

SunFounder Electronic Kit for Raspberry Pi and Arduino

About the Electronic Kit

This kit is suitable for SunFounder Uno, SunFounder Mega 2560,
SunFounder Duemilanove and SunFounder Nano. All the code in this user
guide is compatible with these boards.
With this kit, we will walk you through the know-how of using the
Arduino board in a hands-on way. Starting with the basics of
electronics, you’ll learn through building several creative projects.
Including a selection of the most common and useful electronic
components, this kit will help you “control” the physical world.

If you want to learn another projects which we don’t have, please feel free to send Email and we will update to our online tutorials as soon as possible, any suggestions are welcomed.

Here is the Email: cs@sunfounder.com.

About the display language

In addition to English, we are working on other languages for this course. Please contact service@sunfounder.com if you are interested in helping, and we will give you a free product in return.
In the meantime, we recommend using Google Translate to convert English to the language you want to see.

The steps are as follows.

	In this course page, right-click and select Translate to xx. If the current language is not what you want, you can change it later.

[image: _images/translate1.png]

	There will be a language popup in the upper right corner. Click on the menu button to choose another language.

[image: _images/translate2.png]

	Select the language from the inverted triangle box, and then click Done.

[image: _images/translate3.png]

	Component List

	For Raspberry Pi User
	Preparation
	Installing the OS

	Set up Your Raspberry Pi

	Libraries
	RPi.GPIO

	Install and Check the WiringPi

	Download the Code

	Lessons
	Lesson 1 Blinking LED

	Lesson 2 Flowing LED Lights

	Lesson 3 Breathing LED

	Lesson 4 RGB LED

	Lesson 5 Controlling LED by Button

	Lesson 6 Tilt Switch

	Lesson 7 Slide Switch

	Lesson 8 Relay

	Lesson 9 4N35

	Lesson 10 Active Buzzer

	Lesson 11 Doorbell

	Lesson 12 Passive Buzzer

	Lesson 13 Button Piano

	Lesson 14 Quiz Buzzer System

	Lesson 15 NE555 Timer

	Lesson 16 Servo

	Lesson 17 LCD1602

	Lesson 18 Driving LEDs by 74HC595

	Lesson 19 7-segment

	Lesson 20 Traffic Light

	Appendix
	Remote Desktop

	For Arduino User
	Install and Introduce Arduino IDE

	Download the Code

	Lessons
	Lesson 1 Blinking LED

	Lesson 2 Controlling LED by Button

	Lesson 3 Controlling an LED by Potentiometer

	Lesson 4 Doorbell

	Lesson 5 Photoresistor

	Lesson 6 RGB LED

	Lesson 7 Tilt Switch

	Lesson 8 Slide Switch

	Lesson 9 Relay

	Lesson 10 4N35

	Lesson 11 NE555 Timer

	Lesson 12 Servo

	Lesson 13 LCD1602

	Lesson 14 Thermistor

	Lesson 15 Voltmeter

	Lesson 16 Automatically Tracking Light Source

	Lesson 17 Light Alarm

	Lesson 18 Answer Machine

	Lesson 19 Controlling Voice by Light

	Lesson 20 74HC595

	FAQ
	C code is not working?

	Thank You

Copyright Notice

All contents including but not limited to texts, images, and code in this manual are owned by the SunFounder Company. You should only use it for personal study,investigation, enjoyment, or other non-commercial or nonprofit purposes, under therelated regulations and copyrights laws, without infringing the legal rights of the author and relevant right holders. For any individual or organization that uses these for commercial profit without permission, the Company reserves the right to take legal action.

Component List

Note

After unpacking, please check that the number of components is correct and that all components are in good condition.

[image: _images/image5.jpeg]
[image: _images/image6.jpeg]
[image: _images/image7.jpeg]
[image: _images/image8.jpeg]
[image: _images/image9.jpeg]
[image: _images/image10.jpeg]
[image: _images/image11.jpeg]
[image: _images/image170.png]

For Raspberry Pi User

	Preparation

	Libraries

	Install and Check the WiringPi

	Download the Code

	Lessons

	Appendix

Preparation

In this chapter, we firstly learn to start up Raspberry Pi. The content
includes installing the OS, Raspberry Pi network and how to open terminal.

Note

You can check the complete tutorial on the official website of the Raspberry Pi: raspberry-pi-setting-up [https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up].

If your Raspberry Pi is set up, you can skip the part and go into the next chapter.

	Installing the OS

	Set up Your Raspberry Pi
	If You Have a Screen

	If You Have No Screen

Installing the OS

Required Components

	Any Raspberry Pi

	1 * Personal Computer

	1 * Micro SD card

	

Step 1

Raspberry Pi have developed a graphical SD card writing tool that works
on Mac OS, Ubuntu 18.04 and Windows, and is the easiest option for most
users as it will download the image and install it automatically to the
SD card.

Visit the download page: https://www.raspberrypi.org/software/. Click on
the link for the Raspberry Pi Imager that matches your operating system,
when the download finishes, click it to launch the installer.

[image: ../_images/image11.png]
Step 2

When you launch the installer, your operating system may try to block
you from running it. For example, on Windows I receive the following
message:

If this pops up, click on More info and then Run anyway, then
follow the instructions to install the Raspberry Pi Imager.

[image: ../_images/image12.png]
Step 3

Insert your SD card into the computer or laptop SD card slot.

Step 4

In the Raspberry Pi Imager, select the OS that you want to install and
the SD card you would like to install it on.

[image: ../_images/image131.png]

Note

	You will need to be connected to the internet the first time.

	That OS will then be stored for future offline use(lastdownload.cache, C:/Users/yourname/AppData/Local/Raspberry Pi/Imager/cache). So the next time you open the software, it will have the display “Released: date, cached on your computer”.

Step 5

Select the SD card you are using.

[image: ../_images/image148.png]
Step 6

Press Ctrl+Shift+X to open the Advanced options page to enable
SSH and configure wifi, these 2 items must be set, the others depend on
your choice . You can choose to always use this image customization
options.

[image: ../_images/image151.png]
Then scroll down to complete the wifi configuration and click SAVE.

Note

wifi country should be set the two-letter ISO/IEC alpha2
code [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements] for
the country in which you are using your Raspberry Pi, please refer to
the following link: https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements.

[image: ../_images/image161.png]
Step 7

Click the WRITE button.

[image: ../_images/image1710.png]
Step 8

If your SD card currently has any files on it, you may wish to back up
these files first to prevent you from permanently losing them. If there
is no file to be backed up, click Yes.

[image: ../_images/image1810.png]
Step 9

After waiting for a period of time, the following window will appear to
represent the completion of writing.

[image: ../_images/image1910.png]

Set up Your Raspberry Pi

If You Have a Screen

If you have a screen, it will be easy for you to operate on the
Raspberry Pi.

Required Components

	Any Raspberry Pi

	1 * Power Adapter

	1 * Micro SD card

	1 * Screen Power Adapter

	1 * HDMI cable

	1 * Screen

	1 * Mouse

	1 * Keyboard

	Insert the SD card you’ve set up with Raspberry Pi OS into the micro SD card slot on the underside of your Raspberry Pi.

	Plug in the Mouse and Keyboard.

	Connect the screen to Raspberry Pi’s HDMI port and make sure your screen is plugged into a wall socket and switched on.

Note

If you use a Raspberry Pi 4, you need to connect the screen to the HDMI0 (nearest the power in port).

	Use the power adapter to power the Raspberry Pi. After a few seconds, the Raspberry Pi OS desktop will be displayed.

[image: ../_images/image2010.png]

If You Have No Screen

If you don’t have a display, you can log in to the Raspberry Pi
remotely, but before that, you need to get the IP of the Raspberry Pi.

Get the IP Address

After the Raspberry Pi is connected to WIFI, we need to get the IP
address of it. There are many ways to know the IP address, and two of
them are listed as follows.

1. Checking via the router

If you have permission to log in the router(such as a home network), you
can check the addresses assigned to Raspberry Pi on the admin interface
of router.

The default hostname of the Raspberry Pi OS is raspberrypi, and you
need to find it. (If you are using ArchLinuxARM system, please find
alarmpi.)

2. Network Segment Scanning

You can also use network scanning to look up the IP address of Raspberry
Pi. You can apply the software, Advanced IP scanner and so on.

Scan the IP range set, and the name of all connected devices will be
displayed. Similarly, the default hostname of the Raspberry Pi OS is
raspberrypi, if you haven’t modified it.

Use the SSH Remote Control

We can open the Bash Shell of Raspberry Pi by applying SSH. Bash is the
standard default shell of Linux. The Shell itself is a program written
in C that is the bridge linking the customers and Unix/Linux. Moreover,
it can help to complete most of the work needed.

For Linux or/Mac OS X Users

Step 1

Go to Applications->Utilities, find the Terminal, and open
it.

[image: ../_images/image2110.png]
Step 2

Type in ssh pi@ip_address . “pi” is your username and “ip_address” is
your IP address. For example:

ssh pi@192.168.18.197

Step 3

Input “yes”.

[image: ../_images/image2210.png]
Step 4

Input the passcode and the default password is raspberry.

[image: ../_images/image234.png]
Step 5

We now get the Raspberry Pi connected and are ready to go to the next
step.

[image: ../_images/image24.png]

Note

When you input the password, the characters do not display on
window accordingly, which is normal. What you need is to input the
correct password.

For Windows Users

If you’re a Windows user, you can use SSH with the application of some
software. Here, we recommend PuTTY.

Step 1

Download PuTTY.

Step 2

Open PuTTY and click Session on the left tree-alike structure. Enter
the IP address of the RPi in the text box under Host Name (or IP
address) and 22 under Port (by default it is 22).

[image: ../_images/image25.png]
Step 3

Click Open. Note that when you first log in to the Raspberry Pi with
the IP address, there prompts a security reminder. Just click Yes.

Step 4

When the PuTTY window prompts “login as:”, type in
“pi” (the user name of the RPi), and password: “raspberry”
(the default one, if you haven’t changed it).

[image: ../_images/image26.png]
Step 5

Here, we get the Raspberry Pi connected and it is time to conduct the
next steps.

Note

When you input the password, the characters do not display on
window accordingly, which is normal. What you need is to input the
correct password.

If you are not satisfied with using the command window to control
the Raspberry Pi, you can also use the remote desktop function, which
can help us manage the files in the Raspberry Pi easily.

For details on how to do this, please refer to Remote Desktop.

Libraries

Two important libraries are used in programming with Raspberry Pi, and
they are wiringPi and RPi.GPIO. The Raspbian OS image of Raspberry Pi
installs them by default, so you can use them directly.

RPi.GPIO

If you are a Python user, you can program GPIOs with API provided by
RPi.GPIO.

RPi.GPIO is a module to control Raspberry Pi GPIO channels. This package
provides a class to control the GPIO on a Raspberry Pi. For examples and
documents, visit
http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/.

Test whether RPi.GPIO is installed or not, type in python:

python

[image: _images/image49.png]
In Python CLI, input “import RPi.GPIO”, if no error prompts, it
means RPi.GPIO is installed.

import RPi.GPIO

[image: _images/image501.png]
If you want to quit python CLI, type in:

exit()

Install and Check the WiringPi

wiringPi is a C language GPIO library applied to the Raspberry Pi. It complies with GUN Lv3. The functions in wiringPi are
similar to those in the wiring system of Arduino. They enable the users
familiar with Arduino to use wiringPi more easily.

wiringPi includes lots of GPIO commands which enable you to control all
kinds of interfaces on Raspberry Pi.

Please run the following command to install wiringPi library.

sudo apt-get update
git clone https://github.com/WiringPi/WiringPi
cd WiringPi
./build

You can test whether the wiringPi
library is installed successfully or not by the following instruction.

gpio -v

[image: _images/image51.png]
Check the GPIO with the following command:

gpio readall

[image: _images/image521.png]
For more details about wiringPi, you can refer to WiringPi [https://github.com/WiringPi/WiringPi].

Download the Code

Before you download the code, please note that the example code is
ONLY test on Raspbian. We provide two methods for download:

Method 1: Use Git Clone (Recommended)

Log into Raspberry Pi and then change directory to /home/pi.

cd /home/pi/

Note

cd to change to the intended directory from the current path.
Informally, here is to go to the path /home/pi/.

Clone the repository from GitHub.

git clone https://github.com/sunfounder/electronic-kit.git

Method 2: Download the Code.

Download the source code from GitHub:
https://github.com/sunfounder/electronic-kit.git.

Lessons

	Lesson 1 Blinking LED

	Lesson 2 Flowing LED Lights

	Lesson 3 Breathing LED

	Lesson 4 RGB LED

	Lesson 5 Controlling LED by Button

	Lesson 6 Tilt Switch

	Lesson 7 Slide Switch

	Lesson 8 Relay

	Lesson 9 4N35

	Lesson 10 Active Buzzer

	Lesson 11 Doorbell

	Lesson 12 Passive Buzzer

	Lesson 13 Button Piano

	Lesson 14 Quiz Buzzer System

	Lesson 15 NE555 Timer

	Lesson 16 Servo

	Lesson 17 LCD1602

	Lesson 18 Driving LEDs by 74HC595

	Lesson 19 7-segment

	Lesson 20 Traffic Light

Lesson 1 Blinking LED

Introduction

In this lesson, with Raspberry Pi, we will learn how to make a blinking
LED by programming. By the way, you can get many interesting phenomena
by applying LED. Now get to start and you will enjoy the fun of DIY at
once!

Newly Added Components

[image: _images/image1941.png]

Components

Note

This table gives the necessary product components of all lessons.

In the following lessons, if there is no newly added component, the
table will not appear again; instead, the list of newly added components
will present for you.

[image: _images/image1951.png]

Principle

Breadboard

A breadboard is a construction base for prototyping of electronics. It
is used to build and test circuits quickly before finishing any circuit
design. And it has many holes into which components mentioned above can
be inserted like ICs and resistors as well as jumper wires. The
breadboard allows you to plug in and remove components easily.

The picture shows the internal structure of a half+ breadboard. Although
these holes on the breadboard appear to be independent of each other,
they are actually connected to each other through metal strips
internally.

[image: _images/image60.png]
Resistor

Resistor is an electronic element that can limit the branch current. A
fixed resistor is a kind of resistor whose resistance cannot be changed,
while that of a potentiometer or a variable resistor can be adjusted.

Fixed resistor is applied in this kit. In the circuit, it is essential
to protect the connected components. The following pictures show a real
object, 220Ω resistor and two generally used circuit symbols of
resistor. Ω is the unit of resistance and the larger units include KΩ,
MΩ, etc. Their relationship can be shown as follows: 1 MΩ=1000 KΩ, 1 KΩ
= 1000 Ω, which means 1 MΩ = 1000,000 Ω = 10^6 Ω.

[image: _images/image1961.png]
Normally, the resistance can be marked directly, in color code, and by
character. The resistors offered in this kit are marked by different
colors. Namely, the bands on the resistor indicate the resistance.

When using a resistor, we need to know its resistance first. Here are
two methods: you can observe the bands on the resistor, or use a
multimeter to measure the resistance. You are recommended to use the
first method as it is more convenient and faster.

As shown in the card, each color stands for a number.

[image: _images/image65.jpeg]
LED

Semiconductor light-emitting diode is a type of component which can turn
electric energy into light energy via PN junctions. In terms of
wavelength, it can be categorized into laser diode, infrared
light-emitting diode and visible light-emitting diode, known as
light-emitting diode (LED).

[image: _images/image1971.png]
Diode has unidirectional conductivity, so the current flow will be as
the arrow indicates in figure circuit symbol. You can only provide the
anode with a positive power and the cathode with a negative one. Thus
the LED will light up.

An LED has two pins. The longer one is anode, and the shorter one,
cathode. Pay attention not to connect them inversely. There is fixed
forward voltage drop in the LED, so it cannot be connected with the
circuit directly because the supply voltage can outweigh this drop and
cause the LED to be burnt. The forward voltage of the red, yellow, and
green LED is 1.8 V and that of the white one is 2.6 V. Most LEDs can
withstand a maximum current of 20 mA, so we need to connect a current
limiting resistor in series.

The formula of the resistance value is as follows:

R = (Vsupply – VD)/I

R stands for the resistance value of the current limiting resistor,
Vsupply for voltage supply, VD for voltage drop and I for the working
current of the LED.

If we provide 5 Volt for the red LED, the minimum resistance of the
current limiting resistor should be: (5V-1.8V)/20mA = 160Ω. Therefore,
you need a 160Ωor larger resistor to protect the LED. You are
recommended to use the 220Ω resistor offered in the kit.

Jumper Wires

Wires that connect two terminals are called jumper wires. There are
various kinds of jumper wires. Here we focus on those used in
breadboard. Especially, they are used to transfer electrical signals
from anywhere on the breadboard to the input/output pins of a
microcontroller.

Jump wires are fitted by inserting their “end connectors” into the slots
provided in the breadboard, beneath whose surface there are a few sets
of parallel plates that connect the slots in groups of rows or columns
depending on the area. The “end connectors” are inserted into the
breadboard, without soldering, in the particular slots that need to be
connected in the specific prototype.

There are three types of jumper wire: Female-to-Female, Male-to-Male,
and Male-to-Female.

[image: _images/image1981.png]
More than one type of them may be used in a project. The color of the
jump wires is different but it doesn’t mean their function is different
accordingly; it’s just designed as this way to better identify the
connection between each circuit.

Schematic Diagram

In this experiment, connect a 220Ω resistor to the anode (the long pin
of the LED), then the resistor to Pin11 of Raspberry Pi, and connect the
cathode (the short pin) of the LED to GND. Therefore, to turn on a
LED, we need to make pin11 high level. We can get this phenomenon by
programming.

Note: Pin11 refers to the 11th pin of the Raspberry Pi from left to
right, and its corresponding wiringPi and BCM pin numbers are shown in
the following table.

In the C language related content, we make GPIO 0 equivalent to 0 in the
wiringPi. Among the Python language related content, BCM 17 is 17 in the
BCM column of the following table. At the same time, they are the same
as the 11th pin on the Raspberry Pi Physical, Pin 11.

[image: _images/image1991.png]

Build the Circuit

Note

the pin with a curve is the anode of the LED.

[image: _images/image72.png]

For C Language Users:

Command

1. Go to the folder of the code.

If you use a monitor, you’re recommended to take the following
steps.

Go to /home/pi/ and find the folder
electronic-kit/for-raspberry-pi.

Find c in the folder, right-click on it and select Open in
Terminal.

[image: _images/image73.png]
Then a window will pop up as shown below. So now you’ve entered the path
of the code 1_BlinkingLed.c

[image: _images/image74.png]
In the following lessons, we will use command to enter the code file
instead of right-clicking. But you can choose the method you prefer.

If you log into the Raspberry Pi remotely, use “cd” to change
directory:

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_1_BlinkingLed

Note

Change directory to the path of the code via cd in this
experiment.

[image: _images/image75.png]
In either way, now you are in the folder Lesson_1_BlinkingLed. The
subsequent procedures based on these two methods are the same. Let’s
move on.

2. Compile the code.

gcc 1_BlinkingLed.c -o BlinkingLed -lwiringPi

Note

gcc is GNU Compiler Collection. Here, its functions like compiling the C language file 1_BlinkingLed.c
and outputting an executable file. In the command, -o means outputting (the character immediatelyfollowing -o is
the filename output after compilation, and an executable named BlinkingLed
will generate here) and -lwiringPi is to load the library wiringPi (l is the abbreviation of library).

[image: _images/image76.png]
3. Run the executable file output in the previous step:

sudo ./BlinkingLed

Note

To control the GPIO, you need to run the program by the command,
sudo(superuser do). The command “./” indicates the
current directory. The whole command is to run the BlinkingLed in
the current directory.

[image: _images/image77.png]
As the code runs, you will see the LED blinking. You can press Ctrl +
C to stop running the current code.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

4. If you want to edit the code file 1_BlinkingLed.c, type the
following command to open 1_BlinkingLed.c .

nano 1_BlinkingLed.c

Note

nano is a text editor tool. The command is used to open the
code file 1_BlinkingLed.c by this tool.

Code

The program code is shown as follows:

#include <wiringPi.h>
#include <stdio.h>
#define LedPin 0

int main(void)
{
 // When initialize wiring failed, print message to screen
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(LedPin, OUTPUT);

 while(1){
 // LED off
 digitalWrite(LedPin, LOW);
 printf("...LED off\n");
 delay(500);
 // LED on
 digitalWrite(LedPin, HIGH);
 printf("LED on...\n");
 delay(500);
 }

 return 0;
}

Code Explanation

#include <wiringPi.h>

The hardware drive library is designed for the C language of Raspberry Pi.
Adding this library is conducive to the
initialization of hardware,and the output of I/O ports, PWM, etc.

#include <stdio.h>

Standard I/O library. The printf function used for printing the
data displayed on the screen is realized by this
library. There are many other performance functions for you to explore.

#define LedPin 0

Assign GPIO 0 to LedPin that represents GPIO 0 in the code later.

8. if (wiringPiSetup() == -1){

9. printf("setup wiringPi failed !");

10. return 1;

This initializes wiringPi library and assumes that the
calling program is going to be using the wiringPi pin numbering scheme.
This function needs to be called with root privileges.
When initialize wiring failed, print message to screen.

13. pinMode(LedPin, OUTPUT);

This sets the mode of a pin to either INPUT, OUTPUT, PWM_OUTPUT or
GPIO_CLOCK. Note that only wiringPi pin 1 (BCM_GPIO 18) supports
hardware PWM output, you can also set other pins to PWM output using the softPWM library.
Only wiringPi pin 7 (BCM_GPIO 4) supports CLOCK output modes.
Here we set LedPin as OUTPUT mode to write value to it.

17. digitalWrite(LedPin, LOW);

Writes the value HIGH or LOW (1 or 0) to the given
pin which must have been previously set as OUTPUT.
On Raspberry Pi, when the output voltage is less than 0.4V,
by default, it is low level, LOW, and when the voltage is
greater than 2.4V, it is high level, HIGH. Since the anode
of LED is connected to GPIO 0, thus the LED will light up
if GPIO 0 is set high. On the contrary, set GPIO 0 as low
level, digitalWrite (LedPin, LOW), LED will go out.

18. printf("...LED off\n");

The printf function is a standard library function and its
function prototype is in the header file “stdio.h”. The
general form of the call is: printf(“format control string”,
output table columns). The format control string is used to specify
the output format, which is divided into format string and non-format
string. The format string starts with “%” followed by format characters
such as “%d”for decimal integer output. Non-format strings are printed as prototypes. What is used here is a non-format string,
followed by “n” that is a newline character, representing
automatic line wrapping after printing a string.

19. delay(500);

This is a function that suspends the program for a period of
time. And the speed of the program is determined by our
hardware. Here we turn on or off the LED. If there is no
delay function, the program will run the whole program very
fast and continuously loop and we can hardly observe the phenomenon.
So we need the delay function to help us write and debug the
program. delay (500) keeps the current HIGH or LOW state for 500ms(0.5s).

26. return 0;

Usually, it is placed in the last position of the main function,
indicating that the function returns 0 after executing the function.

For Python Language Users

If you use a monitor, you’re recommended to take the following
steps.

Find 1_BlinkingLed.py and double click it to open the file.

[image: _images/image79.png]
Click Run ->Run Module in the window and the following
contents will appear.

[image: _images/image80.png]
To stop it from running, just click the X button on the top right
corner to close it and then you’ll back to the code. If you modify the
code, before clicking Run Module (F5) you need to save it first.
Then you can see the results.

If you log into the Raspberry Pi remotely, type in the command:

cd /home/pi/electronic-kit/for-raspberry-pi/python

Note

Change directory to the path of the code via cd in this experiment.

[image: _images/image81.png]
2. Run the code.

sudo python3 1_BlinkingLed.py

Note

Here, sudo means superuser do, and the command python3 means to run the file by the programming language, Python 3.0.

[image: _images/image82.png]
As the code runs, you will see the LED blinking. You can press
Ctrl+C to stop running the current code.

3. If you want to edit the code file 1_BlinkingLed.c, type the
following command to open 1_BlinkingLed.c

nano 1_BlinkingLed.py

Note

nano is a text editor tool. The command is used to open thecode file 1_BlinkingLed.c by this tool.

[image: _images/image83.png]

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

The following is the program code:

import RPi.GPIO as GPIO
import time

Set BCM 17 as LED pin
LedPin = 17

Define a setup function for some setup
def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.LOW)

Define a main function for main process
def main():
 while True:
 print ('...LED ON')
 # Turn on LED
 GPIO.output(LedPin, GPIO.HIGH)
 time.sleep(0.5)
 print ('LED OFF...')
 # Turn off LED
 GPIO.output(LedPin, GPIO.LOW)
 time.sleep(0.5)

Define a destroy function for clean up everything after the script finished
def destroy():
 # Turn off LED
 GPIO.output(LedPin, GPIO.LOW)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

1.import RPi.GPIO as GPIO

In this way, import the RPi.GPIO library, then define a
variable, GPIO to replace RPI.GPIO in the following code.

2.import time

Import time library to help use delay function in the following program.

5.LedPin = 17

LED connects to the pin 11 of the board, namely, the BCM 17 of the Raspberry Pi.

9. GPIO.setmode(GPIO.BCM)

There are two ways of numbering the I/O pins on a Raspberry Pi
within RPi.GPIO: BOARD numbers and BCM numbers.
In our lessons, what we use is BCM numbering method.

10. GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.LOW)

You need to set up every channel you use as input mode or
output mode. Here we set the mode of LedPin to GPIO.OUT,
and initial level to LOW(0v).

17. GPIO.output(LedPin, GPIO.HIGH)

Set LedPin to output high level to light up LED.

18. time.sleep(0.5)

Delay for 0.5 second. Here, the statement is similar to delay function in C language, the unit is second.

32.if __name__ == '__main__':
33. setup()
34. try:
35. main()
36. # When 'Ctrl+C' is pressed, the program
37. # destroy() will be executed.
38. except KeyboardInterrupt:
39. destroy()

This is the general running structure of the code. When the
program starts to run, it initializes the pin by running the setup(),
and then runs the code in the main() function to
set the pin to high and low levels. When ‘Ctrl+C’ is pressed, the program,
destroy() will be executed.

