/doll0.png
- P3
threadingA

[: threadingA

timing parameter list ‘

control

_images/doll1.png
set (IR to
set (IS to |
st R to (D
st to ('@
set(@to (D
set @Rt ([0

set RS o (1)
l:;et speed to
set hanging clip pin as

_images/delay.png
1000

_images/doll.png
else if

@0 P o @0

-1

Timing begins
60000
' three
1000
two
1000
[one

1000
[' game over
flag \7‘ 0

20 (' %
-90 %
30 (' o0
30 60
60 [30
-60 C 30

_images/doll3.png

_images/doll4.png
ety angle - VL -1

set hanging clip angle to

constrain | ENFTEES low n higl

_images/doll2.png
Forever

set to
set to
set to
set to
set GEED to

-

anaiog pin
anaiog in

analog pin WiEX]
digtal pin

digital pin

_images/doll6.png
flag

60000

three

1000

two

1000

one

1000

game over
0

Timing begins

_images/doll7.png
e YriGH - 5072
set (S to
stE@o 0
st (0
stE@@o 0
st D

set EX to K
set speed to n
set hanging clip pin as. m

Initalize the thread WG T Rdll Thread method WG I
BN threadingA -

_images/doll5.png
30

90

90

60

60

30

30

_images/doll55.png

_images/electro_joystick.png
FIGH
LOW

= 2R

P3

90

90

60

60

30

_images/dowload_code.png
[Using /usz/1ib/pychons/dist-packages
searching for RP1.GPIO==0.7.0

st maccn: RPi.GPIO 0.7.0

2aaing RP1.GPIO 0.7.0 to easy-install.pth file

vsing /usz/150/pytnons/dist-packages
[Finished processing dependencies for robot-hat==1.0.0
fic:1 ntep://raspbian. raspberrypi.org/raspbian buster InRelease
fic:2 ntep://archive. raspberrypi.org/debian buster InRelease
Reading package 1ists... Done
Building aependency cree
[reading state information. .. Done
96 packages can be upgraded. Run 'apt 1ist —-upgradable’ to see them.
Reading package 1ists... Done
Building dependency cree
[reading state information... Done
he following addivional packages will be installe
espeak-data libespeakl libportaudio? libsonicO
he following NEW packages will be installed:
espeak espeak-data libespeakl libportaudio? 1ibsonico
0 upgraded, 5 newly installed, 0 to remove and 96 not upgraded.
veed o get 9,888 B/1,217 kB of archives.
[arcer this operavion, 2,974 kB of addivional disk space will be used.
Do you want to continue? [¥/n] |

_images/dual_joy.png
W 3v3—3v
W GND—GND