Phenomenon Picture

[image: _images/image84.jpeg]

Lesson 2 Flowing LED Lights

Introduction

In this lesson, we will learn how to make eight LEDs blink as flowing
water based on Raspberry Pi.

Newly Added Components

[image: _images/image2001.png]

Schematic Diagram

In this experiment, connect 220Ωresistors to the anode (the longer
pin of the LED) respectively, then the resistors to Pin 11, 12, 13,
15, 16, 18, 22 and 24 of Raspberry Pi, and connect the cathode
(the short pin) of the LEDs to GND. We can see from the schematic
diagram that the anode of LED connect to a current-limiting resistor and
then to Raspberry Pi. Therefore, to turn on an LED, we need to make pins
high level. This process can be realized by programming.

[image: _images/image2011.png]

Build the Circuit

[image: _images/image2021.png]

For C Language Users:

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_2_FlowingLedLights

2. Compile the code.

gcc 2_FlowingLedLights.c -lwiringPi

Note

When using the gcc command, if you do not use -o,
it will automatically output as a.out.

3. Run the executable file.

sudo ./a.out

Now, you will see these 8 LEDs are lit one by one from left
to right, and then one by one from right to left.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

const int LedPin[]={0,1,2,3,4,5,6,10}; //Define 8 LED pin

int main(void)
{
 // When initialize wiring failed, print message to screen
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }

 for(int j=0;j<8;j++)
 {
 pinMode(LedPin[j], OUTPUT);// Set LedPin as output to write value to it.
 digitalWrite(LedPin[j], LOW);
 }

 while(1){
 for(int i=0;i<8;i++)
 {
 // LED on
 digitalWrite(LedPin[i], HIGH);
 delay(100);
 }
 for(int i=7;i>-1;i--)
 {
 // LED off
 digitalWrite(LedPin[i], LOW);
 delay(100);
 }
 }

 return 0;
}

Code Explanation

4.const int LedPin[]={0,1,2,3,4,5,6,10};

Create an array, LedPin to define the eight LEDs then
connect them to GPIO0 ~ GPIO6, GPIO10 respectively.

14. for(int j=0;j<8;j++)
15. {
16. pinMode(LedPin[j], OUTPUT);
17. digitalWrite(LedPin[j], LOW);
18. }

Use a for loop to set all 8 pins connected
to LEDs to OUTPUT mode and LOW level.

21. for(int i=0;i<8;i++)
22. {
23. // LED on
24. digitalWrite(LedPin[i], HIGH);
25. delay(100);
26. }

Light up the LEDs in GPIO0~6 and GPIO10 successively.
i increases progressively from 0 to 7, LED0 to LED7
changes accordingly, making it like a flowing LED light
from left to right.

27. for(int i=7;i>-1;i--)
28. {
29. // LED off
30. digitalWrite(LedPin[i], LOW);
31. delay(100);
32. }

Close the LEDs in GPIO0~6 and GPIO10 successively. i
increases progressively from 7
to 0, LED0 to LED7 changes accordingly,
making it like a flowing LED light from right to left.

For Python Language Users

Command

1. Go to the folder of the code

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 2_FlowingLed.py

Now, you will see these 8 LEDs are lit one by one from left to right,
and then one by one from right to left.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

pins = [17,18,27,22,23,24,25,8]

Define a setup function for some setup
def setup():
 GPIO.setmode(GPIO.BCM)
 for i in range(0, 8, 1):
 GPIO.setup(pins[i], GPIO.OUT, initial=GPIO.LOW)

Define a main function for main process
def main():
 while True:
 # print ('...LED ON')
 # Turn on LED
 for i in range(0, 8, 1):
 GPIO.output(pins[i], GPIO.HIGH)
 time.sleep(0.1)

 # print ('LED OFF...')
 # Turn off LED
 for i in range(7, -1, -1):
 GPIO.output(pins[i], GPIO.LOW)
 time.sleep(0.1)

Define a destroy function for clean up everything after the script finished
def destroy():
 # Turn off LED
 for i in range(0, 8, 1):
 GPIO.output(pins[i], GPIO.LOW)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

9. for i in range(0, 8, 1):
10. GPIO.setup(pins[i], GPIO.OUT, initial=GPIO.LOW)

Use a for loop to set all 8 pins connected to LEDs to output mode
and LOW level.

17. for i in range(0, 8, 1):
18. GPIO.output(pins[i], GPIO.HIGH)
19. time.sleep(0.1)

Variable i increases progressively from 0 to 8,
increasing by 1 every time. Accordingly, set the pins in the array
pins[i] to HIGH respectively to light up the LEDs and the
lighting time is 0.1s. Then, you will see 8 LEDs light up one
by one.

23. for i in range(7, -1, -1):
24. GPIO.output(pins[i], GPIO.LOW)
25. time.sleep(0.1)

Variable i decreases progressively from 7 to -1,
decreasing by 1 every time. Then LED0~LED7 change accordingly, making
it like a flowing LED light from right to left.

Phenomenon Picture

[image: _images/image2031.png]

Lesson 3 Breathing LED

Introduction

In this lesson, we will try something interesting - gradually increase
or decrease the luminance of an LED with PWM, just like breathing. So we
give it a magical name - Breathing LED.

Newly Added Components

[image: _images/image2041.png]

Principle

PWM

Pulse Width Modulation, or PWM, is a technique for getting analog
results with digital means. Digital control is used to create a square
wave, a signal switched between on and off. This on-off pattern can
simulate voltages in between full on (5 Volts) and off (0 Volts) by
changing the portion of the time the signal spends on versus the time
that the signal spends off. The duration of “on time” is called pulse
width. To get varying analog values, you can change or modulate this
width. If you repeat this on-off pattern fast enough with some device,
an LED for example, the result would be like this: the signal is a
steady voltage between 0 and 5v controlling the brightness of the LED.

Duty Cycle

A duty cycle is the percentage of one period in which a signal is
active. A period is the time it takes for a signal to complete an
on-and-off cycle. As a formula, a duty cycle may be expressed as:

D=T/Px100%

Where is the duty cycle, is the time the signal is active, and is the
total period of the signal. Thus, a 60% duty cycle means the signal is
on 60% of the time but off 40% of the time. The “on time” for a 60% duty
cycle could be a fraction of a second, a day, or even a week, depending
on the length of the period.

[image: _images/image90.jpeg]

Schematic Diagram

[image: _images/image262.png]
[image: _images/image263.png]

Build the Circuit

[image: _images/image92.png]

For C Language Users:

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_3_BreathingLed

2. Compile the code.

gcc 3_BreathingLed.c -lwiringPi

3. Run the executable file.

sudo ./a.out

As the code runs, you can see that the brightness of the LED becomes
stronger or weaker.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <stdio.h>
#include <wiringPi.h>
#include <softPwm.h>

#define LedPin 1

int main (void)
{
// When initialize wiring failed, print message to screen
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }

 softPwmCreate(LedPin, 0, 100);

 int i;

 while(1) // loop forever
 {
 for(i=0;i<100;i++){ // i,as the value of pwm, increases progressively during 0-1024.
 softPwmWrite(LedPin, i);
 delay(10);
 }

 for(i=100;i>=0;i--){
 softPwmWrite(LedPin, i);
 delay(10);
 }
 }
 return 0 ;
}

Code Explanation

#include <softPwm.h>

WiringPi includes a software-driven PWM library of
outputting a PWM signal on any of the Raspberry Pi’s
GPIO pins. To maintain a low CPU usage, the minimum
pulse width is 100μS. That combined with the default suggested range of
100 gives a PWM frequency of 100Hz. Within these
limitations, control of a light/LED or a motor is very achievable.

15. softPwmCreate(LedPin, 0, 100);

The function is to use software library to create a PWM pin, set its period between 0x100us-100x100us.
The prototype of the function softPwmCreate(LedPinRed, 0, 100) is as follows：

int softPwmCreate(int pin,int initialValue,int pwmRange);

pin: Any GPIO pin of Raspberry Pi can be set as a PWM pin.

initialValue: The initial pulse width is that initialValue times100us.

pwmRange: The period of PWM is that pwmRange times100us.

22. softPwmWrite(LedPin, i);

The function is used to write the PWM value i to the LedPin.

The prototype of the function softPwmWrite(LedPinBlue, b_val) is as follows：

void softPwmWrite (int pin, int value) ;

pin: Any GPIO pin of Raspberry Pi can be set as a PWM pin.

Value: The pulse width of PWM is value times 100us. Note that value can only be less than pwmRange
defined previously, if it is larger than pwmRange, the value will be given a fixed value, pwmRange.

23. delay(10);

Wait for 10ms, interval time between the changes indicates the speed of breathing.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 3_BreathingLed.py

As the code runs, you can see that the brightness of the LED becomes
stronger or weaker.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

LedPin = 18

def setup():
 global pLed
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.LOW)
 pLed = GPIO.PWM(LedPin, 1000)
 pLed.start(0)

def main():
 # Set increase/decrease step
 step =2
 delay = 0.05
 while True:
 # Increase duty cycle from 0 to 100
 for dc in range(0, 101, step):
 pLed.ChangeDutyCycle(dc)
 print (' ++ Duty cycle: %s'%dc)
 time.sleep(delay)
 time.sleep(1)

 # decrease duty cycle from 100 to 0
 for dc in range(100, -1, -step):
 # Change duty cycle to dc
 pLed.ChangeDutyCycle(dc)
 print (' -- Duty cycle: %s'%dc)
 time.sleep(delay)
 time.sleep(1)

def destroy():
 # Stop pLed
 pLed.stop()
 # Turn off LED
 GPIO.output(LedPin, GPIO.LOW)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

10. pLed = GPIO.PWM(LedPin, 1000)

To create a PWM instance. Set pLed as pwm output and frequence to 1K Hz.

11. pLed.start(0)

Set pLed begin with value 0.

19. for dc in range(0, 101, step):
20. # Change duty cycle to dc
21. pLed.ChangeDutyCycle(dc)
22. print (' ++ Duty cycle: %s'%dc)
23. time.sleep(delay)

Increase the duty cycle by 2 at a time, from 0 to
101, and you’ll see the LED getting brighter and brighter.

26. for dc in range(100, -1, -step):
27. pLed.ChangeDutyCycle(dc)
28. print (' -- Duty cycle: %s'%dc)
29. time.sleep(delay)

Similarly, when the duty cycle is reduced by 2 from
100 to -1, the LED brightness will be dimmer and dimmer.

Phenomenon Picture

[image: _images/image84.jpeg]

Lesson 4 RGB LED

Introduction

Previously we’ve used the PWM technology to control an LED’s brightness.
In this lesson, we will use it to control an RGB LED to flash various
kinds of colors.

Newly Added Components

[image: _images/image2061.png]

Principle

RGB LED

[image: _images/image207.png]
The three primary colors of the RGB LED can be mixed into various colors
by brightness. The brightness of LED can be adjusted with PWM. Raspberry
Pi has only one channel for hardware PWM output, but it needs three
channels to control the RGB LED, which means it is difficult to control
the RGB LED with the hardware PWM of Raspberry Pi. Fortunately, the
softPwm library simulates PWM (softPwm) by programming. You only
need to include the header file softPwm.h (for C language users),
and then call the API it provides to easily control the RGB LED by
multi-channel PWM output, so as to display all kinds of color.

Schematic Diagram

After connecting the pins of R, G, and B to a current
limiting resistor, connect them to the pin 11, pin 12, and pin 13
respectively. The longest pin (GND) of the LED connects to the GND of
the Raspberry Pi. When the three pins are given different PWM values,
the RGB LED will display different colors.

[image: _images/image264.png]

Build the Circuit

[image: _images/image98.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_4_RGBLed

2. Compile the code.

gcc 4_rgbLed.c -lwiringPi

3. Run the executable file.

sudo ./a.out

After the code runs, you will see that RGB displays red, green, blue,
yellow, pink, and cyan.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>

#define uchar unsigned char

#define LedPinRed 0
#define LedPinGreen 1
#define LedPinBlue 2

// define function used for initializing I/O port to output for pwm.
void ledInit(void){
 softPwmCreate(LedPinRed, 0, 100);
 softPwmCreate(LedPinGreen,0, 100);
 softPwmCreate(LedPinBlue, 0, 100);
}

void ledColorSet(uchar r_val, uchar g_val, uchar b_val){
 softPwmWrite(LedPinRed, r_val);
 softPwmWrite(LedPinGreen, g_val);
 softPwmWrite(LedPinBlue, b_val);
}

int main(void){
 if(wiringPiSetup() == -1){ //when initialize wiring failed, printf message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 ledInit();

 while(1){
 printf("Red\n");
 ledColorSet(0xff,0x00,0x00); //red
 delay(500);
 printf("Green\n");
 ledColorSet(0x00,0xff,0x00); //green
 delay(500);
 printf("Blue\n");
 ledColorSet(0x00,0x00,0xff); //blue
 delay(500);
 printf("Yellow\n");
 ledColorSet(0xff,0xff,0x00); //yellow
 delay(500);
 printf("Purple\n");
 ledColorSet(0xff,0x00,0xff); //purple
 delay(500);
 printf("Cyan\n");
 ledColorSet(0xc0,0xff,0x3e); //cyan
 delay(500);
 }

 return 0;
}

Code Explanation

12.void ledInit(void){
13. softPwmCreate(LedPinRed, 0, 100);
14. softPwmCreate(LedPinGreen,0, 100);
15. softPwmCreate(LedPinBlue, 0, 100);
16.}

Create a function to set the LedPinRed，LedPinGreen and LedPinBlue as PWM pins,
then set their period between 0x100us-100x100us.

The prototype of the function softPwmCreate(LedPinRed, 0, 100) is as follows：

int softPwmCreate(int pin,int initialValue,int pwmRange);

pin: Any GPIO pin of Raspberry Pi can be set as a PWM pin.

initialValue: The initial pulse width is that initialValue times100us.

pwmRange: the period of PWM is that pwmRange times100us.

18.void ledColorSet(uchar r_val, uchar g_val, uchar b_val){
19. softPwmWrite(LedPinRed, r_val);
20. softPwmWrite(LedPinGreen, g_val);
21. softPwmWrite(LedPinBlue, b_val);
22.}

This function is to set the colors of the LED. Using RGB,
the formal parameter r_val represents
the luminance of the red one, g_val of the green one, b_val of the blue one.

The prototype of the function softPwmWrite(LedPinBlue, b_val) is as follows：

void softPwmWrite (int pin, int value) ;

pin: Any GPIO pin of Raspberry Pi can be set as a PWM pin.

Value: The pulse width of PWM is value times 100us. Note that value can only be less than
pwmRange defined previously, if it is larger than pwmRange,
the value will be given a fixed value, pwmRange.

30. ledInit();

Call the ledInit() function in the main function to initialize the LED.

34. ledColorSet(0xff,0x00,0x00); //red

Call the function defined before. Write 0xff into LedPinRed and 0x00 into
LedPinGreen and LedPinBlue.

Only the Red LED lights up after running this code. If you want to light up
LEDs in other colors, just modify the parameters.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 4_rgbLed.py

After the code runs, you will see that RGB displays red,
green, blue, yellow, pink, and cyan.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

COLOR = [0xFF0000, 0x00FF00, 0x0000FF, 0xFFFF00, 0xFF00FF, 0x00FFFF]
pins = {'Red':17, 'Green':18, 'Blue':27}

def setup():
 global p_R, p_G, p_B
 GPIO.setmode(GPIO.BCM)
 for i in pins:
 GPIO.setup(pins[i], GPIO.OUT, initial=GPIO.LOW)

 # Set all led as pwm channel and frequece to 2KHz
 p_R = GPIO.PWM(pins['Red'], 2000)
 p_G = GPIO.PWM(pins['Green'], 2000)
 p_B = GPIO.PWM(pins['Blue'], 2000)

 # Set all begin with value 0
 p_R.start(0)
 p_G.start(0)
 p_B.start(0)

def MAP(x, in_min, in_max, out_min, out_max):
 return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

def setColor(color):
 # Devide colors from 'color' veriable
 R_val = (color & 0xFF0000) >> 16
 G_val = (color & 0x00FF00) >> 8
 B_val = (color & 0x0000FF) >> 0

 # Map color value from 0~255 to 0~100
 R_val = MAP(R_val, 0, 255, 0, 100)
 G_val = MAP(G_val, 0, 255, 0, 100)
 B_val = MAP(B_val, 0, 255, 0, 100)

 # Change the colors
 p_R.ChangeDutyCycle(R_val)
 p_G.ChangeDutyCycle(G_val)
 p_B.ChangeDutyCycle(B_val)

 print ("color_msg: R_val = %s, G_val = %s, B_val = %s"%(R_val, G_val, B_val))

def main():
 while True:
 for color in COLOR:
 setColor(color)
 time.sleep(0.5)

def destroy():
 # Stop all pwm channel
 p_R.stop()
 p_G.stop()
 p_B.stop()
 # Turn off all LEDs
 GPIO.output(pins, GPIO.LOW)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

14. p_R = GPIO.PWM(pins['Red'], 2000)

This statement is used to set the pin to a specific PWM
frequency, in this case 2000 Hz.

23.def MAP(x, in_min, in_max, out_min, out_max):
24. return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min

Define a map function for mapping values. For instance, x=50, in_min=0,
in_max=255, out_min=0, out_max=100. After the map
function mapping, it returns (50-0) * (100-0)/(255-0) +0=19.6, meaning that 50
in 0-255 equals 19.6 in 0-100.

26.def setColor(color):
27. R_val = (color & 0xFF0000) >> 16
28. G_val = (color & 0x00FF00) >> 8
29. B_val = (color & 0x0000FF) >> 0

Create a setColor() function to assign different value to the
three variables: R_val, G_val, B_val. Input color should be hexadecimal
with red value, blue value, green value. Assign the first two values of the
hexadecimal to R_val, the middle two to G_val, assign the last two values to
B_val, please refer to the shift operation of the hexadecimal for
details. For example, color=0xFF00FF, then R_val=(0xFF00FF & 0xFF0000)>>16 = 0xFF,
G_val = 0x00, B_val=0xFF.

32.# Map color value from 0~255 to 0~100
33. R_val = MAP(R_val, 0, 255, 0, 100)
34. G_val = MAP(G_val, 0, 255, 0, 100)
35. B_val = MAP(B_val, 0, 255, 0, 100)
36.
37. # Change the colors
38. p_R.ChangeDutyCycle(R_val)
39. p_G.ChangeDutyCycle(G_val)
40. p_B.ChangeDutyCycle(B_val)

Map the RGB value from 0 - 255 to 0 - 100. After that, get a value.
Then set it to be the duty cycle of R_val,
G_val and B_val, and the RGB LED displays corresponding colors.

46. for color in COLOR:
47. setColor(color)
48. time.sleep(0.5)

Assign every item in the COLOR list to
the color respectively and change the color
of the RGB LED via the setColor() function.

Phenomenon Picture

[image: _images/image99.jpeg]

Lesson 5 Controlling LED by Button

Introduction

In this lesson, we will learn how to turn an LED on or off by a button.

Newly Added Components

[image: _images/image2091.png]

Principle

Button

Button is a common component used to control electronic devices. It is
usually used as switch to connect or break circuits. Although buttons
come in a variety of sizes and shapes, the one used here is a 6mm
mini-button as shown in the following pictures.

Two pins on the same side are connected, which is shown below:

[image: _images/image102.png]
The symbol shown as below is usually used to represent a button in
circuits.

[image: _images/image2101.png]
When the button is pressed, the 4 pins are connected, thus closing the
circuit.

Schematic Diagram

When the button is pressed once, pin 32 is 3.3V (HIGH). Set the pin
11(integrated with an LED) as high level by programming at the same
time. Then press the button again and set pin 11 to Low. So we will see
the LED light on and off alternately as the button is pressed many
times.

[image: _images/image2111.png]
[image: _images/image265.png]

Build the Circuit

[image: _images/image267.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_5_Controlling_Led_by_Button

2. Compile the code.

gcc 5_Button.c -lwiringPi

3. Run the executable file.

sudo ./a.out

When you press the button for the first time, the LED lights up. When
the button is pressed again, the LED lights off.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define LedPin 0
#define ButtonPin 26
int state = 0;

int main(void){
 // When initialize wiring failed, print message to screen
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(LedPin, OUTPUT);
 pinMode(ButtonPin, INPUT);
 pullUpDnControl(ButtonPin, PUD_DOWN);

 while(1){
 // Indicate that button has pressed down
 if(digitalRead(ButtonPin) == 1)
 {
 delay(10);
 if(digitalRead(ButtonPin) == 1)
 {
 state ++;
 if(state%2 == 1)
 {
 digitalWrite(LedPin,HIGH);
 delay(100);
 }
 if(state%2 == 0)
 {
 digitalWrite(LedPin,LOW);
 delay(100);
 }
 }
 }
 }
 return 0;
}

Code Explanation

6. int state = 0;

Define a variable state to record the number of times
it is pressed and the initial number of times is 0.

15. pinMode(LedPin, OUTPUT);
16. pinMode(ButtonPin, INPUT);

Set the LedPin to OUTPUT mode, ButtonPin to INPUT mode.

17. pullUpDnControl(ButtonPin, PUD_DOWN);

When the button is not pressed, ButtonPin is in suspension at which time
the read value is changing. To enable ButtonPin to output a stable low level,
PUD_DOWN is added to the code, keeping ButtonPin at the forced
pull-down state till the button is pressed.

21. if(digitalRead(ButtonPin) == 1)
22. {
23. delay(10);
24. if(digitalRead(ButtonPin) == 1)
25. {

Usually the buttons we use are mechanical buttons,
so in the process of pressing down and releasing, there
will be no direct change from 0 to 1, but will be more
than 10ms of level jitter. In order to ensure that the
program only responds to the button once when it is closed
or broken, the jitter elimination of the button must be
carried out. An if function is used to detect whether the
button is pressed. When the signal of the button is pressed is
detected, a delay of 10ms is used to eliminate the possibility of
false judgment, and another if function
is used to detect again. If both if conditions are met, confirm
that it is a button press, and then execute the program in the if.

26. state ++;

If the button is pressed, the number of times
it is pressed is increased by one. (state ++
is the same as state = state+1).

27. if(state%2 == 1)
28. {
29. digitalWrite(LedPin,HIGH);
30. delay(100);
31. }

% is a modulo operator in C language; state%2 is that state is
divided by 2 to return the remainder. If state=17, then state%2 =1.
Here, determine whether state%2 is equal to 1. If it is,
it means that the number of times of pressing the button
is a singular number, and then turn on the LED.

32. if(state%2 == 0)
33. {
34. digitalWrite(LedPin,LOW);
35. delay(100);
36. }

Here, judge whether state%2 is equal to 0.
If so, it means that the number of times the button is
pressed is an even number, and then turn off the LED.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 5_Button.py

When you press the button for the first time, the LED lights up. When
the button is pressed again, the LED lights off.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

LedPin = 17
BtnPin = 12
Led_status = False

Define a setup function for some setup
def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(BtnPin, GPIO.IN)
 GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.LOW)
 GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=swLed)

Define a callback function for button callback
def swLed(ev=None):
 global Led_status
 Led_status = not Led_status
 GPIO.output(LedPin, Led_status)

Define a main function for main process
def main():
 while True:
 # Don't do anything.
 time.sleep(1)

Define a destroy function for clean up everything after
the script finished
def destroy():
 # Turn off LED
 GPIO.output(LedPin, GPIO.LOW)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

6. Led_status = False

Set a variable Led_status to record the
current status of the LED; when Led_status is
True, it indicates that the current lamp is in
bright state; when Led_status is False, it means that the light is off.

11. GPIO.setup(BtnPin, GPIO.IN)

Set BtnPin as input mode to read the state of
the button to determine whether to execute
the corresponding program. Note that when GPIO.setup sets
the pin to input mode, then there is no need to set the initial value.

12. GPIO.setup(LedPin, GPIO.OUT, initial=GPIO.LOW)

Specify an initial value for your output channel. Here the
LED is the output component,
so we set LedPin to GPIO.OUT mode. Then initialize the state of
LED to GPIO.LOW which means that the light is off.

13. GPIO.add_event_detect(BtnPin, GPIO.FALLING, callback=swLed)

The event_detected() function is designed to be used in a
loop with other things, but unlike polling it is not going
to miss the change in state of an input while the CPU is busy
working on other things. Set up a
falling detect on BtnPin, when the BtnPin pin is detected to
change from high level to low level, swLed function is called.

13.def swLed(ev=None):
14. global Led_status
15. Led_status = not Led_status
16. GPIO.output(LedPin, Led_status)

RPi.GPIO runs a second thread for callback functions. This means
that callback functions can be run at the same time as your main
program, in immediate response to an edge. Define a callback
function for button callback, execute the function after the
callback of the interrupt. When this function is executed,
the state of the LED is firstly reversed(If True, make it False,
and vice versa). Then input the function to LedPin.
And “ev = None” means that if no parameter is passed when calling
swLed, take None as the default value of ev.

Phenomenon Picture

[image: _images/image107.jpeg]

Lesson 6 Tilt Switch

Introduction

In this lesson, we’ll learn a new switch component, tilt switch. Here we
apply two LEDs to indicate the current state of tilt switch. You can
also use this kind of switch to make a sense light with the clamshell
box.

Newly Added Components

[image: _images/image213.png]

Principle

The principle is very simple. When the switch is tilted in a certain
angle, the ball inside rolls down and touches the two contacts connected
to the pins outside, thus triggering circuits. Otherwise the ball will
stay away from the contacts, thus breaking the circuits.

[image: _images/image110.jpeg]

Schematic Diagram

[image: _images/image2141.png]

Build the Circuit

[image: _images/image112.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_6_TiltSwitch

2. Compile the code.

gcc 6_Tilt.c -lwiringPi

3. Run the executable file.

sudo ./a.out

When the tilt switch is level, the green LED turns on.
If you tilt the switch, the red LED will turn on.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define TiltPin 0
#define Gpin 2
#define Rpin 3

int main(void)
{
 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(TiltPin, INPUT);
 pinMode(Gpin, OUTPUT);
 pinMode(Rpin, OUTPUT);

 while(1){

 if(1 == digitalRead(TiltPin)){
 delay(10);
 if(1 == digitalRead(TiltPin)){
 digitalWrite(Rpin, HIGH);
 digitalWrite(Gpin, LOW);
 printf("RED\n");
 }
 }
 else if(0 == digitalRead(TiltPin)){
 delay(10);
 if(0 == digitalRead(TiltPin)){
 while(!digitalRead(TiltPin));
 digitalWrite(Rpin, LOW);
 digitalWrite(Gpin, HIGH);
 printf("GREEN\n");
 }
 }
 }
 return 0;
}

Code Explanation

15. pinMode(TiltPin, INPUT);
16. pinMode(Gpin, OUTPUT);
17. pinMode(Rpin, OUTPUT);

Initialize pins, then set the
pin of tilt switch to INPUT mode,
and LEDs to OUTPUT mode.

21. if(1 == digitalRead(TiltPin)){

It is used to judge whether the tilt switch is tilted
or not. The value of TiltPin is firstly read, if it is
equal to 1, the codes inside the if() statement run;
otherwise, the codes of if are skipped.

21. if(1 == digitalRead(TiltPin)){
22. delay(10);
23. if(1 == digitalRead(TiltPin)){
24. digitalWrite(Rpin, HIGH);
25. digitalWrite(Gpin, LOW);
26. printf("RED\n");
27. }
28. }

When the tilt is tilted, the tilt switch
is on; the Raspberry Pi reads a high level at the tilt
pin, so the red LED is on and green LED off.

29. else if(0 == digitalRead(TiltPin)){
30. delay(10);
31. if(0 == digitalRead(TiltPin)){
32. while(!digitalRead(TiltPin));
33. digitalWrite(Rpin, LOW);
34. digitalWrite(Gpin, HIGH);
35. printf("GREEN\n");
36. }
37. }

When the tilt is level, the tilt switch is off;
the Raspberry Pi reads a low level at the tilt pin,
so the red LED is off and green LED on.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 6_Tilt.py

When the tilt switch is level, the green LED turns on. If you tilt the
switch, the red LED will turn on.

code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO

TiltPin = 17
Gpin = 27
Rpin = 22

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(Gpin, GPIO.OUT,initial=GPIO.HIGH)
 GPIO.setup(Rpin, GPIO.OUT,initial=GPIO.LOW)
 GPIO.setup(TiltPin, GPIO.IN)
 GPIO.add_event_detect(TiltPin, GPIO.BOTH, callback=detect, bouncetime=200)

def Led(x):
 if x == 0:
 GPIO.output(Rpin, 1)
 GPIO.output(Gpin, 0)
 if x == 1:
 GPIO.output(Rpin, 0)
 GPIO.output(Gpin, 1)

def Print(x):
 if x == 0:
 print (' *************')
 print (' * Tilt! *')
 print (' *************')

def detect(chn):
 Led(GPIO.input(TiltPin))
 Print(GPIO.input(TiltPin))

def loop():
 while True:
 pass

def destroy():
 GPIO.output(Gpin, GPIO.LOW) # Green LED off
 GPIO.output(Rpin, GPIO.LOW) # Red LED off
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

12. GPIO.add_event_detect(TiltPin, GPIO.BOTH, callback=detect, bouncetime=200)

Set up a falling detect on TiltPin, and callback function to detect.
Here bouncetime is to add rise threshold detection on the channel and
ignore edge operations less than 200ms caused by switch jitter.

13.def Led(x):
14. if x == 0:
15. GPIO.output(Rpin, 1)
16. GPIO.output(Gpin, 0)
17. if x == 1:
18. GPIO.output(Rpin, 0)
19. GPIO.output(Gpin, 1)

Define a Led() function to set the mode of the two LEDs.
When x = 0, the red LED goes on and the green light goes off;
when x = 1, the red LED goes off, the green LED goes on.
When the function is called, the mode of the LED can be set
directly with the statement Led(1) or Led(0).

28.def detect(chn):
29. Led(GPIO.input(TiltPin))
30. Print(GPIO.input(TiltPin))

This is a callback function that executes when a
trigger is detected. Assign the current TiltPin state (0 or 1)
to the Led function, that is, pass parameters to the
Led function. The Led function then performs the
corresponding operation on the LEDs.

Phenomenon Picture

[image: _images/image113.jpeg]

Lesson 7 Slide Switch

Introduction

In this lesson, we are going to use a slide switch to turn on the 2
LEDs. The slide switch is a device to connect or disconnect the circuit
by sliding its handle. They are quite common in our surroundings. Now
let’s see how it works.

Newly Added Components

[image: _images/image2151.png]

Principle

Slide Switch

[image: _images/image1151.jpeg]
Just as its name suggests, slide switch is to connect or disconnect the
circuit by sliding its switch handle so as to switch the circuit. The
common types of slide switch include single pole double throw, single
pole triple throw, double pole double throw, and double pole triple
throw and so on. Generally, it is used in circuits with a low voltage
and features flexibility and stabilization. Slide switches are commonly
used in all kinds of instruments/meters equipment, electronic toys and
other fields related.

How it works: The middle pin is fixed. When the handle is pushed to the
left, the left two pins are connected; when push it to the right, the
two pins on the right connect, thus switching circuits.

Just as its name suggests, slide switch is to connect or disconnect the
circuit by sliding its switch handle so as to switch the circuit. The
common types of slide switch include single pole double throw, single
pole triple throw, double pole double throw, and double pole triple
throw and so on. Generally, it is used in circuits with a low voltage
and features flexibility and stabilization. Slide switches are commonly
used in all kinds of instruments/meters equipment, electronic toys and
other fields related.

How it works: The middle pin is fixed. When the handle is pushed to the
left, the left two pins are connected; when push it to the right, the
two pins on the right connect, thus switching circuits.

[image: _images/image2161.png]
See the circuit symbol of slide switch and 2 is the middle pin.

[image: _images/image254.png]

Schematic Diagram

Here we use a slide switch to turn the LED on/off, which is simple.
Connect the middle pin of the switch to pin 11. Connect the left pin of
the switch to GND, the right to 3.3V. Attach the anode pins (the
longer pins) of the two LEDs to pin 13 and pin 15 respectively
after getting them connected with two 220Ω resistors. In addition,
insert the cathodes of the two LEDs into GND. Get the slide switch
connected to the left, the signal read on pin 11 is 0 (a low level), so
the LED 1 lights up; to the right, the signal read on pin 11 is 1 (a
high level), then the LED 2 turns on.

[image: _images/image2171.png]

Build the Circuit

[image: _images/image120.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_7_SlideSwitch

2. Compile the code.

gcc 7_Slider.c -lwiringPi

3. Run the executable file.

sudo ./a.out

When the slide is pulled to the right, the LED2 is on and LED1 off. If
the slide is pulled to the left, the LED1 is on and LED2 off.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define slidePin 0
#define led1 2
#define led2 3

int main(void)
{
 // When initialize wiring failed, print message to screen
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(slidePin, INPUT);
 pinMode(led1, OUTPUT);
 pinMode(led2, OUTPUT);

 while(1){
 // slide switch high, led1 on
 if(digitalRead(slidePin) == 1){
 digitalWrite(led1, HIGH);
 digitalWrite(led2, LOW);
 printf("LED1 on\n");
 delay(100);
 }
 // slide switch low, led2 on
 if(digitalRead(slidePin) == 0){
 digitalWrite(led2, HIGH);
 digitalWrite(led1, LOW);
 printf(".....LED2 on\n");
 delay(100);
 }
 }
 return 0;
}

Code Explanation

16. pinMode(slidePin, INPUT);
17. pinMode(led1, OUTPUT);
18. pinMode(led2, OUTPUT);

Initialize the pins connected to slide switch to the
INPUT mode, and initialize the LED lights to the OUTPUT mode.

22. if(digitalRead(slidePin) == 1){
23. digitalWrite(led1, HIGH);
24. digitalWrite(led2, LOW);
25. printf("LED1 on\n");
26. delay(100);
27. }

When the slide is pulled to the left, the middle pin and
left one are connected; the Raspberry Pi reads a high level at
the middle pin, so the LED1 is on and LED2 off.

28. if(digitalRead(slidePin) == 0){
29. digitalWrite(led2, HIGH);
30. digitalWrite(led1, LOW);
31. printf(".....LED2 on\n");
32. delay(100);
33. }

When the slide is pulled to the right, the middle pin
and right one are connected; the Raspberry Pi reads a
low, so the LED2 is on and LED1 off.

For Python Language Users

Command

	Go to the folder of the code

cd /home/pi/electronic-kit/for-raspberry-pi/python

	Run the code

sudo python3 7_Slider.py

When the slide is pulled to the right, the LED2 is on and LED1 off. If
the slide is pulled to the left, the LED1 is on and LED2 off.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

slidePin = 17
led1Pin = 27
led2Pin = 22

Define a setup function for some setup
def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(slidePin, GPIO.IN)
 GPIO.setup(led1Pin, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(led2Pin, GPIO.OUT, initial=GPIO.LOW)

def main():
 while True:
 # slide switch high, led1 on
 if GPIO.input(slidePin) == 1:
 print ('LED1 ON ')
 GPIO.output(led2Pin, GPIO.LOW)
 GPIO.output(led1Pin, GPIO.HIGH)

 # slide switch low, led2 on
 if GPIO.input(slidePin) == 0:
 print (' LED2 ON ')
 GPIO.output(led1Pin, GPIO.LOW)
 GPIO.output(led2Pin, GPIO.HIGH)
 time.sleep(0.5)

def destroy():
 # Turn off LED
 GPIO.output(led1Pin, GPIO.LOW)
 GPIO.output(led2Pin, GPIO.LOW)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

11. GPIO.setup(slidePin, GPIO.IN)
12. GPIO.setup(led1Pin, GPIO.OUT, initial=GPIO.LOW)
13. GPIO.setup(led2Pin, GPIO.OUT, initial=GPIO.LOW)

Initialize the pin, then set the pin connected to
slide switch to the input mode and LEDs to the output mode.

18. if GPIO.input(slidePin) == 1:
19. GPIO.output(led2Pin, GPIO.LOW)
20. GPIO.output(led1Pin, GPIO.HIGH)

When the slide is pulled to the left, the middle
pin and left one are connected;
the Raspberry Pi reads a high level at the middle pin,
so the LED1 is on and LED2 off.

24. if GPIO.input(slidePin) == 0:
25. GPIO.output(led1Pin, GPIO.LOW)
26. GPIO.output(led2Pin, GPIO.HIGH)

When the slide is pulled to the right, the
middle pin and right one are connected; the
Raspberry Pi reads a low, so the LED2 is
on and LED1 off.

Phenomenon Picture

[image: _images/image121.jpeg]

Lesson 8 Relay

Introduction

In this lesson, we will learn to use a relay. It is one of the commonly
used components in automatic control system. When the voltage, current,
temperature, pressure, etc., reaches, exceeds or is lower than the
predetermined value, the relay will connect or interrupt the circuit, to
control and protect the equipment.

Newly Added Components

[image: _images/image218.png]

Principle

Relay

As we may know, relay is a device which is used to provide connection
between two or more points or devices in response to the input signal
applied. In other words, relays provide isolation between the controller
and the device as devices may work on AC as well as on DC. However, they
receive signals from a microcontroller which works on DC hence requiring
a relay to bridge the gap. Relay is extremely useful when you need to
control a large amount of current or voltage with small electrical
signal.

There are 5 parts in every relay:

1. Electromagnet - It consists of an iron core wounded by coil of
wires. When electricity is passed through, it becomes magnetic.
Therefore, it is called electromagnet.

2. Armature - The movable magnetic strip is known as armature. When
current flows through them, the coil is energized thus producing a
magnetic field which is used to make or break the normally open (N/O) or
normally close (N/C) points. And the armature can be moved with direct
current (DC) as well as alternating current (AC).

3. Spring - When no currents flow through the coil on the
electromagnet, the spring pulls the armature away so the circuit cannot
be completed.

	Set of electrical contacts - There are two contact points:

	Normally open - connected when the relay is activated, and disconnected when it is inactive.

	Normally close - not connected when the relay is activated, and connected when it is inactive.

	Molded frame - Relays are covered with plastic for protection.

Working of Relay

The working principle of relay is simple. When power is supplied to the
relay, currents start flowing through the control coil; as a result, the
electromagnet starts energizing. Then the armature is attracted to the
coil, pulling down the moving contact together thus connecting with the
normally open contacts. So the circuit with the load is energized. Then
breaking the circuit would a similar case, as the moving contact will be
pulled up to the normally closed contacts under the force of the spring.
In this way, the switching on and off of the relay can control the state
of a load circuit.

[image: _images/image125.jpeg]
Transistor

[image: _images/image126.jpeg]
Transistor is a semiconductor device that controls current by current.
It functions by amplifying weak signal to larger amplitude signal and is
also used for non-contact switch. A transistor is a three-layer
structure composed of P-type and N-type semiconductors. They form the
three regions internally. The thinner in the middle is the base region;
the other two are both N-type or P-type ones – the smaller region with
intense majority carriers is the emitter region, while the other one is
the collector region. This composition enables the transistor to be an
amplifier.

From these three regions, three poles are generated respectively, which
are base (b), emitter (e), and collector (c). They form two P-N
junctions, namely, the emitter junction and collection junction. The
direction of the arrow in the transistor circuit symbol indicates that
of the emitter junction. Based on the semiconductor type, transistors
can be divided into two groups, the NPN and PNP ones. From the
abbreviation, we can tell that the former is made of two N-type
semiconductors and one P-type and that the latter is the opposite. See
the figure below.

[image: _images/image127.png]
When a High level signal goes through an NPN transistor, it is
energized. But a PNP one needs a Low level signal to manage it. Both
types of transistor are frequently used for contactless switches, just
like in this experiment.

Diode1N4007

[image: _images/image128.jpeg]
1N4007 is a semiconductor device for converting alternating current into
direct current. By using the one-way conductivity of the diode,
alternating current with alternating directions can be converted into a
single-direction pulse direct current.

With a positive large current, 1N4007 has a low voltage drop
(representative value 0.7 V) called as forward conduction state. If the
opposite voltage is applied, the potential barrier is increased to
withstand a high reverse voltage or to flow through a very small reverse
current (called reverse leakage current) called as a reverse blocking
state. Thus, the rectifier diode has a significant one-way conductivity.
In this lesson, we apply this characteristic of diode.

Schematic Diagram

When a high level signal is given to Pin 11, the transistor is
energized, thus making the coil of the relay conductive. Then its
normally open contact is closed, and the LED will light up. When Pin 11
is given a Low level, the LED will stay dim. In this experiment, we
apply Freewheeling Diode that connects to both ends of the relay coil in
parallel to prevent relay from breakdown or burnout caused by induced
voltage.

[image: _images/image268.png]

Build the Circuit

[image: _images/image130.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_8_Relay

2. Compile the code.

gcc 8_Relay.c -lwiringPi

3. Run the executable file.

sudo ./a.out

Now, the LED will blink, you can hear a tick-tock caused by breaking the
normally close contact and closing the normally open one.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define RelayPin 0

int main(void){
 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(RelayPin, OUTPUT);

 while(1){
 // Tick
 printf("......Relay Open \n");
 digitalWrite(RelayPin, LOW);
 delay(1000);
 // Tock
 printf("Relay Close......\n");
 digitalWrite(RelayPin, HIGH);
 delay(1000);
 }
 return 0;
}

Code Explanation

17. digitalWrite(RelayPin, LOW);

Set the I/O port RelayPin as LOW (0V), so the
transistor is not energized and the coil is not
powered. There is no electromagnetic force, so the
relay opens and the LED remains off.

21. digitalWrite(RelayPin, HIGH);

Set the I/O port as HIGH (5V) to energize the transistor.
The coil of the relay is powered and generate electromagnetic
force, and the relay closes. Then you can see the LED is lit.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 8_Relay.py

Now, the LED is blinking, you can hear a tick-tock caused by breaking
the normally closed contact and closing the normally open one.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

relayPin = 17

Define a setup function for some setup
def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(relayPin, GPIO.OUT, initial=GPIO.LOW)

Define a main function for main process
def main():
 while True:
 print ('...Relay open')
 # Tick
 GPIO.output(relayPin, GPIO.LOW)
 time.sleep(1)
 print ('Relay close...')
 # Tock
 GPIO.output(relayPin, GPIO.HIGH)
 time.sleep(1)

def destroy():
 # Turn off LED
 GPIO.output(relayPin, GPIO.LOW)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

9. GPIO.setup(relayPin, GPIO.OUT, initial=GPIO.LOW)

Initialize pins. And the output pin of relay is set to
output mode and default low level.

17. time.sleep(1)

Wait for 1 second. Change the switching frequency of
the relay by changing this parameter.
Note: Relay is a kind of metal dome formed in mechanical structure.
So its lifespan will be shortened under high-frequency using.

16. GPIO.output(relayPin, GPIO.LOW)

Set the I/O port as low level (0V), thus the
transistor is not energized and the
coil is not powered. There is no electromagnetic
force, so the relay opens and the LED remains off.

20. GPIO.output(relayPin, GPIO.HIGH)

Set the I/O port as high level (5V) to
energize the transistor. The coil of the relay is
powered and generate electromagnetic force,
and the relay closes. Then you can see the LED is lit.

Phenomenon Picture

[image: _images/image131.jpeg]

Lesson 9 4N35

Introduction

In this lesson, let’s learn the operational principle of 4N35 chip. We
analyze the principle in this way: using 4N35 chip to drive a LED, and
then explaining the phenomenon of LED and the internal structure of the
chip.

Newly Added Components

[image: _images/image2201.png]

Principle

4N35

4N35 is a general-purpose optocoupler. It consists of gallium arsenide
infrared LED and a silicon NPN phototransistor. What an optocoupler does
is to break the connection between signal source and signal receiver, so
as to stop electrical interference. 4N35 can be used in AV conversion
audio circuits that is widely used in electrical isolation of a general
optocoupler.

[image: _images/image2211.png]
See the internal structure of the 4N35 above. Pin 1 and 2 are connected
to an infrared LED. When the LED is electrified, it’ll emit infrared
rays. To protect the LED from burning, usually a resistor (about 1K) is
connected to pin 1. Then the NPN phototransistor is power on when
receiving the rays, and then it can control the load connected to the
phototransistor. Even when the load short circuit occurs, it won’t
affect the control board, thus realizing good electrical isolation.

Schematic Diagram

In this experiment, use an LED as the load connected to the NPN
phototransistor. In program, a LOW level is given to Pin 11, then
the infrared LED will emit infrared rays. After that, the
phototransistor receives infrared rays and gets electrified, and the LED
cathode is LOW, thus turning on the LED.

[image: _images/image2221.png]

Build the Circuit

Note

pay attention to the direction of the chip by the concave on it.

[image: _images/image136.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_9_4N35

2. Compile the code.

gcc 9_4N35.c -lwiringPi

3. Run the executable file.

sudo ./a.out

You will see the LED blinking.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define OptoPin 0

int main(void)
{
 // When initialize wiring failed, print message to screen
 if(wiringPiSetup() == -1){
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(OptoPin,OUTPUT);

 while(1){
 // Turn LED off
 digitalWrite(OptoPin, HIGH);
 delay(500);
 // Turn LED on
 digitalWrite(OptoPin, LOW);
 delay(500);
 }
 return 0;
}

Code Explanation

14. pinMode(OptoPin,OUTPUT);

Initialize pins. Set the output pin of 4N35,
Optopin to OUTPUT mode.

18. digitalWrite(OptoPin, HIGH);

Set OptoPin as LOW (0V), thus the optocoupler is energized,
and the pin connected to LED conduct to low level.
Then the LED will light up.

21. digitalWrite(OptoPin, LOW);

Set OptoPin as HIGH (3.3V), thus the optocoupler is not
energized, and the pin connected to LED cannot conduct to
low level. Then the LED goes out.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 9_4N35.py

You will see the LED blinking.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

Pin_4N35 = 17

Define a setup function for some setup
def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(Pin_4N35, GPIO.OUT, initial=GPIO.LOW)

Define a main function for main process
def main():
 while True:
 # Turn off LED
 GPIO.output(Pin_4N35, GPIO.HIGH)
 time.sleep(0.5)
 # Turn on LED
 GPIO.output(Pin_4N35, GPIO.LOW)
 time.sleep(0.5)

def destroy():
 # Turn off LED
 GPIO.output(Pin_4N35, GPIO.HIGH)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

1. GPIO.output(Pin_4N35, GPIO.HIGH)

Set OptoPin as high level (3.3V),
thus the optocoupler is not energized,
and the pin connected to LED cannot conduct
to low level. Then the LED goes out.

1. time.sleep(0.5)

Wait for 0.5 second. The on-off frequency of the optocoupler
can be changed by modifying this parameter.

1. GPIO.output(Pin_4N35, GPIO.LOW)

Set OptoPin as low level (0V), thus the optocoupler is energized,
and the pin connected to LED conduct to low level.
Then the LED will light up.

Phenomenon Picture

[image: _images/image137.jpeg]

Lesson 10 Active Buzzer

Introduction

A buzzer is a great tool in your experiments whenever you want to make
sounds.

Newly Added Components

[image: _images/image223.png]

Principle

As a type of electronic buzzer with an integrated structure, buzzers,
which are supplied by DC power, are widely used in computers, printers,
photocopiers, alarms, electronic toys, automotive electronic devices,
telephones, timers and other electronic products or voice devices.
Buzzers can be categorized as active and passive ones (see the following
picture). Turn the buzzer so that its pins are facing up, and the
buzzers with a green circuit board is a passive buzzer, while the one
enclosed with a black tape is an active one.

The difference between an active buzzer and a passive buzzer:

[image: _images/image139.png]
An active buzzer has a built-in oscillating source, so it will make
sounds when electrified. But a passive buzzer does not have such source,
so it will not tweet if DC signals are used; instead, you need to use
square waves whose frequency is between 2K and 5K to drive it. The
active buzzer is often more expensive than the passive one because of
multiple built-in oscillating circuits.

In this experiment, we use an active buzzer.

Schematic Diagram

When Pin11 is input into high voltage, the transistor will be
switched on, and the collector will output low level. When there is a
level difference between the two pins of the buzzer, the buzzer is
ringing. When Pin11 inputs low power level, the transistor is cut
off and the collector is at high level, here, both ends of the buzzer
are at high level, the buzzer will be silent.

[image: _images/image224.png]

Build the Circuit

[image: _images/image141.png]

For C Language Users

Command

	Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_10_ActiveBuzzer

	Compile the code.

gcc 10_ActiveBuzzer.c -lwiringPi

	Run the executable file.

sudo ./a.out

Now, you may hear the buzzer beep.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define BeepPin 0

int main(void){
 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(BeepPin, OUTPUT);

 while(1){
 //beep on
 digitalWrite(BeepPin, HIGH);
 delay(100);
 //beep off
 digitalWrite(BeepPin, LOW);
 delay(100);
 }
 return 0;
}

Code Explanation

12. pinMode(BeepPin, OUTPUT);

Set the pin connected to the buzzer to OUTPUT mode.

16. digitalWrite(BeepPin, HIGH);

When BeepPin is at high level, the base pin(b pin) of the
connected transistor inputs high level and the collector pin(c pin)
output low level. That is, when the cathode of the buzzer is at low
level and the anode of the buzzer is connected to a 5V high
level, the buzzer sounds.

19. digitalWrite(BeepPin, LOW);

The BeepPin is connected to the transistor and then to the
cathode of the buzzer. When BeepPin is low level, the base pin
(b pin) of the connected transistor inputs low level, then the
collector pin(c pin) outputs high level; that is, when the level
at both ends of the connected buzzer is high, the buzzer is silent.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 10_ActiveBuzzer.py

Now, you should hear the buzzer beep.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

BeepPin = 17

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(BeepPin, GPIO.OUT, initial=GPIO.LOW)

def main():
 while True:
 # Buzzer on (Beep)
 GPIO.output(BeepPin, GPIO.HIGH)
 time.sleep(0.1)
 # Buzzer off
 GPIO.output(BeepPin, GPIO.LOW)
 time.sleep(0.1)

def destroy():
 # Turn off buzzer
 GPIO.output(BeepPin, GPIO.LOW)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

1. GPIO.setup(BeepPin, GPIO.OUT, initial=GPIO.LOW)

Initialize the pin connected to the buzzer to output
mode and set it to the default low level.

1. GPIO.output(BeepPin, GPIO.HIGH)

The BeepPin is connected to the transistor and then to the cathode
of the buzzer. When BeepPin is at high level, the base pin(b pin)
of the connected transistor inputs high level, then the collector
pin(c pin) outputs low level; that is, when the cathode of the
buzzer is at low level and the anode of the buzzer is connected
to a 5V high level, the buzzer sounds.

1. GPIO.output(BeepPin, GPIO.LOW)

When BeepPin is at low level, the base pin(b pin) of the connected
transistor inputs low level, then the collector pin(c pin) outputs high
level; that is, when the level at both ends of the connected buzzer
is high, the buzzer is silent.

Phenomenon Picture

[image: _images/image142.jpeg]

Lesson 11 Doorbell

Introduction

In this lesson, we will learn how to drive an active buzzer to build a
simple doorbell.

Newly Added Components

[image: _images/image225.png]

Schematic Diagram

When the button is pressed, Pin13 is connected to the 5V power
supply and reads out high level; therefore, the program responds to make
Pin11 output the high level so as to energize the transistor, and
the collector will output low level that means the buzzer rings. When
pin11 outputs at low level the buzzer will be silent.

[image: _images/image226.png]
[image: _images/image255.png]

Build the Circuit

Note

Long pins of buzzer is the Anode and the short pin is Cathode.

[image: _images/image144.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_11_DoorBell

2. Compile the code.

gcc 11_DoorBell.c -lwiringPi

3. Run the executable file.

sudo ./a.out

When the button is pressed, the buzzer makes a
sound to simulate a doorbell.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define BeepPin 0
#define ButtonPin 2

int main(void){
 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(BeepPin, OUTPUT);
 pinMode(ButtonPin, INPUT);
 pullUpDnControl(ButtonPin, PUD_DOWN);

 while(1){
 // Indicate that button has pressed down
 if(digitalRead(ButtonPin) == 1){
 delay(10);
 if(digitalRead(ButtonPin) == 1){
 //beep on
 printf("Buzzer on\n");
 digitalWrite(BeepPin, HIGH);
 delay(100);
 }
 }
 else{
 printf("Buzzer off\n");
 //beep off
 digitalWrite(BeepPin, LOW);
 delay(100);
 }
 }
 return 0;
}

Code Explanation

20. delay(10);

Software removes button jitter. When the signal that the
button is pressed is detected, a delay of 10ms is used to
eliminate the possibility of false judgment. If both if conditions
are met, confirm that the button is pressed, and then execute the program in if.

21. if(digitalRead(ButtonPin) == 1){
22. //beep on
23. printf("Buzzer on\n");
24. digitalWrite(BeepPin, HIGH);
25. delay(100);
26. }

If the button is recognized to be pressed, the BeepPin is
at high level. The base pin(b pin) of the connected
transistor inputs high level, while the collector pin(c pin)
outputs low level. That is, the cathode of buzzer is at low
level, and the anode is connected with a high level 5V. Then the
buzzer rings.

28. else{
29. printf("Buzzer off\n");
30. //beep off
31. digitalWrite(BeepPin, LOW);
32. delay(100);
33. }

Otherwise, BeepPin is at low level, and the base pin(b pin)
of the connected transistor inputs low level, then the collector
pin(c pin) outputs high level; that is, the level at both ends
of the buzzer is high, and the buzzer does not ring.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 11_DoorBell.py

When the button is pressed, the buzzer makes a sound to simulate a
doorbell.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

BeepPin = 17
BtnPin = 27

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(BtnPin, GPIO.IN)
 GPIO.setup(BeepPin, GPIO.OUT, initial=GPIO.LOW)

def main():
 while True:
 if GPIO.input(BtnPin) == 0:
 #Buzzer off
 print ('Buzzer Off')
 GPIO.output(BeepPin, GPIO.LOW)
 time.sleep(0.1)
 if GPIO.input(BtnPin) == 1:
 #Buzzer on
 print ('Buzzer On')
 GPIO.output(BeepPin, GPIO.HIGH)
 time.sleep(0.1)

def destroy():
 # Turn off buzzer
 GPIO.output(BeepPin, GPIO.LOW)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 main()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

14. if GPIO.input(BtnPin) == 0:
15. #Buzzer off
16. print ('Buzzer Off')
17. GPIO.output(BeepPin, GPIO.LOW)
18. time.sleep(0.1)

If it is judged that the button is not pressed, BeepPin is
at low level, and the base pin(b pin) of the connected transistor
inputs low level, then the collector pin(c pin) outputs high level;
that is, when the level at both ends of the connected buzzer is high,
the buzzer does not ring.

19. if GPIO.input(BtnPin) == 1:
20. #Buzzer off
21. print ('Buzzer On')
22. GPIO.output(BeepPin, GPIO.HIGH)
23. time.sleep(0.1)

If the button is recognized to be pressed, the BeepPin is at high level.
The base pin(b pin) of the connected transistor inputs high level, while the
collector pin(c pin) outputs low level. That is, the cathode of buzzer is at
low level, and the anode is connected with a high level 5V. Then the buzzer rings.

Phenomenon Picture

[image: _images/image145.jpeg]

Lesson 12 Passive Buzzer

Introduction

In this lesson, we will learn how to make a passive buzzer to play
music.

Newly Added Components

[image: _images/image227.png]

Schematic Diagram

The base pin(b pin) of the transistor is connected to pin11, the
collector pin(c pin) to the cathode pin of the buzzer, and the emitter
pin(e pin) to GND. The anode of the buzzer is connected to 5 v power
supply. When pin11 inputs high voltage, the transistor will be switched
on, and the collector will output low level. When there is a level
difference between the two pins of the buzzer, the buzzer rings. When
pin11 inputs low power level, the transistor is cut off, and the
collector is at high level, and both ends of the buzzer are at high
level, so the buzzer is silent.

[image: _images/image228.png]
[image: _images/image256.png]

Build the Circuit

[image: _images/image147.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_12_PassiveBuzzer

2. Compile the code.

gcc 12_PassiveBuzzer.c -lwiringPi

3. Run the executable file.

sudo ./a.out

Now, the buzzer automatically plays music on a loop.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softTone.h>
#include <stdio.h>

#define BuzPin 0

#define CM1 262
#define CM2 294
#define CM3 330
#define CM4 350
#define CM5 393
#define CM6 441
#define CM7 495

#define CH1 525
#define CH2 589
#define CH3 661
#define CH4 700
#define CH5 786
#define CH6 882
#define CH7 990

int song[] = {CH5,CH2,CM6,CH2,CH3,CH6,0,CH3,CH5,CH3,CM6,CH2,0};
int beat[] = {1,1,1,1,1,1,2,1,1,1,1,1,3};

int main(void)
{
 int i, j;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 if(softToneCreate(BuzPin) == -1){
 printf("setup softTone failed !");
 return 1;
 }

 while(1){
 printf("music is being played...\n");
 for(int i=0;i<sizeof(song)/4;i++){
 softToneWrite(BuzPin, song[i]);
 delay(beat[i] * 250);
 }
 }
 return 0;
}

Code Explanation

#include <softTone.h>

WiringPi includes a software-driven sound handler capable
of outputting a simple tone/square wave signal on any of
the Raspberry Pi’s GPIO pins. To maintain a low CPU usage,
the minimum pulse width is 100μS. That gives a maximum frequency
of 1/0.0002 = 5000Hz. Within these limitations, simple tones on a
high impedance speaker or piezo sounder is possible.

#define CM1 262
#define CM2 294
#define CM3 330
#define CM4 350
#define CM5 393
#define CM6 441
#define CM7 495

These frequencies of each note are as shown. CM refers to
middle note, CH high note, 1-7 correspond to the notes C, D, E, F, G, A, B.

23.int song[] = {CH5,CH2,CM6,CH2,CH3,CH6,0,CH3,CH5,CH3,CM6,CH2,0};
24.int beat[] = {1,1,1,1,1,1,2,1,1,1,1,1,3};

Define a section of music and the corresponding beat.
The number in beat[] refers to the beat of each note in the
song (0.5s for each beat).

35. if(softToneCreate(BuzPin) == -1){

softToneCreate() creates a software controlled tone pin.
You can use any GPIO pin and the pin numbering will be that
of the wiringPiSetup() function you used. The return value is 0
for success. This is used to determine whether it is successful
for the software to control tone pin; if it fails, it will not execute the program.

42. for(int i=0;i<sizeof(song)/4;i++){
43. softToneWrite(BuzPin, song[i]);
44. delay(beat[i] * 250);
45. }

Employ a for statement to play song_1.In the judgment condition, i<sizeof(song_1)/4，”devide by 4” is used because the array
song_1[] is an array of the data type of integer, and each element takes up four bytes.

The number of elements in song (the number of musical notes) is gotten by deviding sizeof(song) by 4.

To enable each note to play for beat * 500ms, the function delay(beat_1[i] * 500) is called.

The prototype of softToneWrite(BuzPin, song_1[i])：

void softToneWrite (int pin, int freq);

This updates the tone frequency value on the given pin. The tone does not stop
playing until you set the frequency to 0.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 12_PassiveBuzzer.py

Now, the buzzer automatically plays music on a loop.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

Buzzer = 17

CL = [0, 131, 147, 165, 175, 196, 211, 248] # Frequency of Low C notes
CM = [0, 262, 294, 330, 350, 393, 441, 495] # Frequency of Middle C notes
CH = [1, 525, 589, 661, 700, 786, 882, 990] # Frequency of High C notes

song = [CH[5], CH[2], CM[6], CH[2], CH[3], CH[6],CH[0], CH[3], # Notes of song
 CH[5], CH[3], CM[6], CH[2],CH[0]]

beat = [1,1,1,1,1,1,2,1,1,1,1,1,3]

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(Buzzer, GPIO.OUT)
 global Buzz

def loop():
 while True:
 print ('\n Playing song...')
 for i in range(1, len(song)):
 if song[i] == 1 :
 time.sleep(beat[i] *0.25)
 else:
 Buzz = GPIO.PWM(Buzzer, song[i])
 Buzz.start(50)
 time.sleep(beat[i] * 0.25)
 Buzz.stop()
 time.sleep(1) # Wait a second for next song.

def destory():
 Buzz.stop()
 GPIO.output(Buzzer, LOW)
 GPIO.cleanup()

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destory()

Code Explanation

6.CL = [0, 131, 147, 165, 175, 196, 211, 248]
7.CM = [0, 262, 294, 330, 350, 393, 441, 495]
8.CH = [1, 525, 589, 661, 700, 786, 882, 990]

These are the frequencies of each note. The first 0 is to
skip CL[0] so that the number CL[1]-CL[7] corresponds to the
CDEFGAB of the note.

10.int song[] = {CH5,CH2,CM6,CH2,CH3,CH6,0,CH3,CH5,CH3,CM6,CH2,0};
13.int beat[] = {1,1,1,1,1,1,2,1,1,1,1,1,3};

Define a section of music and the corresponding beats.
The number in beat[] refers to the beat of each note
in the song (0.5s for each beat).

29. Buzz = GPIO.PWM(Buzzer, song[i])
30. Buzz.start(50)

Define pin Buzzer as PWM pin, then set its frequency to 786(song[0])
and Buzz.start(50) is used to run PWM. What’s more,
set the duty cycle to 50%.

22. def loop():
23. while True:
24. print ('\n Playing song...')
25. for i in range(1, len(song)):
26. if song[i] == 1 :
27. time.sleep(beat[i] *0.25)
28. else:
29. Buzz = GPIO.PWM(Buzzer, song[i])
30. Buzz.start(50)
31. time.sleep(beat[i] * 0.25)
32. Buzz.stop()
33. time.sleep(1)

Play music in the while loop. As i increases gradually, the buzzer
plays following the note in song[].

Phenomenon Picture

[image: _images/image148.jpeg]

Lesson 13 Button Piano

Introduction

In our past lesson, we learned how to use PWM waves to drive a passive
buzzer to ring. In this lesson, we make a simple keyboard by applying a
passive buzzer. Let’s get started!

Newly Added Components

[image: _images/image229.png]

Schematic Diagram

[image: _images/image230.png]
[image: _images/image257.png]

Build the Circuit

[image: _images/image231.png]
[image: _images/image150.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_13_Button_Piano

2. Compile the code.

gcc 13_ButtonPiano.c -lwiringPi

3. Run the executable file.

sudo ./a.out

Now press the seven buttons, and the buzzer will emit the notes: DO, RE,
MI, FA, SO, LA, TI. You can play a song with these seven buttons.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softTone.h>
#include <stdio.h>

#define BuzPin 0

const int Tone[] = {262,294,330,350,393,441,495};//define DO, RE, MI, FA, SO, LA, TI
int beat[] = {1,1,1,1,1,1,1};
const int Btn[] = {2,3,4,5,6,10,11};//define 7 buttons

int main(void)
{
 int i, j;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 if(softToneCreate(BuzPin) == -1){
 printf("setup softTone failed !");
 return 1;
 }

 //set the buttons mode
 for(int j=0;j<7;j++)
 {
 pinMode(Btn[j], INPUT);
 }

 while(1){
 //printf("Please press button to play the piano\n");
 // Indicate that button has pressed down
 for(i=0;i<7;i++)
 {
 if(digitalRead(Btn[i])==1)
 {
 delay(10);//Prevent the button' s vibration
 if(digitalRead(Btn[i])==1)
 {
 softToneWrite(BuzPin, Tone[i]);
 delay(beat[i]*250);
 printf("1");
 }
 }
 else
 softToneWrite(BuzPin, 0);
 if(i==7)
 i=0;
 }
 }
 return 0;
}

Code Explanation

7. const int Tone[] = {262,294,330,350,393,441,495};
8. int beat[] = {1,1,1,1,1,1,1};

In the array Tone[], define the frequencies of DO, RE, MI, FA, SO, LA, TI
and the number in beat[] refers to the beat of each note in this song(0.5s for each beat).

26. for(int j=0;j<7;j++)
27. {
28. pinMode(Btn[j], INPUT);
29. }

Set the mode of all buttons to input mode in the for loop.

34. for(i=0;i<7;i++)
35. {
36. if(digitalRead(Btn[i])==1)
37. {
38. delay(10);//Prevent the button' s vibration
39. if(digitalRead(Btn[i])==1)
40. {
41. softToneWrite(BuzPin, Tone[i]);
42. delay(beat[i]*250);
43. printf("1");
44. }
45. }

Use a for loop to check all the buttons. When one button in array Btn[i]
is detected to be pressed, the buzzer will respond to the corresponding note in array Tone[i].

46. else
47. softToneWrite(BuzPin, 0);
48. if(i==7)
49. i=0;
50. }

If no button is pressed, turn off the buzzer.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 13_ButtonPiano.py

Now press the seven buttons, and the buzzer will emit the notes: DO, RE,
MI, FA, SO, LA, TI. You can play a song with these seven buttons.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

Buzzer = 17
BtnPin = [18,27,22,23,24,25,8,7]

CL = [0, 131, 147, 165, 175, 196, 211, 248] # Frequency of Low C notes
CM = [0, 262, 294, 330, 350, 393, 441, 495] # Frequency of Middle C notes
CH = [1, 525, 589, 661, 700, 786, 882, 990] # Frequency of High C notes

song = [0,CM[1],CM[2],CM[3],CM[4],CM[5],CM[6],CM[7]]
beat = [1,1, 1, 1, 1, 1, 1, 1]

def setup():
 GPIO.setmode(GPIO.BCM)
 for i in range(1, len(BtnPin)):
 GPIO.setup(BtnPin[i],GPIO.IN)
 GPIO.setup(Buzzer, GPIO.OUT)

def loop():
 global Buzz
 while True:
 #print ('\n Please playing piano...')
 for i in range(1, len(BtnPin)):
 if GPIO.input(BtnPin[i]) == 1:
 Buzz = GPIO.PWM(Buzzer, song[i])
 Buzz.start(50)
 time.sleep(beat[i] * 0.25)
 Buzz.stop()

def destory():
 Buzz.stop()
 GPIO.output(Buzzer, 0)
 GPIO.cleanup()

if __name__ == '__main__': # Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destory()

Code Explanation

7.CL = [0, 131, 147, 165, 175, 196, 211, 248] # Frequency of Low C notes
8.CM = [0, 262, 294, 330, 350, 393, 441, 495] # Frequency of Middle C notes
9.CH = [1, 525, 589, 661, 700, 786, 882, 990] # Frequency of High C notes

These are the frequencies of each note. The first 0 is to skip CL[0] so that the
number CL[1]-CL[7] corresponds to the CDEFGAB of the note.

10.song = [0,CM[1],CM[2],CM[3],CM[4],CM[5],CM[6],CM[7]]
11.beat = [1,1, 1, 1, 1, 1, 1, 1]

Define a section of music and the corresponding beats. The number in beat[]
refers to the beat of each note in the song(0.5s for each beat).

16. for i in range(1, len(BtnPin)):
17. GPIO.setup(BtnPin[i],GPIO.IN)

Set the mode of all buttons to input mode in the for loop.

24. for i in range(1, len(BtnPin)):
25. if GPIO.input(BtnPin[i]) == 1:
26. Buzz = GPIO.PWM(Buzzer, song[i])
27. Buzz.start(50)
28. time.sleep(beat[i] * 0.25)
29. Buzz.stop()

Use a for loop to check all the buttons. When one button in array button[i]
is detected to be pressed, the buzzer will respond to
the corresponding note in array song[i].

Phenomenon Picture

[image: _images/image151.jpeg]

Lesson 14 Quiz Buzzer System

Introduction

In quiz shows, especially entertainment activities (e.g. competitive
answering activities), organizers often apply a quiz buzzer system in
order to accurately, fairly and visually determine the seat number of a
responder. In this lesson, we will use some buttons, buzzers, and LEDs
to make a quiz buzzer system.

Newly Added Components

[image: _images/image232.png]

Schematic Diagram

Button 2, 3 and 4 are answer buttons, and button 1 is the reset button.
If button 2 is pressed first, the buzzer will beep, the corresponding
LED will light up and all the other LEDs will go out. If you want to
start another round, press button 1 to reset.

[image: _images/image233.png]
[image: _images/image258.png]

Build the Circuit

[image: _images/image156.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_14_AnswerMachine

2. Compile the code.

gcc 14_AnswerMachine.c -lwiringPi

3. Run the executable file.

sudo ./a.out

Now, first press button 4 to get started. If you press button 1 first,
you will see the corresponding LED light up and the buzzer will beep.
Then press button 4 again to reset before you press other buttons.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define BeepPin 0
#define ResetBtnPin 1
const int BtnPin[] = {2,3,4};
const int LedPin[] = {21,22,23,24};

void Alarm()
{
 for(int i=0;i<50;i++){
 digitalWrite(BeepPin,HIGH); //the buzzer sound
 delay(2); //delay 2ms
 digitalWrite(BeepPin,LOW); //without sound
 delay(2);
 }
}

int main(void){
 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 pinMode(BeepPin, OUTPUT);
 for(int j=1;j<4;j++)
 {
 pinMode(LedPin[j], OUTPUT);
 digitalWrite(LedPin[j],LOW);
 }
 pinMode(LedPin[0], OUTPUT);
 digitalWrite(LedPin[0],HIGH);
 for(int k;k<3;k++)
 {
 pinMode(BtnPin[k], INPUT);
 }

 int flag = 1;

 while(1){
 // if reset button is pressed
 if(digitalRead(ResetBtnPin) == 1)
 {
 flag = 1;
 digitalWrite(LedPin[0], HIGH);//Reset Led turns on
 digitalWrite(LedPin[1],LOW);
 digitalWrite(LedPin[2],LOW);
 digitalWrite(LedPin[3],LOW);
 }
 if(flag==1)
 {
 //If the button1 press the first
 if(digitalRead(BtnPin[0]) == 1)
 {
 flag = 0;
 digitalWrite(LedPin[0],LOW);
 Alarm(); //buzzer sound
 digitalWrite(LedPin[1],HIGH);//turn the LED1 on only
 digitalWrite(LedPin[2],LOW);
 digitalWrite(LedPin[3],LOW);
 while(digitalRead(ResetBtnPin));
 }
 if(digitalRead(BtnPin[1]) == 1)
 {
 flag = 0;
 digitalWrite(LedPin[0],LOW);
 Alarm(); //buzzer sound
 digitalWrite(LedPin[1],LOW);
 digitalWrite(LedPin[2],HIGH);//turn the LED2 on only
 digitalWrite(LedPin[3],LOW);
 while(digitalRead(ResetBtnPin));
 }
 if(digitalRead(BtnPin[2]) == 1)
 {
 flag = 0;
 digitalWrite(LedPin[0],LOW);
 Alarm(); //buzzer sound
 digitalWrite(LedPin[1],LOW);
 digitalWrite(LedPin[2],LOW);
 digitalWrite(LedPin[3],HIGH);//turn the LED3 on only
 while(digitalRead(ResetBtnPin));
 }
 }
 }
 return 0;
}

Code Explanation

9. void Alarm()
10.{
11. for(int i=0;i<50;i++){
12. digitalWrite(BeepPin,HIGH); //the buzzer sound
13. delay(2);
14. digitalWrite(BeepPin,LOW); //without sound
15. delay(2);
16. }
17.}

Define a function to control the buzzer. The buzzer rings when this
function is called in the main function.

38. int flag = 1;

Define a flag to judge whether the answer device is in the state of answering.
When flag = 0, it indicates that someone is currently scrambling, and
others cannot continue to answer first; when flag = 1, it means that the
reset button has been pressed, and a new round of answer rush can be conducted.

42. if(digitalRead(ResetBtnPin) == 1)
43. {
44. flag = 1;
45. digitalWrite(LedPin[0], HIGH);//Reset Led turns on
46. digitalWrite(LedPin[1],LOW);
47. digitalWrite(LedPin[2],LOW);
48. digitalWrite(LedPin[3],LOW);
49. }

If the reset button is detected to have been pressed, it means that the answer
begins. Now set flag to 1 and let the referee LED light up, the rest of the LED lights out.

53. if(digitalRead(BtnPin[0]) == 1)
54. {
55. flag = 0;
56. digitalWrite(LedPin[0],LOW);
57. Alarm(); //buzzer sound
58. digitalWrite(LedPin[1],HIGH);//turn the LED1 on only
59. digitalWrite(LedPin[2],LOW);
60. digitalWrite(LedPin[3],LOW);
61. while(digitalRead(ResetBtnPin));
62. }

In the process of quick answering, if the first button is recognized to
have been pressed, the flag is set to 0, and then no other buttons are
detected. At this time, the buzzer alarms, indicating that someone has
successfully responsed, and the corresponding LED lights up. The
identification codes of the remaining buttons are explained as above.

61. while(digitalRead(ResetBtnPin));

Having executed the instruction of successful quick answer,
it enters the loop to judge whether the button reset is pressed. Here,
if the button reset is pressed, then the next round of quickfire
answering begins.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 14_AnswerMachine.py

Now, first press button 4 to get started. If you press button 1 first,
you will see the corresponding LED light up and the buzzer will beep.
Then press button 4 again to reset before you press other buttons.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

BeepPin = 17
ResetBtnPin = 18
BtnPin =(27,22,23)
LedPin =(5,6,13,19)

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(BeepPin, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(ResetBtnPin, GPIO.IN)
 GPIO.setup(LedPin[0], GPIO.OUT, initial=GPIO.HIGH)
 for i in range(1,4):
 GPIO.setup(LedPin[i], GPIO.OUT, initial=GPIO.LOW)
 for i in range(0,3):
 GPIO.setup(BtnPin[i], GPIO.IN)

def Alarm():
 for i in range(0,50):
 GPIO.output(BeepPin,GPIO.HIGH)
 time.sleep(0.003)
 GPIO.output(BeepPin,GPIO.LOW)
 time.sleep(0.003)

def loop():
 flag = 1
 while True:
 if GPIO.input(ResetBtnPin) == 1:
 flag = 1
 GPIO.output(LedPin[0],GPIO.HIGH)
 GPIO.output(LedPin[1],GPIO.LOW)
 GPIO.output(LedPin[2],GPIO.LOW)
 GPIO.output(LedPin[3],GPIO.LOW)
 if flag == 1:
 if GPIO.input(BtnPin[0]) == 1:
 flag = 0
 GPIO.output(LedPin[0],GPIO.LOW)
 Alarm()
 GPIO.output(LedPin[1],GPIO.HIGH)
 GPIO.output(LedPin[2],GPIO.LOW)
 GPIO.output(LedPin[3],GPIO.LOW)
 elif GPIO.input(BtnPin[1]) == 1:
 flag = 0
 GPIO.output(LedPin[0],GPIO.LOW)
 Alarm()
 GPIO.output(LedPin[1],GPIO.LOW)
 GPIO.output(LedPin[2],GPIO.HIGH)
 GPIO.output(LedPin[3],GPIO.LOW)
 elif GPIO.input(BtnPin[2]) == 1:
 flag = 0
 GPIO.output(LedPin[0],GPIO.LOW)
 Alarm()
 GPIO.output(LedPin[1],GPIO.LOW)
 GPIO.output(LedPin[2],GPIO.LOW)
 GPIO.output(LedPin[3],GPIO.HIGH)

def destroy():
 # Turn off buzzer
 GPIO.output(BeepPin, GPIO.LOW)
 GPIO.output(LedPin[0],GPIO.LOW)
 GPIO.output(LedPin[1],GPIO.LOW)
 GPIO.output(LedPin[2],GPIO.LOW)
 GPIO.output(LedPin[3],GPIO.HIGH)
 # Release resource
 GPIO.cleanup()

If run this script directly, do:
if __name__ == '__main__':
 setup()
 try:
 loop()
 # When 'Ctrl+C' is pressed, the child program
 # destroy() will be executed.
 except KeyboardInterrupt:
 destroy()

Code Explanation

19.def Alarm():
20. for i in range(0,50):
21. GPIO.output(BeepPin,GPIO.HIGH)
22. time.sleep(0.003)
23. GPIO.output(BeepPin,GPIO.LOW)
24. time.sleep(0.003)

Define a function to control the buzzer. The buzzer rings
when this function is called in the function main.

27. flag = 1

Define a flag bit to judge whether the responder is in the
state of answering. When flag = 0, it indicates that someone is
currently scrambling, and others cannot continue to answer first;
when flag = 1, it means that the reset button has been pressed,
and a new round of answer rush can be conducted.

29. if GPIO.input(ResetBtnPin) == 1:
30. flag = 1
31. GPIO.output(LedPin[0],GPIO.HIGH)
32. GPIO.output(LedPin[1],GPIO.LOW)
33. GPIO.output(LedPin[2],GPIO.LOW)
34. GPIO.output(LedPin[3],GPIO.LOW)

If the recognition that reset button has been pressed is done, it means
that answer begins. Now, set flag to 1, and let the referee LED light up,
other LEDs light out.

36. if GPIO.input(BtnPin[0]) == 1:
37. flag = 0
38. GPIO.output(LedPin[0],GPIO.LOW)
39. Alarm()
40. GPIO.output(LedPin[1],GPIO.HIGH)
41. GPIO.output(LedPin[2],GPIO.LOW)
42. GPIO.output(LedPin[3],GPIO.LOW)

In the process of quick answering, if the first button is recognized
to have been pressed, the flag is set to 0, and then no other buttons
are detected. At this time, the buzzer alarms, indicating that there is
a successful response, and the corresponding LED lights up. The
identification codes of the remaining buttons are explained as above.

Phenomenon Picture

[image: _images/image157.jpeg]

Lesson 15 NE555 Timer

Introduction

The NE555 Timer, a mixed circuit composed of analog and digital
circuits, integrates analog and logical functions into an independent
IC, thus tremendously expanding the applications of analog integrated
circuits. It is widely used in various timers, pulse generators, and
oscillators. In this experiment, the Raspberry Pi is used to test the
frequencies of square waves generated by the 555 oscillating circuit and
show them on terminal windows.

Newly Added Components

[image: _images/image235.png]

Principle

Potentiometer

[image: _images/image236.png]
Potentiometer is also a resistance component with
3 terminals and its resistance value can be adjusted according to some
regular variation. Potentiometer usually consists of resistor and
movable brush. When the brush is moving along the resistor, there is a
certain resistance or voltage output depending on the displacement.

The functions of the potentiometer in the circuit are as follows:

1.Serving as a voltage divider
Potentiometer is a continuously adjustable resistor.
When you adjust the shaft or sliding handle of the
potentiometer, the movable contact will slide on the resistor.
At this point, a voltage can be output depending on the voltage
applied onto the potentiometer and the angle the movable arm has
rotated to or the distance it moves.

2.Serving as a rheostat
When the potentiometer
is used as a rheostat, connect the middle pin and one
of the other 2 pins in the circuit. Thus you can get a
smoothly and continuously changed resistance value cused
by moving contact.

3.Serving as a current controller
When the potentiometer acts as a current controller,
the sliding contact terminal must be connected as
one of the output terminals.

555 IC

The 555 IC was originally used as a timer,
hence the name 555 time base circuit. It is
now widely used in various electronic products because
of its reliability, convenience, and low price. The
555 is a complex hybrid circuit with dozens of components such
as a divider, comparator, basic R-S trigger, discharge
tube, and buffer.

Pins and functions:

[image: _images/image162.png]
As shown in the picture, the pins are set dual
in-line with the 8-pin package.

	Pin 1 (GND): the ground

	Pin 2 (TRIGGER): when the voltage at the pin reduces to 1/3 of the VCC (or the threshold defined by the control board), the output terminal sends out a High level

	Pin 3 (OUTPUT): outputs High or Low, two states 0 and 1 decided by the input electrical level; maximum output current approx. 200mA at High

	Pin 4 (RESET): when a Low level is received at the pin, the timer will be reset and the output will return to Low level; usually connected to positive pole or neglected

	Pin 5 (CONTROL VOLTAGE): to control the threshold voltage of the chip (if it skips connection, by default, the threshold voltage is 1/3 VCC and 2/3 VCC)

	Pin 6 (THRESHOLD): when the voltage at the pin increases to 2/3 VCC (or the threshold defined by the control board), the output terminal sends out a High level.

	Pin 7 (DISCHARGE): output synchronized with Pin 3, with the same logical level; but this pin does not output current, so pin 3 is the real High (or Low) when pin 7 is the virtual High (or Low); connected to the open collector (OC) inside to discharge the capacitor.

	Pin 8 (VCC): positive terminal for the NE555 timer IC, ranging +4.5V to +16V

The NE555 timer works under the monostable, astable and bistable modes. In this experiment, apply it under the astable mode, which means it works as an oscillator, as shown below:

Cap

[image: _images/image163.jpeg]
A ceramic capacitor is a capacitor that is made of ceramic material
and works as a dielectric. It is coated with a metal film on the surface
of the ceramic and sintered at a high temperature. The ceramic capacitor is
commonly used in high-stability oscillator circuits as loops, bypass capacitors,
and pad capacitors. It is a non-polar capacitor, so this capacitor does not need
to distinguish between positive and negative during installation.

In the circuit of this lesson, the main function of the ceramic
capacitor, high-frequency filtering is to remove some clutter
that may occur in the working process of the NE555 chip, so that
the waveform is more stable.

Schematic Diagram

Build the circuit according to the following schematic diagram.

[image: _images/image237.png]
Working Process:

The oscillator starts to shake once the circuit is power on. During
energizing, since the voltage at C1 cannot change abruptly, which means
pin 2 is Low level initially, set the timer to 1, so pin 3 is High
level. The capacitor C1 charges via R1 and R2 in a time span:

When the voltage at C1 reaches the threshold 2/3Vcc, the timer is reset
and pin 3 is Low level. Then C1 discharges via R2 till 2/3Vcc in a time
span:

Then the capacitor is recharged and the output voltage flips again:

Build the Circuit

[image: _images/image238.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_15_NE555_Timer

2. Compile the code.

gcc 15_NE555_Timer.c -lwiringPi

3. Run the executable file.

sudo ./a.out

When the code is running, you will see the number of pulses on the
display screen and the level of pin3 in NE555 at this time.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdlib.h>
#include <wiringPi.h>

#define OutPin 1

static volatile int globalCounter = 0 ;

void exInt0_ISR(void) //GPIO 1 interrupt service routine
{
 ++globalCounter;
}

int main (void)
{
 if(wiringPiSetup() < 0){
 fprintf(stderr, "Unable to setup wiringPi:%s\n",strerror(errno));
 return 1;
 }

 delay(2000);
 pinMode(OutPin,INPUT);
 pullUpDnControl(OutPin,PUD_UP);
 wiringPiISR(OutPin, INT_EDGE_FALLING, &exInt0_ISR);

 while(1){
 printf("Current pluse number is : %d, %d\n", globalCounter,digitalRead(OutPin));
 delay(100);
 }
 return 0;
}

Code Explanation

9.static volatile int globalCounter = 0 ;

Define a variable to record the number of pulses,
and initialize the number of pulses to 0.

11.void exInt0_ISR(void)
12.{
13. ++globalCounter;
14.}

Set an external interrupt function and globalCounter will
automatically +1 when an interrupt occurs.

24. pinMode(OutPin,INPUT);
25. pullUpDnControl(OutPin,PUD_UP);

Set the out pin of NE555 to INPUT mode,
then let the pin be in pull-up state (1).

26. wiringPiISR(OutPin, INT_EDGE_FALLING, &exInt0_ISR);

Set an interrupt in OutPin, when the value of OutPin changes from 1 to 0.
Then call the exInt0_ISR() function to let the variable globalCounter add 1.

29. printf("Current pluse number is : %d, %d\n", globalCounter,digitalRead(OutPin));

Print out the number of pulses, globalCounter and the value of OutPin at this time.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 15_NE555.py

When the code is running, you can see the number of pulses on the
display.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

SigPin = 18

g_count = 0

def count(ev=None):
 global g_count
 g_count += 1

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(SigPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)
 GPIO.add_event_detect(SigPin, GPIO.RISING, callback=count) # wait for rasing

def main():
 while True:
 print ('g_count = %d' % g_count)
 time.sleep(0.01)

def destroy():
 GPIO.cleanup() # Release resource

if __name__ == '__main__': # Program start from here
 setup()
 try:
 main()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the child program destroy() will be executed.
 destroy()

Code Explanation

6. g_count = 0

Define a variable to record the
number of pulses, and initialize the number of pulses to 0.

7.def count(ev=None):
8.global g_count
9.g_count += 1

This function will change the value of the global variable g_count.

14. GPIO.setup(SigPin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Set the SigPin to input mode and pull up to high level(3.3V).

15. GPIO.add_event_detect(SigPin, GPIO.RISING, callback=count)

Set an interrupt in SigPin, when the value of SigPin changes from
0 to 1. Then call the count() function to let the variable g_count add 1.

18. while True:
19. print ('g_count = %d' % g_count)
20. time.sleep(0.01)

Print out the value of the number of pulse g_count at an interval of 0.01s.

Phenomenon Picture

[image: _images/image166.jpeg]

Lesson 16 Servo

Introduction

Servo is a type of geared motor that can only rotate 180 degrees. It is
controlled by sending electrical pulses from your board. These pulses
tell the servo what position it should move to.

A servo has three wires: the brown wire is GND, the red one is VCC, and
the orange one is signal line.

Newly Added Components

[image: _images/image266.png]

Principle

Servo

A servo is generally composed of the following parts: case, shaft, gear
system, potentiometer, DC motor, and embedded board.

[image: _images/image168.png]
It works like this: The microcontroller sends out PWM signals to the
servo, and then the embedded board in the servo receives the signals
through the signal pin and controls the motor inside to turn. As a
result, the motor drives the gear system and then motivates the shaft
after deceleration. The shaft and potentiometer of the servo are
connected together. When the shaft rotates, it drives the potentiometer,
so the potentiometer outputs a voltage signal to the embedded board.
Then the board determines the direction and speed of rotation based on
the current position, so it can stop exactly at the right position as
defined and hold there.

[image: _images/image269.png]
The angle is determined by the duration of a pulse that is applied to
the control wire. This is called Pulse width Modulation. The servo
expects to see a pulse every 20 ms. The length of the pulse will
determine how far the motor turns. For example, a 1.5ms pulse will make
the motor turn to the 90 degree position (neutral position).

When a pulse is sent to a servo that is less than 1.5 ms, the servo
rotates to a position and holds its output shaft some number of degrees
counterclockwise from the neutral point. When the pulse is wider than
1.5 ms the opposite occurs. The minimal width and the maximum width of
pulse that will command the servo to turn to a valid position are
functions of each servo. Generally the minimum pulse will be about 0.5
ms wide and the maximum pulse will be 2.5 ms wide.

[image: _images/image170.jpeg]

Schematic Diagram

[image: _images/image240.png]

Build the Circuit

Note: Connect the brown to GND, Red to VCC, Orange to pin12 of the
control board.

[image: _images/image172.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_16_Servo

2. Compile the code.

gcc 16_Servo.c -lwiringPi

3. Run the executable file.

sudo ./a.out

After the program is executed, the servo will rotate from 0 degrees to
180 degrees, and then from 180 degrees to 0 degrees, circularly.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <softPwm.h>
#include <stdio.h>

#define ServoPin 1
long Map(long value,long fromLow,long fromHigh,long toLow,long toHigh){
 return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow;
}
void setAngle(int pin, int angle){ //Specif a certain rotation angle (0-180) for the servo
 if(angle < 0)
 angle = 0;
 if(angle > 180)
 angle = 180;
 softPwmWrite(pin,map(angle,0,180,5,25));
}

int main(void)
{
 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring faiservo,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }
 softPwmCreate(servoPin, 0, 200); //initialize PMW pin of servo
 while(1){
 for(i=0;i<181;i++){
 setAngle(ServoPin,i);
 delay(1);
 }
 delay(500);
 for(i=181;i>-1;i--){
 setAngle(ServoPin,i);
 delay(1);
 }
 delay(500);
 }
 return 0;
}

Code Explanation

6.long Map(long value,long fromLow,long fromHigh,long toLow,long toHigh){
7. return (toHigh-toLow)*(value-fromLow) / (fromHigh-fromLow) + toLow;
8.}

Create a map() function to map value in the following code.

9.void setAngle(int pin, int angle){ //Specif a certain rotation angle (0-180) for the servo
10. if(angle < 0)
11. angle = 0;
12. if(angle > 180)
13. angle = 180;
14. softPwmWrite(pin,map(angle,0,180,5,25));
15.}

Define a function to limit the angle of the servo to 0 to
180 in order to set the angle of servo.

softPwmWrite(pin,map(angle,0,180,5,25));

This function can change the duty cycle of the PWM pin.

To make the servo rotate to 0 ~ 180 °, the pulse width should change
within the range of 0.5ms ~ 2.5ms when the period is 20ms; in the function,
softPwmCreate(), we have set that the period is 200x100us=20ms, thus we
need to map 0 ~ 180 to 5x100us ~ 25x100us.

25. softPwmCreate(ServoPin, 0, 200);

The function is to use softwares to create a PWM pin, servoPin,
then the initial pulse widths of them are set to 0, and the period of PWM is 200 x100us.

27. for(i=0;i<181;i++){
28. setAngle(ServoPin,i);
29. delay(1);
30. }

In a for loop, we want servo to rotate from 0 degrees to 180 degrees.

32. for(i=181;i>-1;i--){
33. setAngle(ServoPin,i);
34. delay(1);
35. }

In a for loop, we want servo to rotate from 180 degrees to 0 degrees.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 16_Servo.py

After the program is executed, the servo will rotate from 0 degrees to
180 degrees, and then from 180 degrees to 0 degrees, circularly.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

SERVO_MIN_PULSE = 500
SERVO_MAX_PULSE = 2500

ServoPin = 18

def map(value, inMin, inMax, outMin, outMax):
 return (outMax - outMin) * (value - inMin) / (inMax - inMin) + outMin

def setup():
 global p
 GPIO.setmode(GPIO.BCM) # Numbers GPIOs by BCM
 GPIO.setup(ServoPin, GPIO.OUT) # Set ServoPin's mode is output
 GPIO.output(ServoPin, GPIO.LOW) # Set ServoPin to low
 p = GPIO.PWM(ServoPin, 50) # set Frequecy to 50Hz
 p.start(0) # Duty Cycle = 0

def setAngle(angle): # make the servo rotate to specific angle (0-180 degrees)
 angle = max(0, min(180, angle))
 pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
 pwm = map(pulse_width, 0, 20000, 0, 100)
 p.ChangeDutyCycle(pwm)#map the angle to duty cycle and output it

def loop():
 while True:
 for i in range(0, 181, 5): #make servo rotate from 0 to 180 deg
 setAngle(i) # Write to servo
 time.sleep(0.002)
 time.sleep(1)
 for i in range(180, -1, -5): #make servo rotate from 180 to 0 deg
 setAngle(i)
 time.sleep(0.001)
 time.sleep(1)

def destroy():
 p.stop()
 GPIO.cleanup()

if __name__ == '__main__': #Program start from here
 setup()
 try:
 loop()
 except KeyboardInterrupt: # When 'Ctrl+C' is pressed, the program destroy() will be executed.
 destroy()

Code Explanation

9.def map(value, inMin, inMax, outMin, outMax):
10. return (outMax - outMin) * (value - inMin) / (inMax - inMin) + outMin

Create a map() function to map value in the following code.

17. p = GPIO.PWM(ServoPin, 50)
18. p.start(0)

Set the servoPin to PWM pin, then the frequency to 50 hz, and the period to 20ms.
p.start(0): Run the PWM function，and set the initial value to 0.

20.def setAngle(angle): # make the servo rotate to specific angle (0-180 degrees)
21. angle = max(0, min(180, angle))
22. pulse_width = map(angle, 0, 180, SERVO_MIN_PULSE, SERVO_MAX_PULSE)
23. pwm = map(pulse_width, 0, 20000, 0, 100)
24. p.ChangeDutyCycle(pwm)#map the angle to duty cycle and output it

Create a function, setAngle() to write angle that ranges
from 0 to 180 into the servo.

24.p.ChangeDutyCycle(pwm)

This function can change the duty cycle of the PWM.
To render a range 0 ~ 180° to the servo, the pulse width of
the servo is set to 0.5ms-2.5ms.

In the previous codes, the period of PWM was set to 20ms,
thus the duty cycle of PWM is (0.5/20)%-(2.5/20)%, and the
range 0 ~ 180 is mapped to 2.5 ~ 12.5.

28. for i in range(0, 181, 5): #make servo rotate from 0 to 180 deg
29. setAngle(i) # Write to servo
30. time.sleep(0.002)

In a for loop, we want servo to rotate from 0 degrees to 180 degrees.

32. for i in range(180, -1, -5): #make servo rotate from 180 to 0 deg
33. setAngle(i)
34. time.sleep(0.001)

In a for loop, we want servo to rotate from 180 degrees to 0 degrees.

Phenomenon Picture

[image: _images/image173.jpeg]

Lesson 17 LCD1602

Introduction

In this lesson, we will learn how to use an LCD1602 to display
characters and strings. LCD1602, or 1602 character-type liquid crystal
display, is a kind of dot matrix module to show letters, numbers, and
characters and so on. It’s composed of 5x7 or 5x11 dot matrix positions;
each position can display one character. Now let’s check more details!

Newly Added Components

[image: _images/image241.png]

Principle

Generally, LCD1602 has parallel ports, that is, it would control several
pins at the same time. LCD1602 can be categorized into eight-port and
four-port connections. If the eight-port connection is used, then all
the digital ports of the Raspberry Pi are almost completely occupied. If
you want to connect more sensors, there will be no ports available.
Therefore, the four-port connection is used here for better
application.

[image: _images/image176.png]

Pins of LCD1602 and their Functions

VSS: connected to ground.

VDD: connected to a +5V power supply.

VO: to adjust the contrast.

RS: A register select pin that controls where in the LCD’s memory
you are writing data to. You can select either the data register, which
holds what goes on the screen, or an instruction register, which is
where the LCD’s controller looks for instructions on what to do next.

R/W: A Read/Write pin to select between reading and writing mode.

E: An enabling pin that reads the information when High level (1) is
received. The instructions are run when the signal changes from High
level to Low level.

D0-D7: to read and write data.

A and K: Pins that control the LCD backlight. Connect K to GND and A
to 3.3v. Open the backlight and you will see clear characters in a
comparatively dark environment.

Schematic Diagram

Connect K to GND and A to 3.3 V, and then the backlight
of the LCD1602 will be turned on. Connect VSS to GND and the
LCD1602 to the power source. Connect VO to the middle pin of the
potentiometer - with it you can adjust the contrast of the screen
display. Connect RS to Pin 13 and R/W pin to GND.
Connect E to Pin 15 and the characters displayed on the LCD1602
are controlled by D4-D7. For programming, it is optimized by calling
function libraries.

[image: _images/image242.png]
[image: _images/image259.png]

Build the Circuit

Note

Make sure the pins are connected correctly. Otherwise, characters
will not be displayed properly. You may need to adjust the potentiometer
till the LCD1602 can display clearly.

[image: _images/image243.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_17_LCD1602

2. Compile the code.

gcc 17_Lcd1602.c -lwiringPiDev -lwiringPi

Note

In order to use the LCD driver in the wiringPi devLib, you need to use -lwiringPiDev at compile time.

3. Run the executable file.

sudo ./a.out

You may see the “SunFounder” and “hello, world”
appear one by one on the LCD.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <stdio.h>
#include <stdlib.h>
#include <wiringPi.h>
#include <lcd.h>

const unsigned char Buf[] = "---SUNFOUNDER---";
const unsigned char myBuf[] = " sunfounder.com";

int main(void)
{
 int fd;
 int i;

 if(wiringPiSetup() == -1){
 exit(1);
 }

 fd = lcdInit(2,16,4,2,3, 0,0,0,0,6,5,4,1); //see /usr/local/include/lcd.h
 printf("%d", fd);
 if (fd == -1){
 printf("lcdInit 1 failed\n") ;
 return 1;
 }

 delay(1000);
 lcdClear(fd);
 lcdPosition(fd, 0, 0);
 lcdPuts(fd, "Welcome To--->");
 lcdPosition(fd, 0, 1);
 lcdPuts(fd, "sunfounder.com");
 delay(1000);
 lcdClear(fd);

 while(1){
 lcdClear(fd);
 for(i=0; i<16; i++){
 lcdPosition(fd, i, 0);
 lcdPutchar(fd, *(myBuf+i));
 delay(100);
 }
 for(i=0;i<sizeof(Buf)-1;i++){
 lcdPosition(fd, i, 1);
 lcdPutchar(fd, *(Buf+i));
 delay(200);
 }
 delay(500);
 }
 return 0;
}

Code Explanation

#include <lcd.h>

This is a library that integrates lcd1602 functional functions,
in which functions are defined such as lcdClear(), lcdPosition(),
lcdPuts(), and so on. These functions can be called directly after
importing into the library.

18. fd = lcdInit(2,16,4,2,3, 0,0,0,0,6,5,4,1); //see /usr/local/include/lcd.h
19. printf("%d", fd);
20. if (fd == -1){
21. printf("lcdInit 1 failed\n") ;
22. return 1;

Initialize the lcd1602. The prototype of lcdInit() is as follows:

int lcdInit (int rows, int cols, int bits, int rs, int strb,
int d0, int d1, int d2, int d3, int d4, int d5, int d6, int d7) ;

This is the main initialisation function and must be called
before you use any other LCD functions.

Rows and cols are the rows and columns on the display
(e.g. 2, 16 or 4,20). Bits is the number of bits wide on the interface
(4 or 8). The rs and strb represent the pin numbers of the display RS
pin and Strobe (E) pin. The parameters d0 through d7 are the pin
numbers of the 8 data pins connected from the Pi to the display.
Only the first 4 are used if you are running the display in 4-bit mode.

The return value is the ‘handle’ to be used for all subsequent calls to
the lcd library when dealing with that LCD, or -1 to indicate a fault.
(Usually incorrect parameters)

26. lcdClear(fd);

This function is used to clear the lcd screen. After
calling this function, all information displayed on the screen will be cleared.

27. lcdPosition(fd, 0, 0);

Set the position of the cursor at row 0 and col 0
(in fact it’s the first line and first column) for
subsequent text entry.

The prototype of lcdpostion function is as follows:

lcdPosition (int handle, int x, int y) ;

Set the position of the cursor for subsequent text entry.
x is the column and 0 is the left-most edge. y is the line
and 0 is the top line.

28. lcdPuts(fd, "Welcome To--->");

Display “Welcome To—>” at the specified location of LCD1602.

36. for(i=0; i<16; i++){
37. lcdPosition(fd, i, 0);
38. lcdPutchar(fd, *(myBuf+i));
39. delay(100);
40. }

Use the lcdPosition() function to place the cursor
at col i and row 0(the top line) for subsequent text
entry. Then the characters in the array myBuf [] are
displayed one by one to the LCD1602.

* is the address of myBuf, the real address of characters stored in memory. After calling lcdPutchar(fd, *(myBuf+ I)), the program will find the real address of the character, read the information stored in the address, and display it on the LCD screen.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 17_Lcd1602.py

You may see the “SunFounder” and “hello, world” appear one by one on the
LCD.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

from time import sleep

class LCD:
 # commands
 LCD_CLEARDISPLAY = 0x01
 LCD_RETURNHOME = 0x02
 LCD_ENTRYMODESET = 0x04
 LCD_DISPLAYCONTROL = 0x08
 LCD_CURSORSHIFT = 0x10
 LCD_FUNCTIONSET = 0x20
 LCD_SETCGRAMADDR = 0x40
 LCD_SETDDRAMADDR = 0x80

 # flags for display entry mode
 LCD_ENTRYRIGHT = 0x00
 LCD_ENTRYLEFT = 0x02
 LCD_ENTRYSHIFTINCREMENT = 0x01
 LCD_ENTRYSHIFTDECREMENT = 0x00

 # flags for display on/off control
 LCD_DISPLAYON = 0x04
 LCD_DISPLAYOFF = 0x00
 LCD_CURSORON = 0x02
 LCD_CURSOROFF = 0x00
 LCD_BLINKON = 0x01
 LCD_BLINKOFF = 0x00

 # flags for display/cursor shift
 LCD_DISPLAYMOVE = 0x08
 LCD_CURSORMOVE = 0x00

 # flags for display/cursor shift
 LCD_DISPLAYMOVE = 0x08
 LCD_CURSORMOVE = 0x00
 LCD_MOVERIGHT = 0x04
 LCD_MOVELEFT = 0x00

 # flags for function set
 LCD_8BITMODE = 0x10
 LCD_4BITMODE = 0x00
 LCD_2LINE = 0x08
 LCD_1LINE = 0x00
 LCD_5x10DOTS = 0x04
 LCD_5x8DOTS = 0x00

 def __init__(self, pin_rs=27, pin_e=22, pins_db=[25, 24, 23, 18], GPIO = None):
 # Emulate the old behavior of using RPi.GPIO if we haven't been given
 # an explicit GPIO interface to use
 if not GPIO:
 import RPi.GPIO as GPIO
 self.GPIO = GPIO
 self.pin_rs = pin_rs
 self.pin_e = pin_e
 self.pins_db = pins_db

 self.used_gpio = self.pins_db[:]
 self.used_gpio.append(pin_e)
 self.used_gpio.append(pin_rs)

 self.GPIO.setwarnings(False)
 self.GPIO.setmode(GPIO.BCM)
 self.GPIO.setup(self.pin_e, GPIO.OUT)
 self.GPIO.setup(self.pin_rs, GPIO.OUT)

 for pin in self.pins_db:
 self.GPIO.setup(pin, GPIO.OUT)

 self.write4bits(0x33) # initialization
 self.write4bits(0x32) # initialization
 self.write4bits(0x28) # 2 line 5x7 matrix
 self.write4bits(0x0C) # turn cursor off 0x0E to enable cursor
 self.write4bits(0x06) # shift cursor right

 self.displaycontrol = self.LCD_DISPLAYON | self.LCD_CURSOROFF | self.LCD_BLINKOFF

 self.displayfunction = self.LCD_4BITMODE | self.LCD_1LINE | self.LCD_5x8DOTS
 self.displayfunction |= self.LCD_2LINE

 """ Initialize to default text direction (for romance languages) """
 self.displaymode = self.LCD_ENTRYLEFT | self.LCD_ENTRYSHIFTDECREMENT
 self.write4bits(self.LCD_ENTRYMODESET | self.displaymode) # set the entry mode

 self.clear()

 def begin(self, cols, lines):
 if (lines > 1):
 self.numlines = lines
 self.displayfunction |= self.LCD_2LINE
 self.currline = 0

 def home(self):
 self.write4bits(self.LCD_RETURNHOME) # set cursor position to zero
 self.delayMicroseconds(3000) # this command takes a long time!

 def clear(self):
 self.write4bits(self.LCD_CLEARDISPLAY) # command to clear display
 self.delayMicroseconds(3000) # 3000 microsecond sleep, clearing the display takes a long time

 def setCursor(self, col, row):
 self.row_offsets = [0x00, 0x40, 0x14, 0x54]

 if (row > self.numlines):
 row = self.numlines - 1 # we count rows starting w/0

 self.write4bits(self.LCD_SETDDRAMADDR | (col + self.row_offsets[row]))

 def noDisplay(self):
 # Turn the display off (quickly)
 self.displaycontrol &= ~self.LCD_DISPLAYON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def display(self):
 # Turn the display on (quickly)
 self.displaycontrol |= self.LCD_DISPLAYON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def noCursor(self):
 # Turns the underline cursor on/off
 self.displaycontrol &= ~self.LCD_CURSORON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def cursor(self):
 # Cursor On
 self.displaycontrol |= self.LCD_CURSORON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def noBlink(self):
 # Turn on and off the blinking cursor
 self.displaycontrol &= ~self.LCD_BLINKON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def noBlink(self):
 # Turn on and off the blinking cursor
 self.displaycontrol &= ~self.LCD_BLINKON
 self.write4bits(self.LCD_DISPLAYCONTROL | self.displaycontrol)

 def DisplayLeft(self):
 # These commands scroll the display without changing the RAM
 self.write4bits(self.LCD_CURSORSHIFT | self.LCD_DISPLAYMOVE | self.LCD_MOVELEFT)

 def scrollDisplayRight(self):
 # These commands scroll the display without changing the RAM
 self.write4bits(self.LCD_CURSORSHIFT | self.LCD_DISPLAYMOVE | self.LCD_MOVERIGHT);

 def leftToRight(self):
 # This is for text that flows Left to Right
 self.displaymode |= self.LCD_ENTRYLEFT
 self.write4bits(self.LCD_ENTRYMODESET | self.displaymode);

 def rightToLeft(self):
 # This is for text that flows Right to Left
 self.displaymode &= ~self.LCD_ENTRYLEFT
 self.write4bits(self.LCD_ENTRYMODESET | self.displaymode)

 def autoscroll(self):
 # This will 'right justify' text from the cursor
 self.displaymode |= self.LCD_ENTRYSHIFTINCREMENT
 self.write4bits(self.LCD_ENTRYMODESET | self.displaymode)

 def noAutoscroll(self):
 # This will 'left justify' text from the cursor
 self.displaymode &= ~self.LCD_ENTRYSHIFTINCREMENT
 self.write4bits(self.LCD_ENTRYMODESET | self.displaymode)

 def write4bits(self, bits, char_mode=False):
 # Send command to LCD
 self.delayMicroseconds(1000) # 1000 microsecond sleep
 bits=bin(bits)[2:].zfill(8)
 self.GPIO.output(self.pin_rs, char_mode)
 for pin in self.pins_db:
 self.GPIO.output(pin, False)
 for i in range(4):
 if bits[i] == "1":
 self.GPIO.output(self.pins_db[::-1][i], True)
 self.pulseEnable()
 for pin in self.pins_db:
 self.GPIO.output(pin, False)
 for i in range(4,8):
 if bits[i] == "1":
 self.GPIO.output(self.pins_db[::-1][i-4], True)
 self.pulseEnable()

 def delayMicroseconds(self, microseconds):
 seconds = microseconds / float(1000000) # divide microseconds by 1 million for seconds
 sleep(seconds)

 def pulseEnable(self):
 self.GPIO.output(self.pin_e, False)
 self.delayMicroseconds(1) # 1 microsecond pause - enable pulse must be > 450ns
 self.GPIO.output(self.pin_e, True)
 self.delayMicroseconds(1) # 1 microsecond pause - enable pulse must be > 450ns
 self.GPIO.output(self.pin_e, False)
 self.delayMicroseconds(1) # commands need > 37us to settle

 def message(self, text):
 # Send string to LCD. Newline wraps to second line
 for char in text:
 if char == '\n':
 self.write4bits(0xC0) # next line
 else:
 self.write4bits(ord(char),True)

 def destroy(self):
 self.GPIO.cleanup(self.used_gpio)

def print_msg():
 print ("==")
 print ("| LCD1602 |")
 print ("| ------------------------------ |")
 print ("| D4 connect to BCM25 |")
 print ("| D5 connect to BCM24 |")
 print ("| D6 connect to BCM23 |")
 print ("| D7 connect to BCM18 |")
 print ("| RS connect to BCM27 |")
 print ("| CE connect to BCM22 |")
 print ("| RW connect to GND |")
 print ("| |")
 print ("| Control LCD1602 |")
 print ("| |")
 print ("| SunFounder|")
 print ("==\n")
 print ('Program is running...')
 print ('Please press Ctrl+C to end the program...')
 #input ("Press Enter to begin\n")

def main():
 global lcd
 print_msg()
 lcd = LCD()
 line0 = " sunfounder.com"
 line1 = "---SUNFOUNDER---"

 lcd.clear()
 lcd.message("Welcome to --->\n sunfounder.com")
 sleep(3)

 msg = "%s\n%s" % (line0, line1)
 while True:
 lcd.begin(0, 2)
 lcd.clear()
 for i in range(0, len(line0)):
 lcd.setCursor(i, 0)
 lcd.message(line0[i])
 sleep(0.1)
 for i in range(0, len(line1)):
 lcd.setCursor(i, 1)
 lcd.message(line1[i])
 sleep(0.1)
 sleep(1)

if __name__ == '__main__':
 try:
 main()
 except KeyboardInterrupt:
 lcd.clear()
 lcd.destroy()

Note

Because the source code contains so many definitions, we only list
few code here. Please download the complete code from the address marked
in the document.

Code Explanation

1. line0 = " sunfounder.com"
2. line1 = "---SUNFOUNDER---"

Define 2 lines of characters that will be displayed on the LCD 1602.

1. lcd.message("Welcome to --->\n sunfounder.com")

On LCD1602, “Welcome to —>n sunfounder.com” pops up.

1. lcd.begin(0, 2)

Initializes the LCD screen and specifies the dimensions
(width and height) of the display. begin() function needs
to be called before any other LCD library commands.

1. lcd.clear()

This function is used to clear the lcd screen. After
calling this function, all information displayed on
the screen will be cleared.

1. lcd.setCursor(i, 0)

Set the position of the cursor at col i and row
0 (the first line) for subsequent text entry.

1. lcd.message(line0[i])

The characters in the array line0[] will be displayed
at the specified location one by one.

Phenomenon Picture

[image: _images/image179.jpeg]

Lesson 18 Driving LEDs by 74HC595

Introduction

In this lesson, we will learn how to use 74HC595 to make eight LEDs
blink regularly. Now let’s get started!

Newly Added Components

[image: _images/image244.png]

Principle

74HC595

The 74HC595 consists of an 8−bit shift register and a storage register
with three−state parallel outputs. It converts serial input into
parallel output so you can save IO ports of an MCU.

When MR (pin10) is high level and OE (pin13) is low level, data is input
in the rising edge of SHcp and goes to the memory register through the
rising edge of SHcp. If the two clocks are connected together, the shift
register is always one pulse earlier than the memory register. There is
a serial shift input pin (Ds), a serial output pin (Q) and an
asynchronous reset button (low level) in the memory register. The memory
register outputs a Bus with a parallel 8-bit and in three states. When
OE is enabled (low level), the data in memory register is output to the
bus.

[image: _images/image181.png]
Pins of 74HC595 and their Functions:

Q0-Q7: 8-bit parallel data output pins, able to control 8 LEDs or 8
pins of 7-Segment Display directly.

Q7’: Series output pin, connected to DS of another 74HC595 to
connect multiple 74HC595s in series.

MR: Reset pin, active at low level;

SHcp: Time sequence input of shift register. On the rising edge, the
data in shift register moves successively one bit, i.e. data in Q1 moves
to Q2, and so forth. While on the falling edge, the data in shift
register remain unchanged.

STcp: Time sequence input of storage register. On the rising edge,
data in the shift register moves into memory register.

OE: Output enable pin, active at low level.

DS: Serial data input pin.

VCC: Positive supply voltage.

GND: Ground.

Schematic Diagram

In the experiment MR is connected to 3.3V (HIGH Level) and
OE to GND (LOW Level). Therefore, the data is input into the
rising edge of SHcp and enters the memory register through the
rising edge. In the rising edge of the SHcp, the data in the shift
register moves successively one bit in one time, i.e. data in Q1
moves to Q2, and so forth. In the rising edge of STcp, data in
the shift register moves into the memory register. All data will be
moved to the memory register 8 times. Then the data in the memory
register is output to the bus (Q0-Q7).

[image: _images/image245.png]
[image: _images/image260.png]

Build the Circuit

Note

Recognize the direction of the chip according to the concave on
it.

[image: _images/image246.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_18_Driving_Leds_by_74hc595

2. Compile the code.

gcc 18_74hc595.c -lwiringPi

3. Run the executable file.

sudo ./a.out

As the code runs, you can see these eight LEDs are lit up from left to
right, and then all LEDs light up and flash 3 times. After that, these
eight LEDs are lit from right to left, then they all turn on before
flashing 3 times. This loop continues in this way.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define SDI 0 //serial data input
#define RCLK 1 //memory clock input(STCP)
#define SRCLK 2 //shift register clock input(SHCP)

unsigned char LED[8] = {0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80};

void pulse(int pin){
 digitalWrite(pin, 0);
 digitalWrite(pin, 1);
}

void SIPO(unsigned char byte){
 int i;
 for(i=0;i<8;i++){
 digitalWrite(SDI, ((byte & (0x80 >> i)) > 0));
 pulse(SRCLK);
 }
}

void init(void){
 pinMode(SDI, OUTPUT);
 pinMode(RCLK, OUTPUT);
 pinMode(SRCLK, OUTPUT);

 digitalWrite(SDI, 0);
 digitalWrite(RCLK, 0);
 digitalWrite(SRCLK, 0);
}

int main(void){
 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 init();

 while(1){
 for(i=0;i<8;i++){
 SIPO(LED[i]);
 pulse(RCLK);
 delay(150);
 }
 delay(500);

 for(i=0;i<3;i++){
 SIPO(0xff);
 pulse(RCLK);
 delay(100);
 SIPO(0x00);
 pulse(RCLK);
 delay(100);
 }
 delay(500);

 for(i=0;i<8;i++){
 SIPO(LED[8-i-1]);
 pulse(RCLK);
 delay(150);
 }
 delay(500);

 for(i=0;i<3;i++){
 SIPO(0xff);
 pulse(RCLK);
 delay(100);
 SIPO(0x00);
 pulse(RCLK);
 delay(100);
 }
 delay(500);
 }
 return 0;
}

Code Explanation

10.void pulse(int pin){
11. digitalWrite(pin, 0);
12. digitalWrite(pin, 1);
13.}

Define an pulse function to generate an pulse.

15.void SIPO(unsigned char byte){
16. int i;
17. for(i=0;i<8;i++){
18. digitalWrite(SDI, ((byte & (0x80 >> i)) > 0));
19. pulse(SRCLK);
20. }
21.}

The function SIPO is used to assign the byte data to SDI(DS) by bits.

Among them, the inequality in statement digitalWrite() ((byte & (0x80>>i))>0)
is used to confirm each value written into the register and it realizes
the function by Shift operator (>>).

For example, if byte=0x01:

When the condition “i=0” is met, 0x80(1000 0000)>>0 becomes 0x80(1000 0000),
if byte&0x80=0, the inequality is false, and output 0 (false).

If “i=1” is true, 0x80>>1 changes into 0x40(0100 0000); when byte&0x40=0, output 0.

Deduce the rest from this, when and only when “i=8” is met, 0x80>>8 is 0x01(0000 0001),
byte&0x01=1, and output 1(true).

Pulse(SRCLK) generates a rising edge pulse on input pin of shift register to shift
the 8 bit data on SDI to shift register successively.

In a word, this for loop produces 8 times to shift the 8
bits of 0000 0001 to shift register.

23.void init(void){
24. pinMode(SDI, OUTPUT);
25. pinMode(RCLK, OUTPUT);
26. pinMode(SRCLK, OUTPUT);
27.
28. digitalWrite(SDI, 0);
29. digitalWrite(RCLK, 0);
30. digitalWrite(SRCLK, 0);
31.}

Initialize pins. Set all control pins of 74HC595 to output mode and
initialize them to low level. At the same time, the LEDs are set to
output mode, default low level.

44. for(i=0;i<8;i++){
45. SIPO(LED[i]);
46. pulse(RCLK);
47. delay(150);
48. }

Use the for loop to count 8 times in cycle,
and write a 1-bit data to the SDI each time.

When i=0, LED[0]=0x01(0000 0001), through the function SIPO(LED[0]),
shifts the 8 bits of 0x01 to shift register successively. Pulse(SRCLK)
generates a rising edge signal on input pin of storage register to shift
the 0x01 on shift register to storage register at once. Then the data
in the memory register are output to the bus (Q7-Q0), so you’ll see the
LED on Q0 is lit up. After loops, output all eight elements in the array
LED[i] to the bus (Q7-Q0), and you’ll see eight LEDs turning on from left to right.

51. for(i=0;i<3;i++){
52. SIPO(0xff);
53. pulse(RCLK);
54. delay(100);
55. SIPO(0x00);
56. pulse(RCLK);
57. delay(100);
58. }

In this part, the for loop is used to three times repeat the program in for()
statement. SIPO(0xff) means 8 LEDs are lit up, SIPO(0x00) represents 8 LEDs turn
off. That is, let 8 LEDs turn off 3 times simultaneously.

61. for(i=0;i<8;i++){
62. SIPO(LED[8-i-1]);
63. pulse(RCLK);
64. delay(150);
65. }

By the same token, this for loop allows 8 LEDs be
lit up one by one in reverse order. Here, i gradually
increases from 0, and 8-i-1 gradually decreases. SIPO(LED[8-i-1])
can be used to call the data in the LED[] array from back to front
so that you can get 8 LEDs lit up one by one in reverse order.

68. for(i=0;i<3;i++){
69. SIPO(0xff);
70. pulse(RCLK);
71. delay(100);
72. SIPO(0x00);
73. pulse(RCLK);
74. delay(100);
75. }

Then, make the eight LEDs turn on or off 3 times simultaneously.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 18_74HC595.py

As the code runs, you can see these eight LEDs are lit up from left to
right, and then all LEDs light up and flash 3 times. After that, these
eight LEDs are lit from right to left, then they all turn on before
flashing 3 times. This loop continues in this way.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

#!/usr/bin/env python3

#==
#
This program is for SunFounder SuperKit for Rpi.
#
Extend use of 8 LED with 74HC595.
#
Change the WhichLeds and sleeptime value under
loop() function to change LED mode and speed.
#
#===

import RPi.GPIO as GPIO
import time

SDI = 17
RCLK = 18
SRCLK = 27

#=============== LED Mode Defne ================
You can define yourself, in binay, and convert it to Hex
8 bits a group, 0 means off, 1 means on
like : 0101 0101, means LED1, 3, 5, 7 are on.(from left to right)
and convert to 0x55.

LED0 = [0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80] #original mode
BLINK = [0xff,0x00,0xff,0x00,0xff,0x00] #blink
#===

def print_message():
 print ("==")
 print ("| LEDs with 74HC595 |")
 print ("| ------------------------------ |")
 print ("| SDI connect to GPIO 0 |")
 print ("| RCLK connect to GPIO 1 |")
 print ("| SRCLK connect to GPIO 2 |")
 print ("| |")
 print ("| Control LEDs with 74HC595 |")
 print ("| |")
 print ("| SunFounder|")
 print ("==\n")
 print ('Program is running...')
 print ('Please press Ctrl+C to end the program...')
 #input ("Press Enter to begin\n")

def setup():
 GPIO.setmode(GPIO.BCM) # Number GPIOs by its BCM location
 GPIO.setup(SDI, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(RCLK, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(SRCLK, GPIO.OUT, initial=GPIO.LOW)

Shift the data to 74HC595
def hc595_shift(dat):
 for bit in range(0, 8):
 GPIO.output(SDI, 0x80 & (dat << bit))
 GPIO.output(SRCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(RCLK, GPIO.LOW)

def main():
 print_message()
 mode = LED0
 sleeptime = 0.15 # Change speed, lower value, faster speed
 blink_sleeptime = 0.15

 while True:
 # Change LED status from mode
 for onoff in mode:
 hc595_shift(onoff)
 time.sleep(sleeptime)

 for onoff in BLINK:
 hc595_shift(onoff)
 time.sleep(blink_sleeptime)

 # Change LED status from mode reverse
 for onoff in reversed(mode):
 hc595_shift(onoff)
 time.sleep(sleeptime)

 for onoff in BLINK:
 hc595_shift(onoff)
 time.sleep(blink_sleeptime)

def destroy():
 GPIO.cleanup()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

8.LED0 = [0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80] #original mode

Use array to define LED flashing mode, you can also customize
several hexadecimals to light up 8 LEDs.

11.def setup():
1. GPIO.setmode(GPIO.BCM) # Number GPIOs by its BCM location
2. GPIO.setup(SDI, GPIO.OUT, initial=GPIO.LOW)
3. GPIO.setup(RCLK, GPIO.OUT, initial=GPIO.LOW)
4. GPIO.setup(SRCLK, GPIO.OUT, initial=GPIO.LOW)

Initialize pins. Set all control pins of 74HC595 to output mode
and initialize them to low level. At the same time, the LED
lights are set to output mode, default low level.

18.def hc595_shift(dat):

Define a function hc595_shift() to output the 8 bits of dat to Q0-Q7.

1. for bit in range(0, 8):
2. GPIO.output(SDI, 0x80 & (dat << bit))
3. GPIO.output(SRCLK, GPIO.HIGH)
4. time.sleep(0.001)
5. GPIO.output(SRCLK, GPIO.LOW)

Assign the dat to SDI(DS) according to bits. Pin SRCLK will convert from
low to high, and generate a rising edge pulse, then shift the data in
pin SDI to shift register. Execute the loop 8 times to shift the 8 bits
of dat to the shift register in proper order.

1. GPIO.output(RCLK, GPIO.HIGH)
2. time.sleep(0.001)
3. GPIO.output(RCLK, GPIO.LOW)

Pin RCLK converts from low to high and generate a rising edge,
then shift data from shift register to storage register.
Finally the data in the memory register is output to the bus (Q0-Q7).

1. for onoff in mode:
2. hc595_shift(onoff)
3. time.sleep(sleeptime)

Here we use a onoff variable to control the LED that changes
within the range of mode, and hc595_shift (onoff) means
lighting up LED one by one. For example, when mode is the
first datum in LED0, or 0x01, onoff = mode = 0x01 = 00000001.
In this course, the LED is lit by high level. To put it another
way, it is Hc595_shift (onoff) = hc595_shift (00000001) that
lights up the last LED. Along the same vein, when the value of mode
is the second datum of LED0 (onoff = 0x02 = 00000010), the second
last LED turns on.

1. for onoff in reversed(mode):
2. hc595_shift(onoff)
3. time.sleep(sleeptime)

According to the same principle, a reversed is used here
to get LEDs lit up in reverse order.

1. for onoff in BLINK:
2. hc595_shift(onoff)
3. time.sleep(blink_sleeptime)

In the same way, light up 8 LEDs; exactly, 8 LEDs are turned
on or off 3 times synchronously in the same pattern as
that of the LEDs in the BLINK array.

Phenomenon Picture

[image: _images/image184.jpeg]

Lesson 19 7-segment

Introduction

Generally, there are two ways to drive a single 7-Segment Display. One
way is to connect its 8 pins directly to eight ports on the Raspberry
Pi. Or you can connect the 74HC595 to three ports of the Raspberry Pi
and then the 7- segment display to the 74HC595. In this experiment, we
will use the latter. By this way, we can save five ports – considering
the board’s limited ports, and this is very important. Now let’s get
started!

Newly Added Components

[image: _images/image247.png]

Principle

7-Segment Display

A 7-Segment Display is an 8-shaped component which packages 7 LEDs. Each
LED is called a segment – when energized, one segment forms part of a
numeral to be displayed.

There are two types of pin connection: Common Cathode (CC) and Common
Anode (CA). As the name suggests, a CC display has all the cathodes of
the 7 LEDs connected when a CA display has all the anodes of the 7
segments connected. In this kit, we use the former.

[image: _images/image186.jpeg]
Each of the LEDs in the display is given a positional segment with one
of its connection pins led out from the rectangular plastic package.
These LED pins are labeled from “a” through to “g” representing each
individual LED. The other LED pins are connected together forming a
common pin. So by forward biasing the appropriate pins of the LED
segments in a particular order, some segments will brighten and others
stay dim, thus showing the corresponding character on the display.

Display Codes

To help you get to know how 7-Segment Displays(Common Cathode) display
Numbers, we have drawn the following table. Numbers are the number 0-F
displayed on the 7-Segment Display; (DP) GFEDCBA refers to the
corresponding LED set to 0 or 1, For example, 00111111 means that DP and
G are set to 0, while others are set to 1. Therefore, the number 0 is
displayed on the 7-Segment Display, while HEX Code corresponds to
hexadecimal number.

[image: _images/image248.png]

Schematic Diagram

[image: _images/image249.png]

Build the Circuit

Note

Recognize the direction of the chip according to the concave on
it.

[image: _images/image250.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_19_7-segment

2. Compile the code.

gcc 19_7-Segment.c -lwiringPi

3. Run the executable file.

sudo ./a.out

You may see 0 to 9 and A to F on the 7-Segment Display.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>

#define SDI 0 //serial data input
#define RCLK 1 //memory clock input(STCP)
#define SRCLK 2 //shift register clock input(SHCP)

unsigned char SegCode[17] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x80};

void init(void){
 pinMode(SDI, OUTPUT);
 pinMode(RCLK, OUTPUT);
 pinMode(SRCLK, OUTPUT);

 digitalWrite(SDI, 0);
 digitalWrite(RCLK, 0);
 digitalWrite(SRCLK, 0);
}

void hc595_shift(unsigned char dat){
 int i;
 for(i=0;i<8;i++){
 digitalWrite(SDI, 0x80 & (dat << i));
 digitalWrite(SRCLK, 1);
 delay(1);
 digitalWrite(SRCLK, 0);
 }

 digitalWrite(RCLK, 1);
 delay(1);
 digitalWrite(RCLK, 0);
}

int main(void){
 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed, print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 init();

 while(1){
 for(i=0;i<17;i++){
 hc595_shift(SegCode[i]);
 delay(500);
 }
 }
 return 0;
}

Code Explanation

10.void init(void){
11. pinMode(SDI, OUTPUT);
12. pinMode(RCLK, OUTPUT);
13. pinMode(SRCLK, OUTPUT);
14.
15. digitalWrite(SDI, 0);
16. digitalWrite(RCLK, 0);
17. digitalWrite(SRCLK, 0);
18.}

Initialize pins. Set all control pins of 74HC595 to output mode
and initialize them to low level. At the same time, the LEDs
are set to output mode, default low level.

19. void hc595_shift(unsigned char dat)

To assign 8 bit value to 74HC595’s shift register.

22. for(i=0;i<8;i++){
23. digitalWrite(SDI, 0x80 & (dat << i));
24. digitalWrite(SRCLK, 1);
25. delay(1);
26. digitalWrite(SRCLK, 0);
27. }

Assign the dat value to SDI(DS) by bits. Then shift them to
the shift register by bits. Execute the loop 8 times to shift
the 8 bits of dat to the shift register in proper order.

29. digitalWrite(RCLK, 1);
30. delay(1);
31. digitalWrite(RCLK, 0);

Pin RCLK converts from low to high and generates a
rising edge, then shifts data from shift register to
storage register. Finally the data in the memory register
are output to the bus (Q0-Q7).

45. for(i=0;i<17;i++){
46. hc595_shift(SegCode[i]);
47. delay(500);
48. }

In the for loop, output 16 values from array Segcode[] to 7-Segment Display.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 19_7-Segment.py

You may see 0 to 9 and A to F on the 7-Segment Display.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time

Set up pins
SDI = 17
RCLK = 18
SRCLK = 27

segCode = [0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71]

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(SDI, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(RCLK, GPIO.OUT, initial=GPIO.LOW)
 GPIO.setup(SRCLK, GPIO.OUT, initial=GPIO.LOW)

Shift the data to 74HC595
def hc595_shift(dat):
 for bit in range(0, 8):
 GPIO.output(SDI, 0x80 & (dat << bit))
 GPIO.output(SRCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 time.sleep(0.001)
 GPIO.output(RCLK, GPIO.LOW)

def main():
 while True:
 # Shift the code one by one from segCode list
 for code in segCode:
 hc595_shift(code)
 time.sleep(0.5)

def destroy():
 GPIO.cleanup()

if __name__ == '__main__':
 setup()
 try:
 main()
 except KeyboardInterrupt:
 destroy()

Code Explanation

12.def setup():
13. GPIO.setmode(GPIO.BCM)
14. GPIO.setup(SDI, GPIO.OUT, initial=GPIO.LOW)
15. GPIO.setup(RCLK, GPIO.OUT, initial=GPIO.LOW)
16. GPIO.setup(SRCLK, GPIO.OUT, initial=GPIO.LOW)

Initialize pins. Set all control pins of 74HC595 to output mode
and initialize them to low level.

19.def hc595_shift(dat):

To assign 8 bit value to 74HC595’s shift register.

20. for bit in range(0, 8):
21. GPIO.output(SDI, 0x80 & (dat << bit))
22. GPIO.output(SRCLK, GPIO.HIGH)
23. time.sleep(0.001)
24. GPIO.output(SRCLK, GPIO.LOW)

Assign the dat value to SDI(DS) by bits. Then shift them to
the shift register by bits. Execute the loop 8 times to shift
the 8 bits of dat to the shift register in proper order.

25. GPIO.output(RCLK, GPIO.HIGH)
26. time.sleep(0.001)
27. GPIO.output(RCLK, GPIO.LOW)

Pin RCLK converts from low to high and generates a
rising edge, then shifts data from shift register to
storage register. Finally the data in the memory register
are output to the bus (Q0-Q7).

32. for code in segCode:
33. hc595_shift(code)
34. time.sleep(0.5)

In the for loop, output 16 values from array Segcode [] to 7-Segment Display.

Phenomenon Picture

[image: _images/image189.jpeg]

Lesson 20 Traffic Light

Introduction

In last lesson, we learned how to use a 74HC595 chip to drive
a 7-Segment Display. Based on that, we can apply it more widely
now, such as making a simple traffic light. Now let’s get started!

Newly Added Components

[image: _images/image251.png]

Schematic Diagram

[image: _images/image252.png]
[image: _images/image261.png]

Build the Circuit

[image: _images/image253.png]

For C Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/c/Lesson_20_TrafficLight

2. Compile the code.

gcc 20_TrafficLight.c -lwiringPi

3. Run the executable file.

sudo ./a.out

You can see the following phenomenon of traffic lights. The red LED
lights up for 9 seconds, green LED for 5s, and yellow LED for 3s.

Note

If it does not work after running, or there is an error prompt: “wiringPi.h: No such file or directory”, please refer to C code is not working?.

Code

#include <wiringPi.h>
#include <stdio.h>
#include <wiringShift.h>
#include <signal.h>
#include <unistd.h>
#define SDI 0 //serial data input(DS)
#define RCLK 1 //memory clock input(STCP)
#define SRCLK 2 //shift register clock input(SHCP)
const int ledPin[]={3,4,5}; //Define 3 LED pin(Red, Green, Yellow)
unsigned char SegCode[17] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x80};

int greentime = 5;
int yellowtime = 3;
int redtime = 9;
int colorState = 0;
char *lightColor[]={"Red","Green","Yellow"};
int counter = 9;

void init(void){
 pinMode(SDI, OUTPUT);
 pinMode(RCLK, OUTPUT);
 pinMode(SRCLK, OUTPUT);

 digitalWrite(SDI, 0);
 digitalWrite(RCLK, 0);
 digitalWrite(SRCLK, 0);

 for(int i=0;i<3;i++){
 pinMode(ledPin[i],OUTPUT);
 digitalWrite(ledPin[i],LOW);
 }
}

void hc595_shift(unsigned char dat){
 int i;
 for(i=0;i<8;i++){
 digitalWrite(SDI, 0x80 & (dat << i));
 digitalWrite(SRCLK, 1);
 delay(1);
 digitalWrite(SRCLK, 0);
 }
 digitalWrite(RCLK, 1);
 delay(1);
 digitalWrite(RCLK, 0);
}

void timer(int sig){ //Timer function
 if(sig == SIGALRM){
 counter --;
 alarm(1);
 if(counter == 0){
 if(colorState == 0) counter = greentime;
 if(colorState == 1) counter = yellowtime;
 if(colorState == 2) counter = redtime;
 colorState = (colorState+1)%3;
 }
 printf("counter : %d \t light color: %s \n",counter,lightColor[colorState]);
 }
}

void display(int num)
{
 hc595_shift(SegCode[num%10]);
 delay(1);
}

void lightup(int state)
{
 for(int i=0;i<3;i++){
 digitalWrite(ledPin[i],LOW);
 }
 digitalWrite(ledPin[state],HIGH);
}

int main(void)
{
 int i;

 if(wiringPiSetup() == -1){ //when initialize wiring failed,print message to screen
 printf("setup wiringPi failed !");
 return 1;
 }

 init();

 signal(SIGALRM,timer); //configure the timer
 alarm(1); //set the time of timer to 1s
 while(1){
 display(counter);
 lightup(colorState);
 }
 return 0;
}

Code Explanation

12.int greentime = 5;
13.int yellowtime = 3;
14.int redtime = 9;

Define the duration of lighting of three LEDs. Since
what we use is a 7-Segment Display here, we shorten
the length of seconds of lighting of traffic lights,
setting the green LED to light up for 5 seconds, the
yellow LED to 3 seconds, and the red LED to 9 seconds.

15.int colorState = 0;
16.int counter = 9;

The variable colorState corresponds to the state of
the traffic lights, and we only need to do a simple
calculation of colorState to indicate the order change
of the state of the traffic lights. The Variable counter
is used to count down the time to each traffic light
status and will be output on a 7-Segment Display.

19.void init(void){
20. pinMode(SDI, OUTPUT);
21. pinMode(RCLK, OUTPUT);
22. pinMode(SRCLK, OUTPUT);
23.
24. digitalWrite(SDI, 0);
25. digitalWrite(RCLK, 0);
26. digitalWrite(SRCLK, 0);
27.
28. for(int i=0;i<3;i++){
29. pinMode(ledPin[i],OUTPUT);
30. digitalWrite(ledPin[i],LOW);
31. }
32.}

Initialize pins. Set all control pins of 74HC595 to output
mode and initialize them to low level. At the same time,
the LEDs are set to output mode, default low level.

47.void timer(int sig){
48. if(sig == SIGALRM){
49. counter --;
50. alarm(1);
51. if(counter == 0){
52. if(colorState == 0) counter = greentime;
53. if(colorState == 1) counter = yellowtime;
54. if(colorState == 2) counter = redtime;
55. colorState = (colorState+1)%3;
56. }
57. printf("counter : %d \t light color: %s \n",counter,lightColor[colorState]);
58. }
59.}

On this timer, counter decreases gradually with every second passing,
and when it goes to 0, the state of the traffic light changes accordingly.

67.void lightup(int state)
68.{
69. for(int i=0;i<3;i++){
70. digitalWrite(ledPin[i],LOW);
71. }
72. digitalWrite(ledPin[state],HIGH);
73.}

The function is to turn off all the lights first, and then light
up the corresponding LED according to the value of the traffic light state.

For Python Language Users

Command

1. Go to the folder of the code.

cd /home/pi/electronic-kit/for-raspberry-pi/python

2. Run the code.

sudo python3 20_TrafficLight.py

You can see the following phenomenon of traffic lights. The red LED
lights up for 9 seconds, green LED for 5s, and yellow LED for 3s.

Code

Note

You can Modify/Reset/Copy/Run/Stop the code below. But before that, you need to go to source code path like electronic-kit/for-raspberry-pi/python. After modifying the code, you can run it directly to see the effect.

import RPi.GPIO as GPIO
import time
import threading

#define the pins connect to 74HC595
SDI = 17 #serial data input(DS)
RCLK = 18 #memory clock input(STCP)
SRCLK = 27 #shift register clock input(SHCP)
number = (0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0x80)

ledPin =(22,23,24)

greenLight = 5
yellowLight = 3
redLight = 9
lightColor=("Red","Green","Yellow")

colorState=0
counter = 9
t = 0

def setup():
 GPIO.setmode(GPIO.BCM)
 GPIO.setup(SDI, GPIO.OUT)
 GPIO.setup(RCLK, GPIO.OUT)
 GPIO.setup(SRCLK, GPIO.OUT)
 for pin in ledPin:
 GPIO.setup(pin,GPIO.OUT)

def hc595_shift(dat):
 for bit in range(0, 8):
 GPIO.output(SDI, 0x80 & (dat << bit))
 GPIO.output(SRCLK, GPIO.HIGH)
 GPIO.output(SRCLK, GPIO.LOW)
 GPIO.output(RCLK, GPIO.HIGH)
 GPIO.output(RCLK, GPIO.LOW)

def display(num):
 hc595_shift(0xff)
 hc595_shift(number[num%10])
 time.sleep(0.003)

def timer(): #timer function
 global counter
 global colorState
 global t
 t = threading.Timer(1.0,timer)
 t.start()
 counter-=1
 if (counter is 0):
 if(colorState is 0):
 counter= greenLight
 if(colorState is 1):
 counter=yellowLight
 if (colorState is 2):
 counter=redLight
 colorState=(colorState+1)%3
 print ("counter : %d color: %s "%(counter,lightColor[colorState]))

def lightup(state):
 for i in range(0,3):
 GPIO.output(ledPin[i], GPIO.LOW)
 GPIO.output(ledPin[state], GPIO.HIGH)

def loop():
 global t
 global counter
 global colorState
 t = threading.Timer(1.0,timer)
 t.start()
 while True:
 display(counter)
 lightup(colorState)

def destroy(): # When "Ctrl+C" is pressed, the function is executed.
 global t
 GPIO.cleanup()
 t.cancel() #cancel the timer

if __name__ == '__main__': # Program starting from here
 setup()
 try:
 loop()
 except KeyboardInterrupt:
 destroy()

Code Explanation

13.greenLight = 5
14.yellowLight = 3
15.redLight = 9

Define the duration of lighting of three LEDs.
Since what we use is a 7-Segment Display here,
we shorten the length of seconds of lighting of
traffic LEDs, setting the green LED to light up for
5 seconds, the yellow LED to 3 seconds, and the red
LED to 9 seconds.

18.colorState=0
19.counter = 9

The variable colorState corresponds to the state of the traffic LEDs,
and we only need to do a simple calculation of colorState to indicate
the order change of the state of the traffic LEDs.

counter is used to count down the time to each traffic LED status
and will be output on a 7-Segment Display.

45.def timer(): #timer function
46. global counter
47. global colorState
48. global t
49. t = threading.Timer(1.0,timer)
50. t.start()
51. counter-=1
52. if (counter is 0):
53. if(colorState is 0):
54. counter= greenLight
55. if(colorState is 1):
56. counter=yellowLight
57. if (colorState is 2):
58. counter=redLight
59. colorState=(colorState+1)%3
60. print ("counter : %d color: %s "%(counter,lightColor[colorState]))

On this timer, counter decreases gradually with every second passing,
and when it goes to 0, the state of the traffic LED changes accordingly.

62.def lightup(state):
63. for i in range(0,3):
64. GPIO.output(ledPin[i], GPIO.LOW)
65. GPIO.output(ledPin[state], GPIO.HIGH)

The function is to turn off all the LEDs first, and then
light up the corresponding LED according to the value of the
traffic LED state.

Phenomenon Picture

[image: _images/image192.jpeg]

Appendix

	Remote Desktop

Remote Desktop

If you are not satisfied with using the command window to control the
Raspberry Pi, you can also use the remote desktop function, which can
help us manage the files in the Raspberry Pi easily. There are two ways
to control the desktop of the Raspberry Pi remotely : VNC and
XRDP.

VNC

You can use the function of remote desktop through VNC.

Enable VNC Service

The VNC service has been installed in the system. By default, VNC is
disabled. You need to enable it in config.

Step 1

Input the following command:

sudo raspi-config

[image: _images/image36.png]
Step 2

On the config interface, select “Interfacing Options” by the up,
down, left and right keys on the keyboard.

[image: _images/image37.png]
Step 3

Select VNC.

[image: _images/image38.png]
Step 4

Select Yes -> OK -> Finish to exit the configuration.

[image: _images/image39.png]

Login to VNC

Step 1

You need to install the VNC Viewer on personal computer. After the
installation is done, open it.

Step 2

Then select “New connection”.

[image: _images/image40.png]
Step 3

Input IP address of Raspberry Pi and any Name.

[image: _images/image41.png]
Step 4

Double click the connection just created:

[image: _images/image421.png]
Step 5

Enter Username (“pi”) and Password (“raspberry” by default).

[image: _images/image431.png]
Step 6

Now you can see the desktop of the Raspberry Pi:

[image: _images/image441.png]

XRDP

XRDP provides a graphical login to remote machines using RDP (Microsoft
Remote Desktop Protocol).

Install XRDP

Step 1

Login to Raspberry Pi by using SSH.

Step 2

Input the following instructions to install XRDP.

sudo apt-get update

sudo apt-get install xrdp

Step 3

Later, the installation starts.

Enter “Y”, press key “Enter” to confirm.

[image: _images/image451.png]
Step 4

Finished the installation, you should login to your Raspberry Pi by
using Windows remote desktop applications.

Login to XRDP

Step 1

If you are a Windows user, you can use the Remote Desktop feature that
comes with Windows. If you are a Mac user, you can download and use
Microsoft Remote Desktop from the APP Store, and there is not much
difference between them. The next example is Windows remote desktop.

Step 2

Type in “mstsc” in Run (WIN+R) to open the Remote Desktop
Connection, and input the IP address of Raspberry Pi, then click on
“Connect”.

[image: _images/image461.png]
Step 3

Then the xrdp login page pops out. Please type in your username and
password. After that, please click “OK”. At the first time you log in,
your username is “pi” and the password is “raspberry”.

[image: _images/image47.png]
Step 4

Here, you successfully login to RPi by using the remote desktop.

[image: _images/image48.png]

For Arduino User

	Install and Introduce Arduino IDE

	Download the Code

	Lessons

Install and Introduce Arduino IDE

Description

Arduino is an open source platform with simple software and hardware. You can pick it up in short time even if you are a
beginner. It provides an integrated development environment (IDE) for code compiling, compatible with multiple control boards.
So you can just download the Arduino IDE, upload the sketches (i.e. the code files) to the board,
and then you can see relative experimental phenomena. For more information, refer to http://www.arduino.cc.

Install Arduino IDE

Here are the installation steps on the windows system.

For other systems, please refer to: Install Arduinio IDE in different system and FAQ.pdf

The code in this kit is written based on Arduino, so you need to install the IDE first. Skip it if you have done this.

Now go to arduino.cc and click SOFTWARE -> DOWNLOADs. on the page, check the software list on the right side.

[image: _images/image13.png]
Find the one that suits your operation system and click to download.
There are two versions of Arduino for Windows: Installer or ZIP file.
You’re recommended to download the former.

For Installer File

Step 1: Find the .exe file just downloaded.

[image: _images/image14.png]
Step 2: Double click the file and a window will pop up as below.
Click I Agree.

[image: _images/image15.png]
Step 3: Click Next.

[image: _images/image16.png]
Step 4: Select the path to install. By default, it’s set in the C
disk. You can click Browse and choose other paths. Click OK.
Then click Install.

[image: _images/image17.png]
Step 5: Meanwhile, it will prompts install the needed drivers,
please select the ‘Always trust software from “Arduino LLC” ’. After the
installation is done, click Close

Note

The new IDE may prompt errors when you’re compiling code under Windows
XP. So if your computer is running on XP, you’re suggested to install
Arduino 1.0.5 or 1.0.6. Also you can upgrade your computer.

For ZIP File

If you download the zip file before, when you connect the MCU to the
computer, it may not be recognized. Then you need to install the driver
manually. Take the following steps.

Step1: Plug in the board to the computer with a 5V USB cable. After
a while, a prompt message of failed installation will appear.

Step2: Go to the Device Manager. You will find under
other devices, Arduino Uno with an exclamation mark appear, which means
the computer did not recognize the board.

[image: _images/image18.png]
Step3: Right click on Arduino Uno and select Update Driver
Software.

[image: _images/image19.png]
Step4: Choose the second option, Browse my computer for Driver
software.

[image: _images/image20.png]
Step5: A window pops up then. Click Browse. Then go to the
folder where you just extracted the file. Go to the drivers folder and
click OK -> Next.

[image: _images/image20.png]
Step6: Select ‘Always trust software from “Arduino LLC” ‘ then click
Install.

[image: _images/image21.png]
It may need a sec. Then the system
prompts you the driver has been installed successfully.
So the computer can recognize the board now. Click Close.

[image: _images/image22.png]
Open the Arduino Software (IDE)

Double-click the Arduino icon (arduino.exe) created by the installation
process.
Then the Arduino IDE will appear. Let’s check details of the software.

[image: _images/image23.png]

	Verify: Compile your code. Any syntax problem will be prompted with errors.

	Upload: Upload the code to your board. When you click the button, the RX and TX LEDs on the board will flicker fast and won’t stop until the upload is done.

	New: Create a new code editing window.

	Open: Open an .ino sketch.

	Save: Save the sketch.

	Serial Monitor: Click the button and a window will appear. It receives the data sent from your control board. It is very useful for debugging.

	File: Click the menu and a drop-down list will appear, including file creating, opening, saving, closing, some parameter configuring, etc.

	Edit: Click the menu. On the drop-down list, there are some editing operations like Cut, Copy, Paste, Find, and so on, with their corresponding shortcuts.

	Sketch: Includes operations like Verify, Upload, Add files, etc. More important function is Include Library – where you can add libraries.

	Tool: Includes some tools – the most frequently used Board (the board you use) and Port (the port your board is at). Every time you want to upload the code, you need to select or check them.

	Help: If you’re a beginner, you may check the options under the menu and get the help you need, including operations in IDE, introduction information, troubleshooting, code explanation, etc.

	In this message area, no matter when you compile or upload, the summary message will always appear.

	Detailed messages during compile and upload. For example, the file used lies in which path, the details of error prompts.

	Board and Port: Here you can preview the board and port selected for code upload. You can select them again by Tools -> Board / Port if any is incorrect.

	The editing area of the IDE. You can write code here.

[image: _images/image24.jpeg]

Download the Code

We have uploaded the Arduino codes of this kit to the Arduino Cloud, you can see and download it in every lesson.

If you want to download all the codes to your local folder at once, please visit the link below:

https://github.com/sunfounder/electronic-kit

This is a github repository, which contains information about Arduino and Raspberry Pi. You can download it via the Download ZIP button.

[image: _images/download_arduino.jpg]
The Arduino code path is as follows: electronic-kit/for-Arduino/code/.

Lessons

	Lesson 1 Blinking LED

	Lesson 2 Controlling LED by Button

	Lesson 3 Controlling an LED by Potentiometer

	Lesson 4 Doorbell

	Lesson 5 Photoresistor

	Lesson 6 RGB LED

	Lesson 7 Tilt Switch

	Lesson 8 Slide Switch

	Lesson 9 Relay

	Lesson 10 4N35

	Lesson 11 NE555 Timer

	Lesson 12 Servo

	Lesson 13 LCD1602

	Lesson 14 Thermistor

	Lesson 15 Voltmeter

	Lesson 16 Automatically Tracking Light Source

	Lesson 17 Light Alarm

	Lesson 18 Answer Machine

	Lesson 19 Controlling Voice by Light

	Lesson 20 74HC595

Lesson 1 Blinking LED

Introduction

You should’ve learnt how to install Arduino IDE and add libraries
before. Now you can start with a simple experiment to learn the basic
operation and code in the IDE.

Component

[image: _images/image171.png]
[image: _images/image1721.png]

Component Introduction

Breadboard

A breadboard is a construction base for prototyping of electronics. It
is used to build and test circuits quickly before finalizing any circuit
design. And it has many holes into which components like ICs and
resistors as well as jumper wires mentioned above can be inserted. The
breadboard allows you to easily plug in and remove components.

This is the internal structure of a full+ breadboard. Although there are
holes on the breadboard, internally some of them are connected with
metal strips.

[image: _images/image31.png]
Resistor

Resistor is an electronic element that can limit the branch current. A
fixed resistor is one whose resistance cannot be changed, when that of a
potentiometer or variable resistor can be adjusted.

The resistors in this kit are fixed ones. It is essential in the circuit
to protect the connected components. The following pictures show a real
220Ω resistor and two generally used circuit symbols for resistor. Ω is
the unit of resistance and the larger includes KΩ, MΩ, etc. Their
relationship can be shown as follows: 1 MΩ=1000 KΩ, 1 KΩ = 1000 Ω, which
means 1 MΩ = 1000,000 Ω = 10^6 Ω. Normally, the resistance is marked on
it. So if you see these symbols in a circuit, it stands for a resistor.

[image: _images/image173.png]
The resistance can be marked directly, in color code, and by character.
The resistors offered in this kit are marked by different colors.
Namely, the bands on the resistor indicate the resistance.

When using a resistor, we need to know its resistance first. Here are
two methods: you can observe the bands on the resistor, or use a
multimeter to measure the resistance. You are recommended to use the
first method as it is more convenient and faster. If you are not sure
about the value, use the multimeter.

As shown in the card, each color stands for a number.

[image: _images/image35.jpeg]
LED

Semiconductor light-emitting diode is a type of component which can turn
electric energy into light energy via PN junctions. By wavelength, it
can be categorized into laser diode, infrared light-emitting diode and
visible light-emitting diode which is usually known as light-emitting
diode (LED).

[image: _images/image174.png]
Diode has unidirectional conductivity, so the current flow will be as
the arrow indicates in figure circuit symbol. You can only provide the
anode with a positive power and the cathode with a negative. Thus the
LED will light up.

An LED has two pins. The longer one is the anode, and shorter one, the
cathode. Pay attention not to connect them inversely. There is fixed
forward voltage drop in the LED, so it cannot be connected with the
circuit directly because the supply voltage can outweigh this drop and
cause the LED to be burnt. The forward voltage of the red, yellow, and
green LED is 1.8 V and that of the white one is 2.6 V. Most LEDs can
withstand a maximum current of 20 mA, so we need to connect a current
limiting resistor in series.

The formula of the resistance value is as follows:

R = (Vsupply – VD)/I

R stands for the resistance value of the current limiting resistor,
Vsupply for voltage supply, VD for voltage drop and I for the working
current of the LED.

If we provide 5 voltage for the red LED, the minimum resistance of the
current limiting resistor should be: (5V-1.8v)/20mA = 160Ω. Therefore,
you need a 160Ω or larger resistor to protect the LED. You are
recommended to use the 220Ω resistor offered in the kit.

Jumper Wires

Wires that connect two terminals are called jumper wires. There are
various kinds of jumper wires. Here we focus on those used in
breadboard. Among others, they are used to transfer electrical signals
from anywhere on the breadboard to the input/output pins of a
microcontroller.

Jump wires are fitted by inserting their “end connectors” into the slots
provided in the breadboard, beneath whose surface there are a few sets
of parallel plates that connect the slots in groups of rows or columns
depending on the area. The “end connectors” are inserted into the
breadboard, without soldering, in the particular slots that need to be
connected in the specific prototype.

There are three types of jumper wire: Female-to-Female, Male-to-Male,
and Male-to-Female.

[image: _images/image175.png]
More than one type of them may be used in a project. The color of the
jump wires is different but it doesn’t mean their function is different
accordingly; it’s just designed so to better identify the connection
between each circuit.

Principle:

Connect one end of the 220ohm resistor to pin 9 of the Uno and the other
end to the anode (the long pin) of the LED, and the cathode (the short
pin) of the LED to GND. When the pin 9 outputs high level, the current
gets through the current limiting resistor to the anode of the LED. And
since the cathode of the LED is connected to GND, the LED will light up.
When pin 9 outputs low level, the LED goes out.

The schematic diagram:

[image: _images/image204.png]

Experimental Procedures

Step 1: Build the circuit (the pin with a curve is the anode of the
LED).

Then plug the board into the computer with a 5V USB cable.

[image: _images/image42.png]
Step 2: Open the Lesson_1_Blinking_LED.ino code file in the path of
electronic-kit\for-Arduino\code\Lesson_1_Blinking_LED

Step 3: Select the Board and Port

Before uploading the code, you need to select the Board and
Port. Click Tools ->Board and select Arduino/Genuino
Uno.

[image: _images/image43.png]
Then select Tools ->Port. Your port should be different from
mine.

[image: _images/image44.png]
Step 4: Upload the sketch to the Uno board.

Click the Upload icon to upload the code to the control board.

[image: _images/image45.png]
If “Done uploading” appears at the bottom of the window, it means the
sketch has been successfully uploaded.

[image: _images/image46.png]
You should now see the LED blinking.

[image: _images/image47.jpeg]

Code

 Lesson 2 Controlling LED by Button

Lesson 2 Controlling LED by Button

Introduction

In this experiment, we will learn how to turn on/off an LED by using an
I/O port and a button. The “I/O port” refers to the INPUT and OUTPUT
port. Here the INPUT port of the Uno board is used to read the output of
an external device. Since the board itself has an LED (connected to Pin
13), you can use this LED to do this experiment for convenience.

Components

[image: _images/image171.png]
[image: _images/image1761.png]

Experimental Principle

Button

Buttons are a common component used to control electronic devices. They
are usually used as switches to connect or break circuits. Although
buttons come in a variety of sizes and shapes, the one used here is a
6mm mini-button as shown in the following pictures.

Two pins on the left is connected, and the right is similar as the left,
which is shown in the below:

[image: _images/image50.png]
The following is the internal structure of a button. The symbol on the
right below is usually used to represent a button in circuits.

[image: _images/image205.png]
When the button is pressed, the 4 pins are connected, thus closing the
circuit.

Principle:

Connect one end of the buttons to pin 12 which connects with a pull-down
resistor (to eliminate jitter and output a stable level when the button
is working). Connect the other end of the resistor to GND and one of the
pins at the other end of the button to 5V. When the button is pressed,
pin 12 is 5V (HIGH), then pin 13 is set (integrated with an LED) as HIGH
at the same time. If the button release, the pin 12 changes to LOW and
pin 13 is set to LOW. So we will see the LED lights up and goes out
alternately as the button is pressed and released.

The schematic diagram：

[image: _images/image52.png]

Experimental Procedures

Step 1: Build the circuit

Step 2: Open the code file.

Step 3: Select the Board and Port.

Step 4: Upload the sketch to the board.

[image: _images/image2281.png]
Now, press the button, and the LED on the Uno board will light up.

[image: _images/image2291.png]

Code

 Lesson 3 Controlling an LED by Potentiometer

Lesson 3 Controlling an LED by Potentiometer

Introduction

In this lesson, let’s see how to change the luminance of an LED by a
potentiometer, and receive the data of the potentiometer in Serial
Monitor to see its value change.

[image: _images/image171.png]
[image: _images/image177.png]

Experimental Principle

Potentiometer

Potentiometer is also a resistance component with 3 terminals and its
resistance value can be adjusted according to some regular variation.
Potentiometer usually consists of resistor and movable brush. When the
brush is moving along the resistor, there is a certain resistance or
voltage output depending on the displacement.

[image: _images/image178.png]
The functions of the potentiometer in the circuit are as follows:

	Serving as a voltage divider

Potentiometer is a continuously adjustable resistor. When you adjust
the shaft or sliding handle of the potentiometer, the movable contact
will slide on the resistor. At this point, a voltage can be output
depending on the voltage applied onto the potentiometer and the angle
the movable arm has rotated to or the travel it has made.

	Serving as a rheostat

When the potentiometer is used as a rheostat, connect the middle pin
and one of the other 2 pins in the circuit. Thus you can get a
smoothly and continuously changed resistance value within the travel
of the moving contact.

	Serving as a current controller

When the potentiometer acts as a current controller, the sliding
contact terminal must be connected as one of the output terminals.

Serial Monitor

Serial Monitor is used for communication between the Mega 2560 board and
a computer or other devices. It is a built-in software in the Arduino
environment and you can click the button on the upper right corner to
open it. You can send and receive data via the serial port on the
control board and control the board by input from the keyboard.

[image: _images/image59.png]
Here, the Serial Monitor serves as a transfer station for communication
between your computer and the Uno board. First, the computer transfers
data to the Serial Monitor, and then the data is read by the Uno board.
Finally, the Uno will perform related operations. Click the icon at the
top right corner and a window will pop up as shown below:

[image: _images/image601.png]
Analog V.S. Digital

A linear potentiometer is an analog electronic component. So what’s the
difference between an analog value and a digital one? Simply put,
digital means on/off, high/low level with just two states, i.e. either 0
or 1. But the data state of analog signals is linear, for example, from
1 to 1000; the signal value changes over time instead of indicating an
exact number. Analog signals include those of light intensity, humidity,
temperature, and so on.

[image: _images/image61.png]
Principle:

In this experiment, the potentiometer is used as voltage
divider, meaning connecting devices to all of its three pins. Connect
the middle pin of the potentiometer to pin A0 and the other two pins to
5V and GND respectively. Therefore, the voltage of the potentiometer is
0-5V. Spin the knob of the potentiometer, and the voltage at pin A0 will
change. Then convert that voltage into a digital value (0-1024) with the
AD converter in the control board. Through programming, we can use the
converted digital value to control the brightness of the LED on the
control board.

The schematic diagram:

[image: _images/image214.png]

Experimental Procedures

Step 1: Build the circuit

[image: _images/image63.png]
Step 2: Open the code file.

Step 3: Select the Board and Port.

Step 4: Upload the sketch to the board.

Step5: Open the Serial Monitor.

Find the Serial.begin() code to see what baud rate is set, here is 9600.
Then click the top right corner icon to open the Serial Monitor.

[image: _images/image64.png]
Step6: Set the baud rate to 9600.

The default baud rate for serial monitors is 9600, and if the code is
also set to 9600, there is no need to change the baud rate bar.

[image: _images/image65.png]
Spin the shaft of the potentiometer and you should see the luminance of
the LED change.

If you want to check the corresponding value changes, open the Serial
Monitor and the data in the window will change with your spinning of the
potentiometer knob.

[image: _images/image66.jpeg]

Code

 Lesson 4 Doorbell

Lesson 4 Doorbell

Introduction

A buzzer is a great tool in your experiments whenever you want to make
some sounds. In this lesson, we will learn how to drive an active buzzer
to build a simple doorbell.

Components

[image: _images/image171.png]
[image: _images/image179.png]

Experimental Principle

As a type of electronic buzzer with an integrated structure, buzzers,
which are supplied by DC power, are widely used in computers, printers,
photocopiers, alarms, electronic toys, automotive electronic devices,
telephones, timers and other electronic products for voice devices.
Buzzers can be categorized as active and passive ones (see the following
picture). Turn the pins of two buzzers face up, and the one with a green
circuit board is a passive buzzer, while the other enclosed with a black
tape is an active one.

The difference between an active buzzer and a passive buzzer:

[image: _images/image70.png]
An active buzzer has a built-in oscillating source, so it will make
sounds when electrified. But a passive buzzer does not have such source,
so it will not tweet if DC signals are used; instead, you need to use
square waves whose frequency is between 2K and 5K to drive it. The
active buzzer is often more expensive than the passive one because of
multiple built-in oscillating circuits.

In this experiment, we use an active buzzer.

The schematic diagram：

[image: _images/image206.png]

Experimental Procedures

Step 1: Build the circuit (Long pins of buzzer is the Anode and the
short pin is Cathode).

Step 2: Open the code file.

Step 3: Select the Board and Port.

Step 4: Upload the sketch to the board.

[image: _images/image215.png]
Now, you should hear the buzzer beep.

[image: _images/image73.jpeg]

Code

 Lesson 5 Photoresistor

Lesson 5 Photoresistor

Introduction

In this lesson, you will learn to how to measure light intensity using a
photo resistor. The resistance of a photo resistor changes with incident
light intensity. If the light intensity gets higher, the resistance
decreases; if it gets lower, the resistance increases.

Components

[image: _images/image171.png]
[image: _images/image180.png]

Experimental Principle

A photo resistor or photocell is a light-controlled variable resistor.
The resistance of a photo resistor decreases with increasing incident
light intensity; in other words, it exhibits photo conductivity. A photo
resistor can be applied in light-sensitive detector circuits, and light-
and darkness-activated switching circuits.

In this experiment, we will use 8 LEDs to show the light intensity. The
higher the light intensity is, the more LEDs will light up. When the
light intensity is high enough, all the LEDs will be on. When there is
no light, all the LEDs will go out.

The schematic diagram:

[image: _images/image771.png]

Experimental Procedures

Step 1: Build the circuit

Step 2: Open the code file.

Step 3: Select the Board and Port.

Step 4: Upload the sketch to the board.

[image: _images/image216.png]
Now, shine some light on the photo resistor, and you will see several
LEDs light up. Shine more light and you will see more LEDs light up.
When you place it in a dark environment, all the LEDs will go out.

[image: _images/image79.jpeg]

Code

 Lesson 6 RGB LED

Lesson 6 RGB LED

Introduction

Previously we’ve used the digital pin to control an LED brighten and
dim. In this lesson, we will use PWM to control an RGB LED to flash
various kinds of color. When different PWM values are set to the R, G,
and B pins of the LED, its brightness will be different. When the three
different colors are mixed, we can see that the RGB LED flashes
different colors.

Components

[image: _images/image171.png]
[image: _images/image182.png]

Experimental Principle

PWM

Pulse width modulation, or PWM, is a technique for getting analog
results with digital means. Digital control is used to create a square
wave, a signal switched between on and off. This on-off pattern can
simulate voltages in between full on (5 Volts) and off (0 Volts) by
changing the portion of the time the signal spends on versus the time
that the signal spends off. The duration of “on time” is called pulse
width. To get varying analog values, you change, or modulate, that
width. If you repeat this on-off pattern fast enough with some device,
an LED for example, it would be like this: the signal is a steady
voltage between 0 and 5V controlling the brightness of the LED. (See the
PWM description on the official website of Arduino).

In the graphic below, the green lines represent a regular time period.
This duration or period is the inverse of the PWM frequency. In other
words, with Arduino’s PWM frequency at about 500Hz, the green lines
would measure 2 milliseconds each.

[image: _images/image81.jpeg]
A call to analogWrite() is on a scale of 0 - 255, such that
analogWrite(255) requests a 100% duty cycle (always on), and
analogWrite(127) is a 50% duty cycle (on half the time) for example.

You will find that the smaller the PWM value is, the smaller the value
will be after being converted into voltage. Then the LED becomes dimmer
accordingly. Therefore, we can control the brightness of the LED by
controlling the PWM value.

RGB LED

RGB LEDs emit light in various colors. An RGB LED packages three LEDs of
red, green, and blue into a transparent or semitransparent plastic
shell. It can display various colors by changing the input voltage of
the three pins and superimpose them, which, according to statistics, can
create 16,777,216 different colors.

[image: _images/image82.jpeg]
RGB LEDs can be categorized into common anode and common cathode ones.
In this experiment, the latter is used. The common cathode, or CC, means
to connect the cathodes of the three LEDs. After you connect it with GND
and plug in the three pins, the LED will flash the corresponding color.

[image: _images/image183.png]
An RGB LED has 4 pins: the longest one is GND; the others are Red, Green
and Blue. Touch its plastic shell and you will find a cut. The pin
closest to the cut is the first pin, marked as Red, then GND, Green and
Blue in turn.

[image: _images/image85.png]
Or you can distinguish them in another way. As GND is the longest one
and can be defined directly, you can test the other three pins by giving
them a small voltage. In addition, you need to add the current limiting
resistor to protect the component.

Principle:

On the Uno board, 3, 5, 6 and 9-11 is the PWM pins. Provide 8-bit PWM
output with
the analogWrite() [https://www.arduino.cc/en/Reference/AnalogWrite] function.
You can connect any of these pins.Here we input a value between 0 and
255 to the three pins of the RGB LED to make it display different
colors. After connecting the pins of R, G, and B to a current limiting
resistor, connect them to the pin 9, pin 10, and pin 11 respectively.
The longest pin (GND) of the LED connects to the GND of the Uno. When
the three pins are given different PWM values, the RGB LED will display
different colors.

The schematic diagram:

[image: _images/image86.png]

Experimental Procedures

Step 1: Build the circuit

Step 2: Open the code file.

Step 3: Select the Board and Port.

Step 4: Upload the sketch to the board.

[image: _images/image217.png]
Here you should see the RGB LED flash circularly red, green, and blue
first, then red, orange, yellow, green, blue, indigo, and purple.

[image: _images/image88.jpeg]

Code

 Lesson 7 Tilt Switch

Lesson 7 Tilt Switch

Introduction

The tilt switch used here is a ball one with a metal ball inside. It is
used to detect inclinations of a small angle.

Components

[image: _images/image184.png]

Experimental Principle

The principle is very simple. When the switch is tilted in a
certain angle, the ball inside rolls down and touches the two contacts
connected to the pins outside, thus triggering circuits. Otherwise the
ball will stay away from the contacts, thus breaking the circuits.

[image: _images/image93.jpeg]
The schematic diagram:

[image: _images/image921.png]

Experimental Procedures

Step 1: Build the circuit

[image: _images/image94.png]
Step 2: Open the code file.

Step 3: Select the Board and Port.

Step 4: Upload the sketch to the board.

Now, tilt the switch, and the LED attached to pin 13 on Uno board will
light up.

[image: _images/image95.jpeg]

Code

 Lesson 8 Slide Switch

Lesson 8 Slide Switch

Introduction

In this lesson, we are going to use a slide switch to turn on/off an
external LED. The slide switch is a device to connect or disconnect the
circuit by sliding its handle. They are quite common in our
surroundings. Now let’s see how it works.

Components

[image: _images/image171.png]
[image: _images/image185.png]

Experimental Principle

Slide Switch

[image: _images/image97.jpeg]
Just as its name suggests, slide switch is to connect or disconnect the
circuit by sliding its switch handle so as to switch the circuit. The
common types of slide switch include single pole double throw, single
pole triple throw, double pole double throw, and double pole triple
throw and so on. Generally, it is used in circuits with a low voltage
and features flexibility and stabilization. Slide switches are commonly
used in all kinds of instruments/meters equipment, electronic toys and
other fields related.

How it works: The middle pin is fixed. When the handle is pushed to the
left, the left two pins are connected; push it to the right, the two
pins on the right connect, thus switching circuits.

[image: _images/image186.png]
See the circuit symbol for slide switch and 2 is the middle pin.

[image: _images/image2071.png]
[image: _images/image187.png]

Principle:

Here we use a slide switch to control the on/off of an LED which is
simple. Connect the middle pin of the switch to pin 12. Connect one pin
at one end to VCC. After connecting a 10K resistor and a 104 capacitor,
connect the last one pin to GND (to let the switch output stable level
signal). Connect an LED to pin 6. Push the handle of the slide switch to
the pin connected with pin 12 which is High level, we can light up the
LED at pin 6 by programming.

Experimental Procedures

Step 1: Build the circuit

[image: _images/image1021.png]
Step 2: Open the code file

Step 3: Select correct Board and Port

Step 4: Upload the sketch to the SunFounder Uno board

When you toggle the switch to pin12, the LED lights.

[image: _images/image103.jpeg]

Code

 Lesson 9 Relay

Lesson 9 Relay

Introduction

As we may know, relay is a device which is used to provide connection
between two or more points or devices in response to the input signal
applied. In other words, relays provide isolation between the controller
and the device as devices may work on AC as well as on DC. However, they
receive signals from a microcontroller which works on DC hence
requiring a relay to bridge the gap. Relay is extremely useful when you
need to control a large amount of current or voltage with small
electrical signal.

Components

[image: _images/image171.png]
[image: _images/image188.png]

Experimental Principle

Relay

There are 5 parts in every relay:

1. Electromagnet – It consists of an iron core wounded by coil of wires. When electricity is passed through, it becomes magnetic. Therefore, it is called electromagnet.

2. Armature – The movable magnetic strip is known as armature. When current flows through them, the coil is it energized thus producing a magnetic field which is used to make or break the normally open (N/O) or normally close (N/C) points. And the armature can be moved with direct current (DC) as well as alternating current (AC).

3. Spring – When no currents flow through the coil on the electromagnet, the spring pulls the armature away so the circuit cannot be completed.

	Set of electrical contacts – There are two contact points:

	Normally open – connected when the relay is activated, and disconnected when it is inactive.

	Normally close – not connected when the relay is activated, and connected when it is inactive.

	Molded frame – Relays are covered with plastic for protection.

Working of Relay

The working principle of relay is simple. When power is supplied to the
relay, currents start flowing through the control coil; as a result, the
electromagnet starts energizing. Then the armature is attracted to the
coil, pulling down the moving contact together thus connecting with the
normally open contacts. So the circuit with the load is energized. Then
breaking the circuit would a similar case, as the moving contact will be
pulled up to the normally closed contacts under the force of the spring.
In this way, the switching on and off of the relay can control the state
of a load circuit.

[image: _images/image108.jpeg]

Transistor

[image: _images/image109.jpeg]
Transistor is a semiconductor device that controls current by
current. It functions by amplifying weak signal to larger amplitude
signal and is also used for non-contact switch. A transistor is a
three-layer structure composed of P-type and N-type semiconductors. They
form the three regions internally. The thinner in the middle is the base
region; the other two are both N-type or P-type ones – the smaller
region with intense majority carriers is the emitter region, when the
other one is the collector region. This composition enables the
transistor to be an amplifier.

From these three regions, three poles are generated respectively, which
are base (b), emitter (e), and collector (c). They form two P-N
junctions, namely, the emitter junction and collection junction. The
direction of the arrow in the transistor circuit symbol indicates that
of the emitter junction. Based on the semiconductor type, transistors
can be divided into two groups, the NPN and PNP ones. From the
abbreviation, we can tell that the former is made of two N-type
semiconductors and one P-type and that the latter is the opposite. See
the figure below.

[image: _images/image110.png]
When a High level signal goes through an NPN transistor, it is
energized. But a PNP one needs a Low level signal to manage it. Both
types of transistor are frequently used for contactless switches, just
like in this experiment.

Principle:

Connect a 1K resistor (for current limiting when the transistor is
energized) to pin 8 of the SunFounder Uno board, then to an NPN
transistor whose collector is connected to the coil of a relay and
emitter to GND; connect the normally open contact of the relay to an LED
and then GND. Therefore, when a High level signal is given to pin 8, the
transistor is energized, thus making the coil of the relay conductive.
Then its normally open contact is closed, and the LED will light up.
When pin 8 is given a Low level, the LED will stay dim.

Function of the freewheeling diode:

When the voltage input changes from High (5V) to Low (0V), the
transistor changes from saturation (three working conditions:
amplification, saturation, and cut-off) to cut-off, the current in the
coil suddenly has no way to flow through. At this moment, without the
freewheeling diode, a counter-electromotive force (EMF) will be
generated at the ends of the coil, with positive at the bottom and
negative at the top, a voltage higher than 100V. This voltage plus that
from the power at the transistor are big enough to burn it. Therefore,
the freewheeling diode is extremely important in discharging this
counter-EMF in the direction of the arrow in the figure above, so the
voltage of the transistor to GND is no higher than +5V (+0.7V).

In this experiment, when the relay closes, the LED will light up; when
the relay opens, the LED will go out.

The schematic diagram:

[image: _images/image2181.png]

Experimental Procedures

Step 1: Build the circuit

Step 2: Open the code file.

Step 3: Select the Board and Port.

Step 4: Upload the sketch to the board.

[image: _images/image219.png]
Now, send a High level signal, and the relay will close and the LED will
light up; send a low one, and it will open and the LED will go out. In
addition, you can hear a tick-tock caused by breaking the normally close
contact and closing the normally open one.

[image: _images/image1131.jpeg]

Code

 Lesson 10 4N35

Lesson 10 4N35

Introduction

The 4N35 is an optocoupler that consists of a gallium arsenide infrared
LED and a silicon NPN phototransistor. When the input signal is applied
to the LED in the input terminal, the LED lights up. After receiving the
light signal, the light receiver then converts it into electrical signal
and outputs the signal directly or after amplifying it into a standard
digital level. Thus, the transition and transmission of
electricity-light-electricity is completed. Since light is the media of
the transmission, meaning the input terminal and the output one are
isolated electrically, this process is also be known as electrical
isolation.

Components

[image: _images/image171.png]
[image: _images/image189.png]

Experimental Principle

4N35

[image: _images/image115.jpeg]
The 4N35 is an optocoupler for general purpose application. It consists
of gallium arsenide infrared LED and a silicon NPN phototransistor.

What an optocoupler does is to break the connection between signal
source and signal receiver, so as to stop electrical interference. In
other words, it is used to prevent interference from external electrical
signals. 4N35 can be used in AV conversion audio circuits. Broadly it is
widely used in electrical isolation for a general optocoupler.

[image: _images/image116.png]
See the internal structure of the 4N35 above. Pin 1 and 2 are connected
to an infrared LED. When the LED is electrified, it’ll emit infrared
rays. To protect the LED from burning, usually a resistor (about 1K) is
connected to pin 1. Then the NPN phototransistor is power on when
receiving the rays. This can be done to control the load connected to
the phototransistor. Even when the load short circuit occurs, it won’t
affect the control board, thus realizing good electrical isolation.

The schematic diagram:

[image: _images/image117.png]

Principle:

In this experiment, use an LED as the load connected to the NPN
phototransistor. Connect pin 2 of the 4N35 to pin 7 of the control
board, and pin 1 to a 1K current limiting resistor and then to 5V.
Connect pin 4 to GND of the Uno, and pin 5 to the cathode of the LED.
Then hook the anode of the LED to 5V after connecting with a 220 Ohm
resistor. When in program, a LOW level is given to pin 7, the infrared
LED will emit infrared rays. Then the phototransistor receives infrared
rays and gets electrified, and the LED cathode is LOW, thus

turning on the LED. Also you can control the LED by circuits only –
connect pin 2 to ground and it will brighten.

Experimental Procedures

Step 1: Build the circuit (pay attention to the direction of the
chip by the concave on it)

[image: _images/image118.png]
Step 2: Open the code file.

Step 3: Select correct Board and Port.

Step 4: Upload the sketch to the SunFounder Uno board.

You will see the LED blinks.

[image: _images/image119.jpeg]

Exploration

4N35 is usually used for driving relay as well as motor circuits. As
there is no direct connection between the input and output, even if a
short circuit at the output end occurs, the control board will not be
burnt. Have a try!

Code

 Lesson 11 NE555 Timer

Lesson 11 NE555 Timer

Introduction

The NE555 Timer, a mixed circuit composed of analog and digital
circuits, integrates analog and logical functions into an independent
IC, thus tremendously expanding the applications of analog integrated
circuits. It is widely used in various timers, pulse generators, and
oscillators. In this experiment, the SunFounder Uno board is used to
test the frequencies of square waves generated by the 555 oscillating
circuit and show them on Serial Monitor.

Components

[image: _images/image171.png]
[image: _images/image220.png]

Experimental Principle

555 IC

The 555 IC was originally used as a timer, hence the name 555 time base
circuit. It is now widely used in various electronic products because of
its reliability, convenience, and low price. The 555 is a complex hybrid
circuit with dozens of components such as a divider, comparator, basic
R-S trigger, discharge tube, and buffer.

Its pins and their functions:

[image: _images/image121.png]
As shown in the picture, the pins are set dual in-line with the 8-pin
package.

	Pin 1 (GND): the ground

	Pin 2 (TRIGGER): when the voltage at the pin reduces to 1/3 of the VCC (or the threshold defined by the control board), the output terminal sends out a High level

	Pin 3 (OUTPUT): outputs High or Low, two states 0 and 1 decided by the input electrical level; maximum output current approx. 200mA at High

	Pin 4 (RESET): when a Low level is received at the pin, the timer will be reset and the output will return to Low level; usually connected to positive pole or neglected

	Pin 5 (CONTROL VOLTAGE): to control the threshold voltage of the chip (if it skips connection, by default, the threshold voltage is 1/3 VCC and 2/3 VCC)

	Pin 6 (THRESHOLD): when the voltage at the pin increases to 2/3 VCC (or the threshold defined by the control board), the output terminal sends out a High level

	Pin 7 (DISCHARGE): output synchronized with Pin 3, with the same logical level; but this pin does not output current, so pin 3 is the real High (or Low) when pin 7 is the virtual High (or Low); connected to the open collector (OC) inside to discharge the capacitor

	Pin 8 (VCC): positive terminal for the NE555 timer IC, ranging +4.5V to +16V

	The NE555 timer works under the monostable, astable and bistable modes. In this experiment, apply it under the astable mode, which means it works as an oscillator, as shown below:

[image: _images/image122.jpeg]
Connect a resistor R1 between the VCC and the discharging pin DS,
another resistor between pin DS and the trigger pin TR which is
connected to the threshold pin TH and then to the capacitor C1. Connect
the RET (pin 4) to VCC, CV (pin 5) to another capacitor C2 and then to
the ground.

Working process:

The oscillator starts to shake once the circuit is power on. Upon the
energizing, since the voltage at C1 cannot change abruptly, which means
pin 2 is Low level initially, set the timer to 1, so pin 3 is High
level. The capacitor C1 charges via R1 and R2, in a time span:

Tc=0.693(R1+R2)

When the voltage at C1 reaches the threshold 2/3Vcc, the timer is reset
and pin 3 is Low level. Then C1 discharges via R2 till 2/3Vcc, in a time
span:

Td=0.693(R2)

Then the capacitor is recharged and the output voltage flips again:

Duty cycle D=Tc/(Tc+Td) x 100%

Since a potentiometer is used for resistor, we can output square wave
signals with different duty cycles by adjusting its resistance. But R1
is a 10K resistor and R2 is 0k-10k, so the range of the ideal duty cycle
is 66.7%-100%. If you want another else, you need to change the
resistance of R1 and R2.

Dmin=(0.693(10K+0K))/(0.693(10K+0K)+0.693x0k) x100%=100%

Dmax=(0.693(10K+10K))/(0.693(10K+10K)+0.693x10k) x100%=66.7%

Experimental Procedures

Step 1: Build the circuit.

[image: _images/image123.png]
Step 2: Open the code file.

Step 3: Select correct Board and Port.

Step 4: Upload the sketch to the SunFounder Uno board.

After uploading, open the Serial Monitor and you will see the following
window.

[image: _images/image191.png]

Code

 Lesson 12 Servo

Lesson 12 Servo

Introduction

Servo is a type of geared motor that can only rotate 180 degrees. It is
controlled by sending electrical pulses from your board. These pulses
tell the servo what position it should move to.

A servo has three wires: the brown wire is GND, the red one is VCC, and
the orange one is signal line.

Components

[image: _images/image192.png]

Experimental Principle

Servo

A servo is generally composed of the following parts: case, shaft, gear
train, adjustable potentiometer, DC motor, and control circuit board.

It works like this: The Uno board sends out PWM signals to
the servo, and then the control circuit in the servo receives the
signals through the signal pin and controls the motor inside to turn. As
a result, the motor drives the gear chain and then motivates the shaft
after deceleration. The shaft and adjustable potentiometer of the servo
are connected together. When the shaft rotates, it drives the pot, so
the pot outputs a voltage signal to the circuit board. Then the board
determines the direction and speed of rotation based on the current
position, so it can stop exactly at the right position as defined and
hold there.

The schematic diagram:

[image: _images/image193.png]

Experimental Procedures

Step 1: Build the circuit. (Brown to GND, Red to VCC, Orange to pin 9
of the control board)

[image: _images/image128.png]
Step 2: Open the code file.

Step 3: Select the Board and Port.

Step 4: Upload the sketch to the board.

Now, you can see the rocker arm of the servo rotate and stop at 90
degrees (15 degrees each time). And then it rotates in the opposite
direction.

[image: _images/image129.jpeg]

Code

 Lesson 13 LCD1602

Lesson 13 LCD1602

Introduction

In this lesson, we will learn how to use an LCD1602 to display
characters and strings. LCD1602, or 1602 character-type liquid crystal
display, is a kind of dot matrix module to show letters, numbers, and
characters and so on. It’s composed of 5x7 or 5x11 dot matrix positions;
each position can display one character. There’s a dot pitch between two
characters and a space between lines, thus separating characters and
lines. The number 1602 means on the display, 2 rows can be showed and 16
characters in each. Now let’s check more details!

Components

[image: _images/image171.png]
[image: _images/image194.png]

Experimental Principle

Generally, LCD1602 has parallel ports, that is, it would control several
pins at the same time. LCD1602 can be categorized into eight-port and
four-port connections. If the eight-port connection is used, then all
the digital ports of the Uno board are almost completely occupied. If
you want to connect more sensors, there will be no ports available.
Therefore, the four-port connection is used here for better application.

Pins of LCD1602 and their functions

VSS: connected to ground

VDD: connected to a +5V power supply

VO: to adjust the contrast

RS: A register select pin that controls where in the LCD’s memory
you are writing data to. You can select either the data register, which
holds what goes on the screen, or an instruction register, which is
where the LCD’s controller looks for instructions on what to do next.

R/W: A Read/Write pin to select between reading and writing mode

E: An enabling pin that reads the information when High level (1) is
received. The instructions are run when the signal changes from High
level to Low level.

D0-D7: to read and write data

A and K: Pins that control the LCD backlight. Connect K to GND and A
to 3.3v. Open the backlight and you will see clear characters in a
comparatively dark environment.

Principle:

Connect K to GND and A to 3.3 V, and then the backlight of the LCD1602
will be turned on. Connect VSS to GND and the LCD1602 to the power
source. Connect VO to the middle pin of the potentiometer - with it you
can adjust the contrast of the screen display. Connect RS to D4 and R/W
pin to GND, which means then you can write characters to the LCD1602.
Connect E to pin6 and the characters displayed on the LCD1602 are
controlled by D4-D7. For programming, it is optimized by calling
function libraries.

The schematic diagram:

[image: _images/image208.png]

Experimental Procedures

Step 1: Build the circuit (make sure the pins are connected
correctly. Otherwise, characters will not be displayed properly):

Step 2: Open the code file.

Step 3: Select the Board and Port.

Step 4: Upload the sketch to the board.

Note

you may need to adjust the potentiometer until the LCD1602 can
display clearly.

[image: _images/image221.png]
You should now see the characters “SunFounder” and “hello,
world” rolling o